
TRANSNET PIPELINES

Document Name Document Number Revision Number Page

SCADA Software Coding Standard - Scripting PRJ: E354086-00000-271-050-0008

TPL: TPL-XXXX-X-X-XXXX-XXXX

01

XX

Page 1 of 41

Page 1 of 41 Originator: EOH/AVEVA Original date: 05-12-2018
Copyright © Transnet Pipelines. All rights reserved, including rights to amendments.

SCADA Software Coding Standard - Scripting

E354086-00000-271-050-0008

REV. 01

DOCUMENT APPROVAL PROCESS

NAME POSITION/MEETING NO. SIGNATURE DATE

Originator: Hugo Rust SCADA Leading Engineer 15-08-2019

Approver: Paulo De Sousa Gomes Engineering Manager 15-08-2019

Original date: 05-12-2018

Effective date: 15-08-2019

TRANSNET PIPELINES

Document Name Document Number Revision Number Page

SCADA Software Coding Standard - Scripting -

Scripting

PRJ: E354086-00000-271-050-0008

TPL: TPL-XXXX-X-X-XXXX-XXXX

01

XX

Page 2 of 41

Page 2 of 41 Originator: EOH/AVEVA Original date: 05-12-2018
Copyright © Transnet Pipelines. All rights reserved, including rights to amendments.

DOCUMENT CHANGE HISTORY:

The owner of this document is responsible for the revision and control of the document, including

updating of the table below, which contains the history of the document with details of each revision.

Date Previous

Rev No.

New

Rev No.

Details of Revision

20-08-2021 00 01 As Built

This table summarises what has been changed in the document so that it is easy to keep track of the

effected changes.

TRANSNET PIPELINES

Document Name Document Number Revision Number Page

SCADA Software Coding Standard - Scripting -

Scripting

PRJ: E354086-00000-271-050-0008

TPL: TPL-XXXX-X-X-XXXX-XXXX

01

XX

Page 3 of 41

Page 3 of 41 Originator: EOH/AVEVA Original date: 05-12-2018
Copyright © Transnet Pipelines. All rights reserved, including rights to amendments.

TABLE OF CONTENTS

INTRODUCTION .. 5

1.1 Purpose ... 5

1.2 Scope .. 5

1.2.1 Requirements Included .. 5

1.2.2 Requirements Excluded ... 5

1.3 Document Usage .. 5

1.4 Terms and Definitions ... 6
1.5 Abbreviations ... 9

APPLICABLE DOCUMENTS ... 12

2.1 TPL Applicable Specifications and Standards ... 12

2.2 Other Applicable Specifications and Standards .. 12

2.3 Reference Documentation ... 13

VISUAL BASIC PROGRAMMING CONVENTION DETAILS ... 14

3.1 Capitalization .. 14

3.1.1 Capitalizing Compound Words and Common Terms ... 15

3.2 General .. 16

3.2.1 Naming Conventions ... 16

3.2.1.1 Word Choice .. 16

3.2.1.2 Using Abbreviations and Acronyms .. 17

3.2.1.3 Avoiding Language-Specific Names ... 17

3.2.2 Coding Conventions .. 18
3.2.2.1 Layout ... 19

3.2.2.2 Language Guidelines .. 19

3.2.2.2.1 Unsigned Data Type .. 19

3.2.2.2.2 Arrays .. 19

3.2.2.2.3 Use the With Keyword ... 20

3.2.2.2.4 Use the IsNot Keyword .. 20

3.2.2.2.5 Event Handling.. 20

3.2.2.2.6 Using Shared Members .. 20

3.3 Assemblies ... 20

3.3.1 Naming Conventions ... 21
3.3.2 Coding Conventions .. 21

3.4 Classes, Structs, and Interfaces ... 21

3.4.1 Classes ... 21
3.4.1.1 Naming Conventions .. 21

3.4.1.2 Constructors .. 22

3.4.1.2.1 Type Constructor Guidelines .. 23

3.4.2 Structs ... 23

TRANSNET PIPELINES

Document Name Document Number Revision Number Page

SCADA Software Coding Standard - Scripting -

Scripting

PRJ: E354086-00000-271-050-0008

TPL: TPL-XXXX-X-X-XXXX-XXXX

01

XX

Page 4 of 41

Page 4 of 41 Originator: EOH/AVEVA Original date: 05-12-2018
Copyright © Transnet Pipelines. All rights reserved, including rights to amendments.

3.4.2.1 Naming Conventions .. 23

3.4.3 Enumerations ... 23
3.4.3.1 Naming Conventions .. 23

3.4.3.2 Coding Conventions ... 24

3.5 Type Members .. 25
3.5.1 Methods ... 25

3.5.1.1 Naming Conventions .. 25

3.5.1.2 Coding Conventions ... 25

3.5.2 Properties ... 27
3.5.2.1 Naming Conventions .. 27

3.5.2.2 Coding Conventions ... 28

3.5.3 Delegates and Events .. 29
3.5.3.1 Naming Conventions .. 29

3.5.3.2 Coding Conventions ... 31

3.5.4 Fields ... 34
3.5.4.1 Naming Conventions .. 34

3.6 Exceptions.. 34

3.6.1 Naming Conventions ... 34

3.6.2 Coding Conventions .. 35
3.6.2.1.1 Use the Try...Catch and Using Statements when you use Exception Handling ... 35

3.7 Flow Control ... 36

3.8 Variables .. 36

3.8.1 Naming Conventions ... 36

3.8.2 Coding Conventions .. 37

3.9 OASyS infrastructure reuse .. 38
3.10 Debugging instrumentation ... 38

3.11 User friendliness ... 39

3.12 Comments and emdedded documentation .. 39

3.12.1 Commenting Guidelines ... 40

TRANSNET PIPELINES

Document Name Document Number Revision Number Page

SCADA Software Coding Standard - Scripting -

Scripting

PRJ: E354086-00000-271-050-0008

TPL: TPL-XXXX-X-X-XXXX-XXXX

01

XX

Page 5 of 41

Page 5 of 41 Originator: EOH/AVEVA Original date: 05-12-2018
Copyright © Transnet Pipelines. All rights reserved, including rights to amendments.

 INTRODUCTION

1.1 Purpose

The purpose of this document is to specify basic guidelines for creating user (customer)

specific program code within SCADA display components,and as such covers

recommendations for Visual Basic .NET (VB .NET) programming language.

The aim of this document is thus, to ensure all code developed for the SCADA system is

consistent regardless of author, maintainable and of a high quality.

The document is mostly applicable for designing OASyS DNA displays and ACE routines.

All recommendations are based on Microsoft Standard for .NET platform and were taken from

Microsoft official repository (https://docs.microsoft.com/en-us/dotnet/visual-basic/).

1.2 Scope

1.2.1 Requirements Included

The following will be included in this document:

• Naming convention for VB .NET programs

• Coding convention for VB .NET programs

This document details internal variables which are used in the scripts. Where external

variables and parameters are used they will comply to the PCS Software Naming Standard

[9].

1.2.2 Requirements Excluded

The following will be excluded from this document:

• Naming conventions for sites, field devices, database tags, display names.

[Site, Plant, Equipment and Instrumentation (field devices) naming conventions are

detailed in the TPL Specification PL101 [12]. Database Tag naming conventions and

SCADA Display naming conventions are detailed in [9] Naming Standard. PLC

software coding standard. Refer to PLC Software Coding Standard [10] for details.

• Baseline program code (goes with the product).

• Program code which is auto generated in SCADA components (i.e. display editor –

XE, ACE editor).

1.3 Document Usage

In this specification,

https://docs.microsoft.com/en-us/dotnet/visual-basic/

TRANSNET PIPELINES

Document Name Document Number Revision Number Page

SCADA Software Coding Standard - Scripting -

Scripting

PRJ: E354086-00000-271-050-0008

TPL: TPL-XXXX-X-X-XXXX-XXXX

01

XX

Page 6 of 41

Page 6 of 41 Originator: EOH/AVEVA Original date: 05-12-2018
Copyright © Transnet Pipelines. All rights reserved, including rights to amendments.

• the word shall is to be understood as a mandatory requirement,

• the word should as a preference,

• the word may as a permissive (i.e. neither mandatory nor necessarily recommended),

• and the word will as a declaration on behalf of something/ someone else.

• The word DO and DO NOT is to be understood as recommendations, not mandatory.

1.4 Terms and Definitions

Adapter Ethernet/IP device the Publishes data at a set RPI(Request Packet

Interval) and sent as multicast messages to Scanner Devices.

Advanced

Database Editor

(ADE)

An OASyS DNA support and configuration program for editing the real-

time database.

Application

Software

The software written specifically to perform user requirements for an

individual plant when standard software packages cannot be
configured to meet the requirements. Application software works with

the standard operating software and it does not modify any standard

software

Archive Saving measured values and messages in the operator station to

history so the data can be called up over a long period of time

Availability The probability that a system will perform its designed function when

required to do so is expressed as the fraction (or percentage) of time a
system or individual module remains on-line and performs as specified

during an observation period. It is calculated as follows: A =

MTTF/MTBF or A = MTTF/(MTTF + MTTR)

Blocks Blocks are separate parts of a user control software configuration

distinguished by their function, structure, and purpose

CFC Continuous Function Chart is a high-level graphical language using

function blocks for configuring continuous control systems

Camel Case Naming convention that capitalised the first character of each word
(without underscores). 2 types of Camel Case are defined: Upper

Camel Case and Lower Camel Case / Pascal Case. A.k.a. Medial
capitals. For the purpose of this document Camel Case refers to Lower

Camel Case (first character small caps).

Control Panel A standard graphic element that represents, for example, an analogue
controller instrument, a hardwired push-button, or a switch, allowing

operator monitoring and control of the device, and comprises on one

RTDB object.

Display Graphics which will show the information coming from the RealTime

database statically or dynamically.

Engineering

Server (ES)

Used for preparation and distribution of software binaries, displays and

database changes to the SCADA servers.

Faceplate A standard graphic element that represents, for example, an analogue

controller instrument, a hardwired push-button, or a switch, allowing

TRANSNET PIPELINES

Document Name Document Number Revision Number Page

SCADA Software Coding Standard - Scripting -

Scripting

PRJ: E354086-00000-271-050-0008

TPL: TPL-XXXX-X-X-XXXX-XXXX

01

XX

Page 7 of 41

Page 7 of 41 Originator: EOH/AVEVA Original date: 05-12-2018
Copyright © Transnet Pipelines. All rights reserved, including rights to amendments.

operator monitoring and control of the device, and comprises of

multiple RTDB objects.

Fault Tolerance The property of a system which permits it to carry out its assigned
function even in the presence of one or more faults in its hardware or

software components. Fault tolerance is to be achieved automatically

without any user intervention

Function Block A control bock as defined in IEC 61131-3. See also Block

HMI The graphical interface program for allowing an operator to interact

with and control a process

Instance A copy of a function block, which is used again in the control

configuration for a similar application

Ladder Logic

(LAD)

Graphical representation of the automation task using relay symbols

complying with DIN 19239

Lower Camel

Case
Camel Case with first character small caps.

MTBF MTBF is the expected time between failures of a system including time

to repair. It is derived in its simplest form as: MTBF = MTTF + MTTR

MTTF MTTF is the expected time to failure of a system in a population of

identical systems

MTTR MTTR is the statistical average of time taken to identify and repair a

fault (including diagnostics)

Mode Control block operational condition, such as manual, automatic, or

cascade

Monitor Physical device used to show displays.

OPC Software applications which allow bi-directional data flow between two
separate applications. These applications may be running on the same

or separate servers. OPC refers to the complete OPC specification

Operator

Workstation

Electronic equipment on which the HMI resides, including, at a

minimum, PC workstation, a monitor, keyboard, and pointing device

used by an operator to monitor and control his assigned process or

manufacturing units

Operator /

Controller

One who exercises central surveillance and control of the field using

SCADA.

Pascal Case Camel Case convention with the first letter capitalised. A.k.a. Upper

Camel Case.

PCS The Process Control System (PCS) refers to the complete control

system required for the operation of the TPL sites from the field

interface to the operator interface.

Personal

Computer (PC)

A workstation or server, typically running MS-Windows when referred

to in this way.

PLC Programmable Logic Controller, used for discrete and continuous

control in processing and manufacturing plants

TRANSNET PIPELINES

Document Name Document Number Revision Number Page

SCADA Software Coding Standard - Scripting -

Scripting

PRJ: E354086-00000-271-050-0008

TPL: TPL-XXXX-X-X-XXXX-XXXX

01

XX

Page 8 of 41

Page 8 of 41 Originator: EOH/AVEVA Original date: 05-12-2018
Copyright © Transnet Pipelines. All rights reserved, including rights to amendments.

Point A process variable derived from an input signal or calculated in a

process calculation

Process Object A collection of variables and parameters that performs a control
function (e.g. motor, block valve, PID Controller) which may consist of

more than one I/O point

Plug and Play The ability of hardware equipment to automatically identify itself to the
system. When the equipment is powered up it is automatically assigned

a unique identity without the need to set any dipswitches

Real-time The inherent property of a system to distribute data such that the

users of the data always have the most current data at all times.

Reliability The probability that when operating under stated environmental

conditions, the system will perform continuously, as specified, over a

specific time interval

Redundant A system/subsystem with two modules that provides automatic

switchover to a backup in the event of a failure, without loss of a

system function

Scanner Ethernet/IP – A scanner device opens connections and initiates data

transfers. This device is typically the subscriber of data. (See Adapter

for Publisher)

Screen Part of the monitor which is shown to arrange displays.

Sequential

Function Chart

(SFC)

Sequential Function Charts are a high-level graphical configuration

language for sequential control applications

Statement List

(STL)

Statement List is a textual programming language resembling machine

code and complying with IEC 1131-3

Structured

Control

Language (SCL)

A high-level language complying with IEC 1131-3 and resembling

Pascal for programming complex or custom logic tasks within the

controller

System Bus The network used for communication between controllers and HMI

servers

System Software The software components that are required to make the system

functional and fit for purpose. System software shall include any
firmware, operating software and tools that are supplied as standard

items (for example configuration software, operating system and

human interface configuration software). Typically, system software is

configured to meet user requirements

TVDA Tested, Validated and Documented Architecture - A guideline
document published by Schneider Electric on specific applications,

which have been setup, tested and validated in Schneider Electric

Laboratories.

Upper Camel

Case

See Pascal Case.

User

Requirements

Those requirements that describe what functions the system must

perform to achieve the objectives of operating the physical plant.

Typically, the system is configured to meet user requirements

TRANSNET PIPELINES

Document Name Document Number Revision Number Page

SCADA Software Coding Standard - Scripting -

Scripting

PRJ: E354086-00000-271-050-0008

TPL: TPL-XXXX-X-X-XXXX-XXXX

01

XX

Page 9 of 41

Page 9 of 41 Originator: EOH/AVEVA Original date: 05-12-2018
Copyright © Transnet Pipelines. All rights reserved, including rights to amendments.

Works PCS Upgrade Project which includes design, engineering, supply,
installation, commissioning and handover of the Process Control,

Integrated Custody Metering and Pipeline Monitoring Systems and
Deployment to all Crude Oil Pipeline Stations – Main Automation

Contract.

1.5 Abbreviations

ACDB Alarm Configuration Database

API American Petroleum Institute

AS PL723 Automation Standard

ASCII American Standard Code for Information Interchange

CCOTF Change of Configuration on The Fly

CO Co-ordinating Officer

DCS Distributed Control System

DDDT Device Derived Data Type

DDF Detected Dangerous Failure

DDS Detailed Design Specification

DDT Derived Data Type

DIE Diesel

DOL Direct Online

DTM Device Type Manager

ECP Effluent Control Panel

EDS Engineering Design Specification

EIO Ethernet (Remote) IO

ePAC Ethernet Programmable Automation Controller

ES Engineering System

FAST PLC Fast Task which runs periodically at a pre-determined rate

measured in ms

F&G Fire and Gas

FBD Function Block Diagram

FC Flow Computer

FDS Functional Design Specification

FDT Field Device Type

FFB Collective term for EF, EFB and DFB

FRS Functional Requirements Specification

HART Highway Addressable Remote Transducer

HMI Human Machine Interface

TRANSNET PIPELINES

Document Name Document Number Revision Number Page

SCADA Software Coding Standard - Scripting -

Scripting

PRJ: E354086-00000-271-050-0008

TPL: TPL-XXXX-X-X-XXXX-XXXX

01

XX

Page 10 of 41

Page 10 of 41 Originator: EOH/AVEVA Original date: 05-12-2018
Copyright © Transnet Pipelines. All rights reserved, including rights to amendments.

HSBY Hot Standby

I/O Input/output

IP Industrial Protocol

IS Intrinsically Safe

LAN Local Area Network

MAST PLC Master Task which runs periodically at a pre-determined rate

measured in ms

MCC Master Control Centre

MDS Metering System

MIS Manufacturing Information System

MMS Machine Monitoring System

MoC Mode of Control

MoO Mode of Operation

MTBF Mean Time Between Failure

MTTF Mean Time To Failure

MTTR Mean Time To Replacement

MV Medium Voltage

NOC National Operations Centre

OPC OLE for Process Control

OS Operating System

P&ID Piping and Instrumentation Drawing

PCS Process Control System

PFD Process Flow Diagram

PID Proportional, Integral & Derivative Controller

PLC Programmable Logic Controller

PLC Programmable Logic Controller

RIO Remote Input/Outputs

RPI Request Packet Interval

RSTP Rapid Spanning Tree Protocol

RTU Remote Terminal Unit

SCADA Supervisory, Control and Data Acquisition

SCC Secondary Control Centre

SFC Sequential Flow Chart

SIF Safety Instrumented Function

SIL Safety Integrity Level

SIS Safety Instrumented System

TRANSNET PIPELINES

Document Name Document Number Revision Number Page

SCADA Software Coding Standard - Scripting -

Scripting

PRJ: E354086-00000-271-050-0008

TPL: TPL-XXXX-X-X-XXXX-XXXX

01

XX

Page 11 of 41

Page 11 of 41 Originator: EOH/AVEVA Original date: 05-12-2018
Copyright © Transnet Pipelines. All rights reserved, including rights to amendments.

SNMP Simple Network Management Protocol

SO Station Operator

ST Structured Text

TBA To be Advised

TBC To be Confirmed

TBD To be Defined

TCP Transmission Control Protocol

TGS Tank Gauging System

URS User Requirements Specification

VSD Variable Speed Drive

WAN Wide Area Network

TRANSNET PIPELINES

Document Name Document Number Revision Number Page

SCADA Software Coding Standard - Scripting -

Scripting

PRJ: E354086-00000-271-050-0008

TPL: TPL-XXXX-X-X-XXXX-XXXX

01

XX

Page 12 of 41

Page 12 of 41 Originator: EOH/AVEVA Original date: 05-12-2018
Copyright © Transnet Pipelines. All rights reserved, including rights to amendments.

 APPLICABLE DOCUMENTS

All documents of the exact revision cited in the Applicable Documents form part of this

specification to the extent specified. In the event of conflict between the text of this

specification and the documents invoked herein, the text of this specification shall take

precedence.

However, nothing in this specification supersedes applicable laws and regulations.

2.1 TPL Applicable Specifications and Standards

No. and Title Doc. No. Rev.

[1] PCS Control Module Specification E354086-00000-

271-078-0005
Latest

[2] SCADA Functional Design Specification E3544086-
00000-271-078-

0018

Latest

[3] Metering Functional Design Specification E3544086-
00000-271-078-

0020

Latest

[4] LDS Functional Design Specification E3544086-
00000-271-078-

0007

Latest

[5] SCADA/PLC Communication Plan E354086-00000-

271-078-0012

Latest

[6] HMI Style Guide E354086-00000-

271-078-0006

Latest

[7] Software Configuration Management Plan E354086-00000-

271-050-0002
Latest

[8] Software Lifecycle Plan E354086-00000-

130-050-0001

Latest

[9] PCS Software Naming Standard E354086-00000-

271-050-0006

Latest

[10] PLC Software Coding Standard E354086-00000-

271-050-0004
Latest

2.2 Other Applicable Specifications and Standards

The following national and international standards are required to be complied with and shall

be read in conjunction with this Specification.

No. and Title Doc. No. Rev.

[11] Nil

TRANSNET PIPELINES

Document Name Document Number Revision Number Page

SCADA Software Coding Standard - Scripting -

Scripting

PRJ: E354086-00000-271-050-0008

TPL: TPL-XXXX-X-X-XXXX-XXXX

01

XX

Page 13 of 41

Page 13 of 41 Originator: EOH/AVEVA Original date: 05-12-2018
Copyright © Transnet Pipelines. All rights reserved, including rights to amendments.

2.3 Reference Documentation

The documents included in this section do not form part of the specification, but are included

for background and context.

No. Doc. No. Rev.

[12] TPL Plant & Equipment Numbering Standard TPL-TECH-DO-

STD-002

(PL101)

06

TRANSNET PIPELINES

Document Name Document Number Revision Number Page

SCADA Software Coding Standard - Scripting -

Scripting

PRJ: E354086-00000-271-050-0008

TPL: TPL-XXXX-X-X-XXXX-XXXX

01

XX

Page 14 of 41

Page 14 of 41 Originator: EOH/AVEVA Original date: 05-12-2018
Copyright © Transnet Pipelines. All rights reserved, including rights to amendments.

 VISUAL BASIC PROGRAMMING CONVENTION DETAILS

Note: Where there is a conflict between the PCS Software Naming Standard [9] and this

document, the PCS Software Naming Standard shall take preference over this document.

All code developed shall be based on US English only for names.

3.1 Capitalization

• DO NOT use underscores to differentiate words, or for that matter, anywhere in

identifiers.

There are two appropriate ways to capitalize identifiers, depending on the use of the

identifier:

• PascalCasing

• CamelCasing

The PascalCasing convention, used for all identifiers except parameter names, capitalizes the

first character of each word (including acronyms over two letters in length), as shown in the

following examples:

PropertyDescriptor

HtmlTag

A special case is made for two-letter acronyms in which both letters are capitalized, as shown

in the following identifier:

IOStream

The camelCasing convention, used only for parameter names, capitalizes the first character of

each word except the first word, as shown in the following examples. As the example also

shows, two-letter acronyms that begin a camel-cased identifier are both lowercase:

propertyDescriptor

ioStream

htmlTag

• DO use PascalCasing for all public member, type, and namespace names consisting of

multiple words.

• DO use camelCasing for parameter names.

The following table describes the capitalization rules for different types of identifiers to be

used in the scripts on this project.

Identifier Casing Example

Namespace Pascal namespace System.Security

TRANSNET PIPELINES

Document Name Document Number Revision Number Page

SCADA Software Coding Standard - Scripting -

Scripting

PRJ: E354086-00000-271-050-0008

TPL: TPL-XXXX-X-X-XXXX-XXXX

01

XX

Page 15 of 41

Page 15 of 41 Originator: EOH/AVEVA Original date: 05-12-2018
Copyright © Transnet Pipelines. All rights reserved, including rights to amendments.

Identifier Casing Example

Type Pascal public class StreamReader

Interface Pascal interface IEnumerable

Method Pascal Public ToString() as String

Property Pascal ReadOnly Property QuoteForTheDay() As String

Event Pascal Event AnEvent(ByVal EventNumber As Integer)

Field Pascal Private AccountNumber As String

Enum value Pascal enum FileMode

Append

...

end enum

Parameter Camel public class Convert

public static int ToInt32(string valueToConvert)

3.1.1 Capitalizing Compound Words and Common Terms

Most compound terms are treated as single words for purposes of capitalization.

• DO NOT capitalize each word in so-called closed-form compound words.

These are compound words written as a single word, such as endpoint. For the purpose of

casing guidelines, treat a closed-form compound word as a single word. Use a current

dictionary to determine if a compound word is written in closed form.

Pascal Camel Not

BitFlag bitFlag Bitflag

Callback callback CallBack

Cancelled cancelled Cancelled

FileName fileName Filename

TRANSNET PIPELINES

Document Name Document Number Revision Number Page

SCADA Software Coding Standard - Scripting -

Scripting

PRJ: E354086-00000-271-050-0008

TPL: TPL-XXXX-X-X-XXXX-XXXX

01

XX

Page 16 of 41

Page 16 of 41 Originator: EOH/AVEVA Original date: 05-12-2018
Copyright © Transnet Pipelines. All rights reserved, including rights to amendments.

Pascal Camel Not

Id id ID

LogOff logOff LogOut

LogOn logOn LogIn

Namespace namespace NameSpace

Ok ok OK

UserName userName Username

3.2 General

3.2.1 Naming Conventions

3.2.1.1 Word Choice

• DO choose easily readable identifier names.

For example, a property named HorizontalAlignment is more English-readable than

AlignmentHorizontal.

• DO favor readability over brevity.

The property name CanScrollHorizontally is better than ScrollableX (an obscure reference to

the X-axis).

• DO NOT use underscores, hyphens or any other nonalphanumeric characters.

• DO NOT use Hungarian notation.

• AVOID using identifiers that conflict with keywords of widely used programming

languages.

• DO begin function and method names with a verb, as in InitNameArray or CloseDialog.

• DO begin class, structure, module, and property names with a noun, as

in EmployeeName or CarAccessory.

• DO begin interface names with the prefix "I", followed by a noun or a noun phrase,

like IComponent, or with an adjective describing the interface's behaviour,

like IPersistable. Do not use the underscore, and use abbreviations sparingly, because

abbreviations can cause confusion.

TRANSNET PIPELINES

Document Name Document Number Revision Number Page

SCADA Software Coding Standard - Scripting -

Scripting

PRJ: E354086-00000-271-050-0008

TPL: TPL-XXXX-X-X-XXXX-XXXX

01

XX

Page 17 of 41

Page 17 of 41 Originator: EOH/AVEVA Original date: 05-12-2018
Copyright © Transnet Pipelines. All rights reserved, including rights to amendments.

• DO begin event handler names with a noun describing the type of event followed by the

"EventHandler" suffix, as in "MouseEventHandler".

• DO include the "EventArgs" suffix in the names of event argument classes.

• DO use a suffix in present or past tense if an event has a concept of "before" or "after"

as in "ControlAdd" or "ControlAdded".

• DO use abbreviations to keep name lengths reasonable for long or frequently used

terms, for example, "HTML", instead of "Hypertext Markup Language".

In general, variable names greater than 32 characters are difficult to read on a monitor

set to a low resolution. Also, make sure your abbreviations are consistent throughout the

entire application. Randomly switching in a project between "HTML" and "Hypertext

Markup Language" can lead to confusion.

• AVOID using names in an inner scope that are the same as names in an outer scope.

Errors can result if the wrong variable is accessed.

3.2.1.2 Using Abbreviations and Acronyms

• DO NOT use abbreviations or contractions as part of identifier names.

For example, use GetWindow rather than GetWin.

• DO NOT use any acronyms that are not widely accepted, and even if they are, only

when necessary.

3.2.1.3 Avoiding Language-Specific Names

• DO use semantically interesting names rather than language-specific keywords for type

names.

For example, GetLength is a better name than GetInt.

• DO use a generic CLR type name, rather than a language-specific name, in the rare

cases when an identifier has no semantic meaning beyond its type.

For example, a method converting to Int64 should be named ToInt64, not ToLong (because

Int64 is a CLR name for the C#-specific alias long). The following table presents several base

data types using the CLR type names (as well as the corresponding type names for C#, Visual

Basic, and C++).

C# Visual Basic C++ CLR

sbyte SByte Char SByte

byte Byte unsigned char Byte

https://docs.microsoft.com/en-us/dotnet/api/system.int64
https://docs.microsoft.com/en-us/dotnet/api/system.int64

TRANSNET PIPELINES

Document Name Document Number Revision Number Page

SCADA Software Coding Standard - Scripting -

Scripting

PRJ: E354086-00000-271-050-0008

TPL: TPL-XXXX-X-X-XXXX-XXXX

01

XX

Page 18 of 41

Page 18 of 41 Originator: EOH/AVEVA Original date: 05-12-2018
Copyright © Transnet Pipelines. All rights reserved, including rights to amendments.

C# Visual Basic C++ CLR

short Short Short Int16

ushort UInt16 unsigned short UInt16

int Integer Int Int32

uint UInt32 unsigned int UInt32

long Long __int64 Int64

ulong UInt64 unsigned __int64 UInt64

float Single Float Single

double Double Double Double

Bool Boolean Bool Boolean

Char Char wchar_t Char

String String String String

Object Object Object Object

• DO use a common name, such as value or item, rather than repeating the type name, in

the rare cases when an identifier has no semantic meaning and the type of the

parameter is not important.

3.2.2 Coding Conventions

• No compile warnings are to be introduced

• Be cautious when modifying autogenerated code

VS.NET and other tools often generate code that may be deleted and regenerated later

without your direct knowledge. If you modify these sections, your additions and modifications

may be deleted later. In some cases, programmer-driven modification of these sections is

logical, since the modification is coupled to the autogenerated code itself.

TRANSNET PIPELINES

Document Name Document Number Revision Number Page

SCADA Software Coding Standard - Scripting -

Scripting

PRJ: E354086-00000-271-050-0008

TPL: TPL-XXXX-X-X-XXXX-XXXX

01

XX

Page 19 of 41

Page 19 of 41 Originator: EOH/AVEVA Original date: 05-12-2018
Copyright © Transnet Pipelines. All rights reserved, including rights to amendments.

3.2.2.1 Layout

• Insert tabs as spaces, and use smart indenting with four-space indents.

• Use only one statement per line.

• Do not use the Visual Basic line separator character (:).

• Avoid using the explicit line continuation character "_" in favour of implicit line

continuation wherever the language allows it.

• Use only one declaration per line.

• However, always left-align items in a list.

Dim a As Integer

Dim b As Integer

• Add at least one blank line between method and property definitions.

3.2.2.2 Language Guidelines

3.2.2.2.1 Unsigned Data Type

• Use Integer rather than unsigned types, except where they are necessary.

3.2.2.2.2 Arrays

• Use the short syntax when you initialize arrays on the declaration line.

Use the following syntax.

Dim letters1 As String() = {"a", "b", "c"}

Do not use the following syntax.

Dim letters2() As String = New String() {"a", "b", "c"}

• Put the array designator on the type, not on the variable.

Use the following syntax:

Dim letters4 As String() = {"a", "b", "c"}

Do not use the following syntax:

Dim letters3() As String = {"a", "b", "c"}

• Use the { } syntax when you declare and initialize arrays of basic data types.

Use the following syntax:

Dim letters5 As String() = {"a", "b", "c"}

Do not use the following syntax:

TRANSNET PIPELINES

Document Name Document Number Revision Number Page

SCADA Software Coding Standard - Scripting -

Scripting

PRJ: E354086-00000-271-050-0008

TPL: TPL-XXXX-X-X-XXXX-XXXX

01

XX

Page 20 of 41

Page 20 of 41 Originator: EOH/AVEVA Original date: 05-12-2018
Copyright © Transnet Pipelines. All rights reserved, including rights to amendments.

Dim letters6(2) As String

letters6(0) = "a"

letters6(1) = "b"

letters6(2) = "c"

3.2.2.2.3 Use the With Keyword

When you make a series of calls to one object, consider using the With keyword:

With orderLog

 .Log = "Application"

 .Source = "Application Name"

 .MachineName = "Computer Name"

End With

3.2.2.2.4 Use the IsNot Keyword

Use the IsNot keyword instead of Not...Is Nothing.

3.2.2.2.5 Event Handling

• Use Handles rather than AddHandler:

Private Sub ToolStripMenuItem1Click() Handles ToolStripMenuItem1.Click

End Sub

• Use AddressOf, and do not instantiate the delegate explicitly:

Dim closeItem As New ToolStripMenuItem(

 "Close", Nothing, AddressOf ToolStripMenuItem1Click)

Me.MainMenuStrip.Items.Add(closeItem)

• When you define an event, use the short syntax, and let the compiler define the

delegate:

Public Event SampleEvent As EventHandler(Of SampleEventArgs)

' or

Public Event SampleEvent(ByVal source As Object, ByVal e As SampleEventArgs)

• Do not verify whether an event is Nothing (null) before you call

the RaiseEvent method. RaiseEvent checks for Nothing before it raises the event.

3.2.2.2.6 Using Shared Members

Call Shared members by using the class name, not from an instance variable.

3.3 Assemblies

An assembly is the unit of deployment and identity for managed code programs. Although

assemblies can span one or more files, typically an assembly maps one-to-one with a DLL.

TRANSNET PIPELINES

Document Name Document Number Revision Number Page

SCADA Software Coding Standard - Scripting -

Scripting

PRJ: E354086-00000-271-050-0008

TPL: TPL-XXXX-X-X-XXXX-XXXX

01

XX

Page 21 of 41

Page 21 of 41 Originator: EOH/AVEVA Original date: 05-12-2018
Copyright © Transnet Pipelines. All rights reserved, including rights to amendments.

3.3.1 Naming Conventions

• DO choose names for your assembly DLLs that suggest large chunks of functionality,

such as System.Data.

Assembly and DLL names don’t have to correspond to namespace names, but it is reasonable

to follow the namespace name when naming assemblies. A good rule of thumb is to name

the DLL based on the common prefix of the namespaces contained in the assembly. For

example, an assembly with two namespaces, MyCompany.MyTechnology.FirstFeature and

MyCompany.MyTechnology.SecondFeature, could be called MyCompany.MyTechnology.dll.

• CONSIDER naming DLLs according to the following pattern:

<Company>.<Component>.dll

where <Component> contains one or more dot-separated clauses. For example:

Litware.Controls.dll.

3.3.2 Coding Conventions

• An assembly shall contain classes defined within one namespace only

• Each assembly shall be strongly signed

3.4 Classes, Structs, and Interfaces

3.4.1 Classes

3.4.1.1 Naming Conventions

• DO name classes with nouns or noun phrases, using PascalCasing.

This distinguishes type names from methods, which are named with verb phrases.

• DO NOT give class names a prefix (e.g., "C").

• CONSIDER ending the name of derived classes with the name of the base class.

This is very readable and explains the relationship clearly. Some examples of this in code are:

ArgumentOutOfRangeException, which is a kind of Exception, and SerializableAttribute, which

is a kind of Attribute. However, it is important to use reasonable judgment in applying this

guideline; for example, the Button class is a kind of Control event, although Control doesn’t

appear in its name.

TRANSNET PIPELINES

Document Name Document Number Revision Number Page

SCADA Software Coding Standard - Scripting -

Scripting

PRJ: E354086-00000-271-050-0008

TPL: TPL-XXXX-X-X-XXXX-XXXX

01

XX

Page 22 of 41

Page 22 of 41 Originator: EOH/AVEVA Original date: 05-12-2018
Copyright © Transnet Pipelines. All rights reserved, including rights to amendments.

3.4.1.2 Constructors

There are two kinds of constructors: type constructors and instance constructors.

Type constructors are static and are run by the CLR before the type is used. Instance

constructors run when an instance of a type is created.

Type constructors cannot take any parameters. Instance constructors can. Instance

constructors that don’t take any parameters are often called default constructors.

Constructors are the most natural way to create instances of a type. Most developers will

search and try to use a constructor before they consider alternative ways of creating

instances (such as factory methods).

• CONSIDER providing simple, ideally default, constructors.

A simple constructor has a very small number of parameters, and all parameters are

primitives or enums. Such simple constructors increase usability of the framework.

• CONSIDER using a static factory method instead of a constructor if the semantics of the

desired operation do not map directly to the construction of a new instance, or if

following the constructor design guidelines feels unnatural.

• DO use constructor parameters as shortcuts for setting main properties.

There should be no difference in semantics between using the empty constructor followed by

some property sets and using a constructor with multiple arguments.

• DO use the same name for constructor parameters and a property if the constructor

parameters are used to simply set the property.

The only difference between such parameters and the properties should be casing.

• DO minimal work in the constructor.

Constructors should not do much work other than capture the constructor parameters. The

cost of any other processing should be delayed until required.

• DO throw exceptions from instance constructors, if appropriate.

• DO explicitly declare the public default constructor in classes, if such a constructor is

required.

If you don’t explicitly declare any constructors on a type, many languages will automatically

add a public default constructor (Abstract classes get a protected constructor.)

Adding a parameterized constructor to a class prevents the compiler from adding the default

constructor. This often causes accidental breaking changes.

• AVOID explicitly defining default constructors on structs.

This makes array creation faster, because if the default constructor is not defined, it does not

have to be run on every slot in the array. Note that many compilers, including C#, don’t allow

structs to have parameterless constructors for this reason.

• AVOID calling virtual members on an object inside its constructor.

TRANSNET PIPELINES

Document Name Document Number Revision Number Page

SCADA Software Coding Standard - Scripting -

Scripting

PRJ: E354086-00000-271-050-0008

TPL: TPL-XXXX-X-X-XXXX-XXXX

01

XX

Page 23 of 41

Page 23 of 41 Originator: EOH/AVEVA Original date: 05-12-2018
Copyright © Transnet Pipelines. All rights reserved, including rights to amendments.

Calling a virtual member will cause the most derived override to be called, even if the

constructor of the most derived type has not been fully run yet.

3.4.1.2.1 Type Constructor Guidelines

• DO make static constructors private.

A static constructor, also called a class constructor, is used to initialize a type. The CLR calls

the static constructor before the first instance of the type is created or any static members on

that type are called. The user has no control over when the static constructor is called. If a

static constructor is not private, it can be called by code other than the CLR. Depending on

the operations performed in the constructor, this can cause unexpected behavior. The C#

compiler forces static constructors to be private.

• DO NOT throw exceptions from static constructors.

If an exception is thrown from a type constructor, the type is not usable in the current

application domain.

• CONSIDER initializing static fields inline rather than explicitly using static constructors,

because the runtime is able to optimize the performance of types that don’t have an

explicitly defined static constructor.

3.4.2 Structs

3.4.2.1 Naming Conventions

• DO name structs with nouns or noun phrases, using PascalCasing.

This distinguishes type names from methods, which are named with verb phrases.

3.4.3 Enumerations

3.4.3.1 Naming Conventions

• DO NOT use a suffixes "Enum", "Flag" or "Flags" in enum type names.

• DO NOT use a prefix on enumeration value names (e.g., “ad_rtf” : ”"ad" for ADO

enums, "rtf" for rich text enums, etc.).

• DO use singular names for basic enumerations. For example:

Enum Protocol

 Tcp

 Udp

 Http

 Ftp

End Enum

• Use plural names for enumerations representing bitfields. For example:

TRANSNET PIPELINES

Document Name Document Number Revision Number Page

SCADA Software Coding Standard - Scripting -

Scripting

PRJ: E354086-00000-271-050-0008

TPL: TPL-XXXX-X-X-XXXX-XXXX

01

XX

Page 24 of 41

Page 24 of 41 Originator: EOH/AVEVA Original date: 05-12-2018
Copyright © Transnet Pipelines. All rights reserved, including rights to amendments.

Enum EggSizes

 Jumbo

 ExtraLarge

 Large

 Medium

 Small

End Enum

• Enumerations shall be Pascal case. For example:

Enum SearchOptions

 CaseInsensitive

 WholeWordOnlyEnd

Enum

3.4.3.2 Coding Conventions

• Enumeration numeric values shall not be explicitly assigned. For example:

enum LicensePlateType

 Vanity = 0 ‘BAD

 AssignedByDMV ‘OK

End Enum

Exception: An enumeration may need explicit values assigned to interact with other external

subsystems.

Here is an example where enumeration values must be explicitly defined in order to match

externally defined color-masking conventions:

enum RGBColorMask

 Red = 1

 Green = 2

 Blue = 4

 …

End Enum

• Enumerations that are bitmasks shall use the <Flags> attribute

<Flags()> Public Enum FilePermissions

 None

 Create

 Read

 Update

 Delete

End Enum

• Enumerations that are bitmasks shall assign enumeration values increasing powers of 2

<Flags()> Public Enum FilePermissions

 None = 0

TRANSNET PIPELINES

Document Name Document Number Revision Number Page

SCADA Software Coding Standard - Scripting -

Scripting

PRJ: E354086-00000-271-050-0008

TPL: TPL-XXXX-X-X-XXXX-XXXX

01

XX

Page 25 of 41

Page 25 of 41 Originator: EOH/AVEVA Original date: 05-12-2018
Copyright © Transnet Pipelines. All rights reserved, including rights to amendments.

 Create = 1

 Read = 2

 Update = 4

 Delete = 8

End Enum

• Avoid specifying a type for an enumeration

Type may be specified if the bitmask requires more than 32 bits. If type is specified beyond

the default (of a 32 bit integer), then favour Int64, since this will align with word boundaries

and gain efficiency over other byte size types (E.g. byte).

Enum MyEnum As Byte

…

End Enum

• Do not use an enum for open sets

For example: Operating system version.

3.5 Type Members

3.5.1 Methods

3.5.1.1 Naming Conventions

Because methods are the means of taking action, the design guidelines require that method

names be verbs or verb phrases. Following this guideline also serves to distinguish method

names from property and type names, which are noun or adjective phrases.

• DO give methods names that are verbs or verb phrases.

• Method names shall be Pascal case. For example,

public TickleMeTimbers(numberOfTimbers as Integer)

• Method arguments shall be Camel case. For example:

protected MyFunc(redIsMyFavouriteColour as Boolean)

• Name methods using a verb-object pair. For example:

ShowDialog()

3.5.1.2 Coding Conventions

• All variants of an overload method shall be used for the same purpose and have similar

behaviour

• Use consistent names for parameters in method overloads

TRANSNET PIPELINES

Document Name Document Number Revision Number Page

SCADA Software Coding Standard - Scripting -

Scripting

PRJ: E354086-00000-271-050-0008

TPL: TPL-XXXX-X-X-XXXX-XXXX

01

XX

Page 26 of 41

Page 26 of 41 Originator: EOH/AVEVA Original date: 05-12-2018
Copyright © Transnet Pipelines. All rights reserved, including rights to amendments.

public class Sunglasses

 … WearGlasses(size as Integer)

 … WearGlasses(size as Integer, atNight as Boolean, duringDay as Boolean)

 … WearGlasses(sizeOfHead as Integer, night as Boolean, day as Boolean, pool as

Boolean) ‘BAD

• Use consistent ordering for parameters in method overloads

public class Sunglasses

 … WearGlasses(size as Integer)

 … WearGlasses(size as Integer, atNight as Boolean, duringDay as Boolean)

 … WearGlasses(atNight as Boolean, size as Integer, duringDay as Boolean,

atThePool as Boolean) ‘BAD

• Do not return error codes (boolean or enumeration) to indicate exceptional conditions.

Use exceptions for this purpose.

public class Sunglasses

 public sub WearGlasses()

 success as Boolean = true

 …

 return success; ‘BAD

 end sub

end Class

public class Sunglasses

 public sub WearGlasses()

 …

 if failed = true then

 throw new DNAException(“Glasses don’t fit”) ’GOOD

 end if

 end sub

end Class

• Methods shall be kept as short as possible

A good rule of thumb is that each method shall be visible in its entirety in the edit window.

Each method shall have only one functional goal, and produce as few side effects (i.e.

changing the state of the class) as possible.

• Use ByRef on value-type arguments only when you intend on modifying the callers copy

sub CalculateOffset(ByRef size as Integer)

• Use a property rather than a method when the member is a logical data member

TRANSNET PIPELINES

Document Name Document Number Revision Number Page

SCADA Software Coding Standard - Scripting -

Scripting

PRJ: E354086-00000-271-050-0008

TPL: TPL-XXXX-X-X-XXXX-XXXX

01

XX

Page 27 of 41

Page 27 of 41 Originator: EOH/AVEVA Original date: 05-12-2018
Copyright © Transnet Pipelines. All rights reserved, including rights to amendments.

• Methods with multiple parameters shall either be visible on a single line, or if multiple

lines are required, then each parameter shall be on a separate line. For example:

virtual sub ComplicatedAction(modeValue as Integer, filename as String) ‘OK

End sub

virtual sub ComplicatedAction(modeValue as Integer, string fileName, _

 numberOfFiles as Integer, fondMemoryOfChildhood as Boolean) ‘BAD

End sub

virtual sub ComplicatedAction(‘BETTER

 modeValue as Integer

 filename as String

 numberOfFiles as Integer

)

…

End sub

3.5.2 Properties

3.5.2.1 Naming Conventions

Unlike other members, properties should be given noun phrase or adjective names. That is

because a property refers to data, and the name of the property reflects that. PascalCasing is

always used for property names.

• DO name properties using a noun, noun phrase, or adjective.

• DO NOT have properties that match the name of "Get" methods as in the following

example:

public property TextWriter { get {...} set {...} }
public property GetTextWriter(value as Integer) { ... }

This pattern typically indicates that the property should really be a method.

• DO name collection properties with a plural phrase describing the items in the collection

instead of using a singular phrase followed by "List" or "Collection."

• DO name Boolean properties with an affirmative phrase (CanSeek instead of CantSeek).

Optionally, you can also prefix Boolean properties with "Is," "Can," or "Has," but only

where it adds value.

• CONSIDER giving a property the same name as its type.

For example, the following property correctly gets and sets an enum value named Color, so

the property is named Color:

public enum Color {...}

public class Control {

 public Color Color { get {...} set {...} }

}

TRANSNET PIPELINES

Document Name Document Number Revision Number Page

SCADA Software Coding Standard - Scripting -

Scripting

PRJ: E354086-00000-271-050-0008

TPL: TPL-XXXX-X-X-XXXX-XXXX

01

XX

Page 28 of 41

Page 28 of 41 Originator: EOH/AVEVA Original date: 05-12-2018
Copyright © Transnet Pipelines. All rights reserved, including rights to amendments.

• Property names shall be Pascal case. For example:

IsMySandwichGood as Boolean

• Boolean property names shall start with the word Is. For example:

Property IsMySandwichGood() as Boolean

 Get

 return isMySandwichGood;

 End Get

End Property

3.5.2.2 Coding Conventions

• Allow properties to be set in any order

• Avoid writing properties that result in extensive side effects

If a property begins to cause side effects, consider making it a method.

• Consider providing property-changed events

Consider if users of your class will want to know if a given property has changed. If so, then

property change events should be created.

If provided, ensure that the event is named PropertyChanged where Property is replaced with

the name of the property that changed. Refer to CS_DEN_006 for further details on naming.

• The following conditions identify when a method should be used instead of a property

o The operation is a conversion (e.g. Object.ToString())

o The operation is expensive enough that you want to communicate to the user that

they should consider caching the result.

o Obtaining the property using a get accessor would have an observable side effect.

o Calling the member twice in succession produces different results.

o The order of execution is important.

o The member is static, but returns a value that can be changed.

o The member returns a copy of an internal array or other reference type.

o Only a set accessor will be supplied. Write-only properties tend to be confusing.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/ cpgenref/ html/

cpconpropertyusageguidelines.asp

• Consider implementing ISupportInitialize if multiple related properties are supported

If you have related properties, such as DataSource and DataMember, you should consider

implementing the ISupportInitialize Interface. This will allow the designer (or user) to call the

ISupportInitialize.BeginInit and ISupportInitialize.EndInit methods when setting multiple properties to

allow the component to provide optimizations.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/%20cpgenref/%20html/%20cpconpropertyusageguidelines.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/%20cpgenref/%20html/%20cpconpropertyusageguidelines.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemComponentModelISupportInitializeClassTopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemComponentModelISupportInitializeClassBeginInitTopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemComponentModelISupportInitializeClassEndInitTopic.asp

TRANSNET PIPELINES

Document Name Document Number Revision Number Page

SCADA Software Coding Standard - Scripting -

Scripting

PRJ: E354086-00000-271-050-0008

TPL: TPL-XXXX-X-X-XXXX-XXXX

01

XX

Page 29 of 41

Page 29 of 41 Originator: EOH/AVEVA Original date: 05-12-2018
Copyright © Transnet Pipelines. All rights reserved, including rights to amendments.

3.5.3 Delegates and Events

3.5.3.1 Naming Conventions

Events always refer to some action, either one that is happening or one that has occurred.

Therefore, as with methods, events are named with verbs, and verb tense is used to indicate

the time when the event is raised.

• DO name events with a verb or a verb phrase.

Examples include Clicked, Painting, DroppedDown, and so on.

• DO give events names with a concept of before and after, using the present and past

tenses.

For example, a close event that is raised before a window is closed would be called Closing,

and one that is raised after the window is closed would be called Closed.

• DO NOT use "Before" or "After" prefixes or postfixes to indicate pre- and post-events.

Use present and past tenses as just described.

• DO name event handlers (delegates used as types of events) with the "EventHandler"

suffix, as shown in the following example:

Delegate Sub ClickedEventHandler(e as ClickedEventArgs)

• DO use two parameters named sender and e in event handlers.

The sender parameter represents the object that raised the event. The sender parameter is

typically of type object, even if it is possible to employ a more specific type.

• DO name event argument classes with the "EventArgs" suffix.

• Delegate definitions used as events shall be suffixed with the string EventHandler

For example, the CloseEventHandler below is used to define the signature that will be used

for the Close event:

public delegate CloseEventHandler(sender as object, args as EventArgs)

public event Close as CloseEventHandler ‘an instance of CloseEventHandler

• Event instances shall not be suffixed. For example, the Close event below is not

suffixed:

public delegate CloseEventHandler(sender as object, args as EventArgs)

public event Close as CloseEventHandler ‘an instance of CloseEventHandler

• Delegates that are not used for events shall be suffixed with the string Callback

For example, the AsyncIOFinishedCallback delegate below is not used in any event

definition:

public delegate AsyncIOFinishedCallback(client as IpcClient)

• Methods that are called via a delegate that is not related to an event should not have

any suffix

TRANSNET PIPELINES

Document Name Document Number Revision Number Page

SCADA Software Coding Standard - Scripting -

Scripting

PRJ: E354086-00000-271-050-0008

TPL: TPL-XXXX-X-X-XXXX-XXXX

01

XX

Page 30 of 41

Page 30 of 41 Originator: EOH/AVEVA Original date: 05-12-2018
Copyright © Transnet Pipelines. All rights reserved, including rights to amendments.

Users of such a method may call it through any means (via a delegate, or directly), and any

suffix chosen for this method is likely to not express all future use cases of the method. For

example:

public sub WorkCompleted(client as IpcClient)

end sub

public sub GetWorkCompletedDelegate() as WorkCompletedCallback

 return new AsyncIOFinishedCallback(WorkCompleted) ‘hand back delegate

end sub

public sub DoStuffDirectly()

 WorkCompleted(client); ‘direct call

End sub

• Use a verb for naming an event or delegate

• Property Change events shall be suffixed with Changed

Events that notify consumers of changed properties should be named

<PropertyName>Changed. Protected helper methods that raise these events should be

named “Raise<PropertyName>Changed”.

• Methods that are called via an event handler shall be prefixed with the variable instance

name, followed by an underscore, followed by the event name

This is the standard that the VS.NET environment uses when it autogenerates code.

For example:

public class ScoobyDoo

 public delegate sub JumpEventHandler(heightInMeters as Integer, yelp as Boolean)

 public event Jump as JumpEventHandler

 public sub EnterHauntedHouse()

 Jump(10, true) ‘Raise the event

 End sub

End Class

public class Scrappy

 public sub Scrappy (sdoo as ScoobyDoo)

 ‘Register for the Event

 sdoo.Jump += new ScoobyDoo.JumpEventHandler(sdoo_Jump);

 end sub

 ‘We are called when the event is raised

 private sub sdoo_Jump(heightInMeters as integer, yelp as boolean)

 MessageBox.Show(String.Format("Scooby jumped {0} meters",

 heightInMeters))

 end sub

End class

TRANSNET PIPELINES

Document Name Document Number Revision Number Page

SCADA Software Coding Standard - Scripting -

Scripting

PRJ: E354086-00000-271-050-0008

TPL: TPL-XXXX-X-X-XXXX-XXXX

01

XX

Page 31 of 41

Page 31 of 41 Originator: EOH/AVEVA Original date: 05-12-2018
Copyright © Transnet Pipelines. All rights reserved, including rights to amendments.

static sub Main()

 scooby as ScoobyDoo = new ScoobyDoo()

 Scrappy scrappyToo = new Scrappy(scooby)

 scooby.EnterHauntedHouse()

end sub

3.5.3.2 Coding Conventions

• DO NOT explicitly qualify the arguments (Object and EventArgs) to event handlers. If

you are not using the event arguments that are passed to an event (for example, sender

as Object, e as EventArgs), use relaxed delegates, and leave out the event arguments in

your code:

Public Sub Form1_Load() Handles Form1.Load

End Sub

• When raising events within a base class designed for inheritance, design the parent class

to allow children to intercept the event

That is, if you are designing a class that:

o Is designed for inheritance (you are developing a class that is not sealed)

o Raises an event

Then you must design the base class to allow any future child class to intercept the event.

While a child class could register to receive the event on a private method, this overhead can

be avoided with the following pattern:

o Use a protected virtual method to raise each event.

o The name of the method takes the form On<EventName>, where <EventName> is

the name of the event being raised.

The purpose of the protected method is to provide a way for a derived class to intercept the

event using a simple method override.

For example:

public class Button

 public MouseUp as MouseUpEventHandle

 protected sub DoMouseUp(x as integer, y as integer)

 try

 ‘Raise the event to any inheriting classes

 OnMouseUp(new MouseEventArgs(x,y))

 catch

 finally

 End try

 protected virtual sub OnMouseUp(e as MouseEventArgs)

 if (MouseUp != null) then

 ‘Raise the event to any subscribers

 MouseUp(this, e)

 End if

TRANSNET PIPELINES

Document Name Document Number Revision Number Page

SCADA Software Coding Standard - Scripting -

Scripting

PRJ: E354086-00000-271-050-0008

TPL: TPL-XXXX-X-X-XXXX-XXXX

01

XX

Page 32 of 41

Page 32 of 41 Originator: EOH/AVEVA Original date: 05-12-2018
Copyright © Transnet Pipelines. All rights reserved, including rights to amendments.

 End sub

End Class

public sealed class SpecialButton : Button

 protected override sub OnMouseUp(e as MouseEventArgs)

‘Our parent class is telling us that the mouse

‘is now up. Do special processing!

…

 ‘Finally, call the parent OnMouseUp who will raise the

 ‘the event to externally registered classes.

 base.OnMouseUp(e);

 end sub

End Class

Note that any derived class can choose not to call the base class during the processing of

OnMouseUp (see the override for OnMouseUp in this example).

 Be prepared for this by not including any processing in the On<EventName> method that is

required for the base class to work correctly.

• Copy delegates to local variables before publishing to avoid concurrency race conditions

This is required because there is a race condition whereby a caller may be deregistering for

the event at the same time that the event is about to be raised. See example below in

CS_DAE_003.

• Always check an event for null before invoking it

For example:

public class MySource

 private event MyEvent as EventHandler

 public sub FireEvent()

 temp as EventHandler = MyEvent ‘ CRITICAL

 if (temp != null) ‘ CRITICAL

 temp(this, EventArgs.Empty)

 End if

 End sub

End class

• When you need to limit the number of registered subscribers to an event, use event

accessors

• DO NOT force all events to have the same parameters (i.e. object sender, EventArgs args)

While Microsoft may advocate this standard signature to reduce namespace pollution in a

WinForms environment, it reduces the type safety of the arguments at runtime. It also

complicates the code of the receiver of the event.

By contrast, using a signature that properly matches the true purpose of your event ensures

compile time verification for both the event caller and the event receiver. For example:

// Good

public class ScoobyDoo

TRANSNET PIPELINES

Document Name Document Number Revision Number Page

SCADA Software Coding Standard - Scripting -

Scripting

PRJ: E354086-00000-271-050-0008

TPL: TPL-XXXX-X-X-XXXX-XXXX

01

XX

Page 33 of 41

Page 33 of 41 Originator: EOH/AVEVA Original date: 05-12-2018
Copyright © Transnet Pipelines. All rights reserved, including rights to amendments.

 public delegate sub JumpEventHandler(heightInMeters as integer, yelp as

boolean)

public event Jump as JumpEventHandler

// Bad

public class ScoobyDoo

 public delegate sub JumpEventHandler(sender as object, args as EventArgs)

 public event Jump as JumpEventHandler

Exception: EventArgs is a universal standard in handling events within the WinForms

universe, and therefore use of this event signature will be beneficial in these environments.

• If you choose to define a new event using EventArgs, then pass an object instance that

inherits from EventArgs

For example:
public delegate sub MouseUpEventHandler(sender as object, e as MouseEventArgs)

public class MouseEventArgs of EventArgs

 int x;

 int y;

 public sub MouseEventArgs(ix as integer, y as integer)

this.x = x;

this.y = y;

end sub

 public sub X as Integer

 get

 return x

 end get

end sub

 public sub Y as Integer

 get

 return y

 end get

end sub

public class Button

 public event MouseUp as MouseUpEventHandler

 …

• Objects that raise events should wrap the event in a try/catch/finally

Consumers of events can contain any code, including code that calls into the object raising

the event. Because of this, objects that raise events should include a try-finally block that

ensures that the object is returned to a known state after the event is raised.

• Use or extend the System.ComponentModel.CancelEventArgs class to allow the developer

to control the events of an object.

TRANSNET PIPELINES

Document Name Document Number Revision Number Page

SCADA Software Coding Standard - Scripting -

Scripting

PRJ: E354086-00000-271-050-0008

TPL: TPL-XXXX-X-X-XXXX-XXXX

01

XX

Page 34 of 41

Page 34 of 41 Originator: EOH/AVEVA Original date: 05-12-2018
Copyright © Transnet Pipelines. All rights reserved, including rights to amendments.

For example, the TreeView control raises a BeforeLabelEdit when the user is about to edit a

node label. The following code example illustrates how a developer can use this event to

prevent a node from being edited.

public class Form1 as Form

 treeView1 as TreeView = new TreeView()

 sub treeView1_BeforeLabelEdit(source as object, e as NodeLabelEditEventArgs)

 e.CancelEdit = true

 end sub

End class

Note that in this case, no error is generated to the user. The label is read-only.

Cancel events are not appropriate in cases where the developer would cancel the operation

and return an exception. In these cases, you should raise an exception inside of the event

handler in order to cancel. For example, the user might want to write validation logic in an

edit control as shown.

public class Form1 as Form

 edit1 as EditBox = new EditBox()

 sub TextChanging(source as object, e as EventArgs)

 throw new RuntimeException("Invalid edit")

 end sub

End class

See:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/cpconconstructorusageguidelines.asp

3.5.4 Fields

3.5.4.1 Naming Conventions

The field-naming guidelines apply to static public and protected fields. Internal and private

fields are not covered by guidelines, and public or protected instance fields are not allowed

by the member design guidelines.

• DO use PascalCasing in field names.

• DO name fields using a noun, noun phrase, or adjective.

• DO NOT use a prefix for field names.

For example, do not use "g_" or "s_" to indicate static fields.

3.6 Exceptions

3.6.1 Naming Conventions

• Add the Exception suffix to all custom exception classes

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/cpconconstructorusageguidelines.asp
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/member

TRANSNET PIPELINES

Document Name Document Number Revision Number Page

SCADA Software Coding Standard - Scripting -

Scripting

PRJ: E354086-00000-271-050-0008

TPL: TPL-XXXX-X-X-XXXX-XXXX

01

XX

Page 35 of 41

Page 35 of 41 Originator: EOH/AVEVA Original date: 05-12-2018
Copyright © Transnet Pipelines. All rights reserved, including rights to amendments.

public class PubSubException : DNAException

{

3.6.2 Coding Conventions

3.6.2.1.1 Use the Try...Catch and Using Statements when you use Exception

Handling

• DO NOT use On Error Goto.

• Only throw exceptions in exceptional situations

DO NOT throw exceptions in normal or expected conditions (e.g. end-of-file); return

booleans or enumerations instead.

• Only catch and re-throw an exception when you want to specialize or log the exception

That is, if you intend to add additional information, change the type of the exception to a

more specific exception, or write a message describing the exception to the log.

 ' Set up structured error handling.

 Try

 ' Do something.

 Catch e As System.IO.IOException

 ' Code that reacts to IOException.
 DNALog.DumpNonFatalExceptionToLog(e)

 Catch e As NullReferenceException

 ' Code that reacts to NullReferenceException.
 DNALog.DumpNonFatalExceptionToLog(e)

 Catch e As Exception

 ' Code that reacts to any other exception.
 DNALog.DumpNonFatalExceptionToLog(e);

 Finally

 ' This line executes whether or not the exception occurs.

 DNALog.DumpNonFatalExceptionToLog("in Finally block");

 End Try

• Describe the recoverable exceptions using the <exception> XML documentation tag

Explicit exceptions are the ones that the method or property explicitly throws from its

implementation and which users are allowed to catch. Exceptions thrown by the .NET

framework classes and methods used by this implementation do not need to be documented.

''' <exception cref="System.OverflowException">

''' Thrown when <paramref name="denominator"/><c> = 0</c>.

''' </exception>

Public Function IntDivide(

 ByVal numerator As Integer,

 ByVal denominator As Integer

TRANSNET PIPELINES

Document Name Document Number Revision Number Page

SCADA Software Coding Standard - Scripting -

Scripting

PRJ: E354086-00000-271-050-0008

TPL: TPL-XXXX-X-X-XXXX-XXXX

01

XX

Page 36 of 41

Page 36 of 41 Originator: EOH/AVEVA Original date: 05-12-2018
Copyright © Transnet Pipelines. All rights reserved, including rights to amendments.

) As Integer

 Return numerator \ denominator

End Function

• Use standard exceptions where appropriate over custom exceptions.

For a complete list of standard exceptions, refer to the documentation on System.Event.

Here is a partial list of exceptions that are typically of interest:

IndexOutOfRangeException
Indexing an array or indexable collection

outside its valid range.

InvalidOperationException
An action is performed which is not valid

considering the object’s current state.

NotSupportedException
An action is performed which is not supported

today.

ArgumentException An incorrect argument is specified.

ArgumentNullException
A null reference is supplied to an argument

that does not allow null.

ArgumentOutsideOfRangeException An argument is not within the desired range.

• Throw informational exceptions

That is, set the exception Message property to help the caller diagnose the problem.

• Localize the event description string

• Throw the most specific exception possible

3.7 Flow Control

• DO NOT change a loop variable inside a for statement

For index As Integer = 1 To 5

Index = index + 1 ‘ BAD

Next

3.8 Variables

3.8.1 Naming Conventions

• Local instance variables shall be camel case

That is, starting with a lower case letter, and words within the name shall be separated by a

capital letter. For example:

Dim velocityMetersPerSec As Integer

• Private class variables shall be Camel case

TRANSNET PIPELINES

Document Name Document Number Revision Number Page

SCADA Software Coding Standard - Scripting -

Scripting

PRJ: E354086-00000-271-050-0008

TPL: TPL-XXXX-X-X-XXXX-XXXX

01

XX

Page 37 of 41

Page 37 of 41 Originator: EOH/AVEVA Original date: 05-12-2018
Copyright © Transnet Pipelines. All rights reserved, including rights to amendments.

For example:

Class Class1

 ' Define a local variable to store the property value.

 Private propertyValue As String

 ' Define the property.

End Class

Exception: Autogenerated code is not required to follow this pattern. For example, Windows

Form Controls placed on a form will autogenerate class variables based on the instance name

of the visual control.

• Constant variable names shall be all upper case

Words in the constant can be separated by an underscore

For example:

Public Const MAX_BUFFER_SIZE_KB as Integer = 1024

• Underscores shall not be used in the name of any type, other than constants and event

handlers

3.8.2 Coding Conventions

• DO use private const, or public readonly, instead of embedding numeric values into the

code

Assign any numbers to a constant variable that describes its meaning, and then use the

constant within the code. For example:

Public Const SERVER_NOT_AVAILABLE_ERRNO as Integer = 1

 …

 if errNo = SERVER_NOT_AVAILABLE_ERRNO then

 .

Exceptions:

The values 0, 1, and null can nearly always be used safely.

Often, 2 and –1 can fall into this category.

Strings intended for the oasErrLog are exempt from this rule.

Literals are allowed when their meaning is clear from the context, and not subject to future

changes. For example:

mean = (a + b) / 2 ‘this will always be divided by 2

• Each variable is to be declared in a separate declaration statement

For example:

Dim velocityMetersPerSec As Integer ‘GOOD

TRANSNET PIPELINES

Document Name Document Number Revision Number Page

SCADA Software Coding Standard - Scripting -

Scripting

PRJ: E354086-00000-271-050-0008

TPL: TPL-XXXX-X-X-XXXX-XXXX

01

XX

Page 38 of 41

Page 38 of 41 Originator: EOH/AVEVA Original date: 05-12-2018
Copyright © Transnet Pipelines. All rights reserved, including rights to amendments.

Dim numberOfPeople As Integer ‘GOOD

Dim velocityMetersPerSec, totalTimeSecs, meterLimit As Integer ‘BAD

• Local variables shall be defined within the lowest scope that they are used

Declare the variable just prior to use. For example:

 DIM success as BOOLEAN = IsRequestComplete()

 if success = true then

 Dim myElmo as Elmo = new Elmo()

 Dim counter as Integer = 0

 while counter < maxItems

 …

 Dim myScooby as ScoobyDoo = new ScoobyDoo()

 myScooby.Jump()

 elmo.Giggle()

 End While

 End If

NOTE: For those reference objects that may be allocated inside the loop, consider whether

they can be constructed outside of the loop and have the single instance reused.

For example, here an instance of myScooby is allocated on each iteration, but elmo is reused.

• If possible, initialize variables at the point of declaration

NOTE: If you use field initialization for a class (i.e. giving a value at the point of the field

declaration), then instance fields will be initialized before the instance constructor is called.

• Use properties to expose class variables instead of marking class variables as public or

protected

Exception: Constants may be exposed publicly.

3.9 OASyS infrastructure reuse

• DO NOT duplicate the functionality within the OASySDNA assemblies

Be aware of the capabilities within the OASySDNA infrastructure assemblies. This can be

learned through the documentation found on each machine that has OASySDNA

Infrastructure installed within the following helpfile:

Telvent \ DNA \ Documentation \ Helpfiles \ OASySDNADotNet.chm

• Make use of the DNALog for outputting log messages, and use the appropriate error level

for the message. Do not output messages directly with System.Console or direct file I/O

3.10 Debugging instrumentation

TRANSNET PIPELINES

Document Name Document Number Revision Number Page

SCADA Software Coding Standard - Scripting -

Scripting

PRJ: E354086-00000-271-050-0008

TPL: TPL-XXXX-X-X-XXXX-XXXX

01

XX

Page 39 of 41

Page 39 of 41 Originator: EOH/AVEVA Original date: 05-12-2018
Copyright © Transnet Pipelines. All rights reserved, including rights to amendments.

• DO favour the DNALog class over System.Diagnostics.Debug and

System.Diagnostics.Trace

DNALog enables logging that can be toggled during runtime without restarting your process.

It can produce a stack trace, or a simple source file and line number display. It can write to a

common log file, or a process specific file.

Unlike the Debug and Trace classes, DNALog not depend on any switches or compile target

to be effective (e.g. DEBUG vs. RELEASE, or the Trace macro).

Therefore, you can instrument your code with DNALog calls, and have the capability to debug

the product even in a running production environment, without restarting your process.

Finally, DNALog has been tested against the performance constraints of a control system,

whereas Debug and Trace have not.

3.11 User friendliness

• Operator error and information messages that uses standard OASyS message boxes

must be user-friendly

• DO NOT suggest action with an error message, unless the way to correct the error is

obvious

• DO log appropriate messages for error and warning conditions, and for other useful

information

Also make liberal use of DNALog using the LogLevel enumeration values Warning, Info, and

Verbose

3.12 Comments and emdedded documentation

As you read the code examples, you often encounter the comment symbol ('). This symbol

tells the Visual Basic compiler to ignore the text following it, or the comment. Comments are

brief explanatory notes added to code for the benefit of those reading it.

It is good programming practice to begin all procedures with a brief comment describing the

functional characteristics of the procedure (what it does). This is for your own benefit and the

benefit of anyone else who examines the code. You should separate the implementation

details (how the procedure does it) from comments that describe the functional

characteristics. When you include implementation details in the description, remember to

update them when you update the function.

Comments can follow a statement on the same line, or occupy an entire line. Both are

illustrated in the following code.

' This is a comment beginning at the left edge of the screen.

text1.Text = "Hi!" ' This is an inline comment.

If your comment requires more than one line, use the comment symbol on each line, as the

following example illustrates.

TRANSNET PIPELINES

Document Name Document Number Revision Number Page

SCADA Software Coding Standard - Scripting -

Scripting

PRJ: E354086-00000-271-050-0008

TPL: TPL-XXXX-X-X-XXXX-XXXX

01

XX

Page 40 of 41

Page 40 of 41 Originator: EOH/AVEVA Original date: 05-12-2018
Copyright © Transnet Pipelines. All rights reserved, including rights to amendments.

' This comment is too long to fit on a single line, so we break

' it into two lines. Some comments might need three or more lines.

3.12.1 Commenting Guidelines

The following table provides general guidelines for what types of comments can precede a

section of developed custom code.

Purpose Describes what the procedure does (not how it does it)

Inputs Specifies the purpose of the argument

Returns Explains the values returned by the procedure

TPL Requirement:

Each file shall contain a header block. Each header block should contain a short summary of

the file (or display), file name (per Naming convention document), and audit of the file per

example below.

#region “Header”

‘Filename: displayName.XEM

‘Description: This display indicates LP Manifold subsystem for Fynnlands station

‘Version Number: XXX

‘Change history

‘---

‘ VersionNum Date Name Proj Description

 ChangeSet(marker)

‘---

XXX‘ 06-Dec-18 FirstName LastName TPL describe changes TPL-

123

‘

‘ChangeSet(marker)- unique identificatory of a change which marking the specific changes

inside the file and, if required, is used for tracing changes in Management of Change System

#endregion

Remember the following points:

• Every important variable declaration should be preceded by a comment describing the

use of the variable being declared.

• Variables, controls, and procedures should be named clearly enough that commenting is

needed only for complex implementation details.

• Comments cannot follow a line-continuation sequence on the same line.

TRANSNET PIPELINES

Document Name Document Number Revision Number Page

SCADA Software Coding Standard - Scripting -

Scripting

PRJ: E354086-00000-271-050-0008

TPL: TPL-XXXX-X-X-XXXX-XXXX

01

XX

Page 41 of 41

Page 41 of 41 Originator: EOH/AVEVA Original date: 05-12-2018
Copyright © Transnet Pipelines. All rights reserved, including rights to amendments.

• Put comments on a separate line instead of at the end of a line of code.

• Start comment text with an uppercase letter, and end comment text with a period.

• Insert one space between the comment delimiter (') and the comment text e.g. ' Here is

a comment.

• Do not surround comments with formatted blocks of asterisks.

