

Annexure A

SCOPE OF WORK

Preventative, Corrective, Maintenance and Support of Existing Tetra Radio Communication System, Including the Supply, Commissioning of Failover at Airports Company South Africa (ACSA) for 60 months.

TABLE OF CONTENTS

1.	PURPOSE OF THIS RFP	7
	OBJECTIVE	
3.	BACKGROUND	7
4.	IN SCOPE	8
5.	OUT OF SCOPE	9
6.	SPECIAL INSTRUCTIONS TO BIDDERS: PREVENTATIVE, CORRECTIVE, MAINTENANCE AND SUPPORT	9
7.	SPECIAL INSTRUCTIONS TO BIDDERS: SUPPLY & INSTALLATIONS	10
8.	SAFETY REQUIREMENTS	11
9.	CURRENT LANDSCAPE	11
10.	CURRENT INSTALLED EQUIPMENT	12
11.	SYSTEM DOCUMENTATION REQUIREMENT	29
12.	BASIC CORRECTIVE AND PREVENTATIVE MAINTENANCE & SUPPORT ACTIVITIES WILL INCLUDE BUT NOT LIMITED TO:	29
13.	SERVICE-LEVEL REQUIREMENTS (SLRS)	31

TABLE OF TABLES

Table 1 National System Overview
Table 2 Servers
Table 3 Radio Terminals14
Table 4 Radio System Hardware14
Table 4 Ground-to-air Radio System14
Table 6 Server
Table 7 Radio Terminals16
Table 8 Radio System Hardware16
Table 9 Ground-to-air Radio System16
Table 10 Server
Table 11 Radio Terminals 18
Table 12 Radio System Hardware18
Table 13 Servers
Table 14 Radio Terminals20
Table 15 Radio System Hardware20
Table 16 Servers21
Table 17 Radio Terminals21
Table 18 Radio System Hardware21
Table 19 Radio Terminals22
Table 20 Radio System Hardware23
Table 21 Servers

Table 22 Radio Terminals	24
Table 23 Radio System Hardware	24
Table 24 Servers	25
Table 25 Radio Terminals	26
Table 26 Radio System Hardware	26
Table 27 Servers	27
Table 28 Radio Terminals	27
Table 29 Radio System Hardware	28
Table 30 Radio System Hardware	30
Table 31 – Priority Levels	32
Table 32 - Incident Response and Resolution time (Office Hours)	33
Table 33 - Incident Response and Resolution time (After Hours) (and regional airports)	38
Table 34 Availability SLR	40

Table of Figures

Figure 1: ORTIA Layout	13
Figure 2: CTIA Layout	15
Figure 3: KSIA Layout	17
Figure 4: BFN Layout	19
Figure 5: UTN Layout	20
Figure 6: ELS Layout	22
Figure 7: KIM Layout	23
Figure 8: PLZ Layout	25
Figure 9: GRJ Layout	27

Glossary

Item	Description		
ACSA	Airports Company South Africa		
AMC	Airport Management Centre		
ATC	Air Traffic Control		
ATNS	Air Traffic Navigation Services		
BFN	Bram Fischer International Airport		
CTIA	Cape Town International Airport		
DUR	Durban Airport		
ECT	Electronic Communications and Transactions Act 25 of 2002		
ELS	East London Airport		
GRJ	George Airport		
ICAO	International Civil Aviation Organization		
ICASA	Independent Communications Authority of South Africa		
ICASA Act	Independent Communications Authority of South Africa Act 13 of 2000		
JNB	Johannesburg Airport		
KSIA	King Shaka International Airport		
OEM	Original Equipment Manufacturer		
ORTIA	OR Tambo International Airport		
PC	Personal Computer		
PLZ	Port Elizabeth Airport		
POPI Act	Protection of Personal Information Act 4 of 2013		
PTT	Push to talk		
SLA	Service Level Agreement		
SLR	Service Level Requirements		
UTN	Upington Airport		
Users	Security personnel; Airport Operations Department; Parking Management		
	Department; Fire and Rescue Department; AMC Department; Safety Department;		
	Maintenance and Engineering Department; Trolley Department; Marshalling		
	Department; Apron Department; Baggage Department; and other stakeholders as		
	identified from time to time.		

1. Purpose of this RFP

The purpose of this tender is to appoint a Service Provider that will provide Preventative, Corrective, Maintenance and Support of Existing Tetra Radio Communication System, Including the Supply, Commissioning of Failover at Airports Company South Africa (ACSA) for 60 months.

2. Objective

The objective of this tender is:

- To appoint and enter into an Agreement with a Service Provider that will provide Preventative, Corrective, Maintenance and Support of Existing Tetra Radio Communication System, Including the Supply, Commissioning of Failover at Airports Company South Africa (ACSA) for 60 months.
- The preventative and corrective maintenance and support which underpinned by SLA requirements critical to system availability.

3. Background

- Radio communication is the most cost-effective system that gives the required degree of mission-critical communication and flexibility; it enables communication between field-to-field, ground-to-air, and field-to-office communication. As a member of the Convention on International Civil Aviation (ICAO), Airports Company South Africa (ACSA) is required to have a functioning Radio Communication System with specified coverage in and around the airport's parameters.
- This mission-critical Tetra communication system is used daily as part of Airports Operations across different departments but not limited to fire & rescue, safety, security, and airport operations with key features are but are not limited to.
 - > Secure private communication
 - Faster call setup
 - Radio Spectrum efficiency
 - Easy integration to third party IP based services/applications
 - Reach in features
 - Group voice and data calls
 - Individual voice and data calls
 - Interoperability to PSTN and PABX systems
 - Integration to legacy analogue (AM/FM) radio
 - Voice and data call recording and storage
 - GPS tracking of radio devices
 - > Desktops bases dispatching systems for control room environment

4. In scope

- Preventative, Corrective, Maintenance and Support of Existing Tetra Radio Communication System across all Airports (Refer to Annexure's).
- Supply, Commissioning of Failover as per technical specification, including Adhoc supply and not limited to:
 - Repairs and or provision of spares
 - Attend to and resolve all incidents within SLA target timelines
 - Perform corrective and preventative maintenance and support as per SLA.
 - Provide reports according to the maintenance schedule.
 - > Ensure that all the related patch update or firmware upgrade are carried out on time with less interruption
 - Ensure that all resources are available in accordance with the ACSA Airport Operating hours.
 - > Ensure that the inventory and configuration management records are updated in the CMDB.
 - Ensuring that all change management process is followed
 - Ensuring that the best ITIL process are followed when addressing system changes or incidents.
 - Training of the Users on the Radio Commination Systems. The users shall include airlines and ACSA staff from various departments at all ACSA sites.
 - > Training of IT technical personnel on the administration of the Tetra Radio Communication System and the first line troubleshooting. The training must include training manuals as well as proficiency assessment tests.
 - Decommissioning and replacement of existing identified equipment and handing over to ACSA for storage when required.
- The Potential bidder should ensure the minimum tools of trade for corrective and maintenance and support for Tetra Radio Communication System not limited to:
 - Appropriate stepladder with maximum safety requirements (can be used up to a maximum height of 6 meters).
 - Certified resources
 - > Availability of scaffolding or cherry picker when required.
 - Personal Computing (Laptop).
 - Tetra signal Analyzer

- > Antenna Analyzer
- Spectrum Analyzer
- > Toolbox with normal minimum tools, including a digital multi-meter; and
- Protective gear for employees.
- From time to time, ACSA may require the Service Provider to perform new Installations, Moves,
 Additions, Change and De-installation ("IMACD")
- ACSA may request installations, change, de-installation or moves of components for Tetra Radio Communication System like brackets, screens, and hard drives.
- Maintain the Asset register indicating the location of all installed equipment.

5. Out of Scope

ACSA will provide the equipment and services listed as out of scope below:

- Network Infrastructure.
- Facilities (Power, UPS power and cooling);
- Servers;
- > PCs and peripherals;
- Aircons and:
- Fire Extinguisher

6. Special Instructions to Bidders: Preventative, Corrective, Maintenance and Support.

- The Service Provider will need to obtain an ACSA permit for all its maintenance and project resources that will be working on this project. The granting of permits will require security checks/screening to be done and the successful completion of compulsory airside induction training. The cost of the permit and the airside induction training will be for the Service Provider.
- The Service Provider will be required to pay rental on office lease from ACSA at any of its airports.

 The rental information will be provided to the Bidders on this Tender.
- Work within the terminals where there are passengers or customers will be performed at night after the last flight departs and be concluded before the first flight departs/arrives in the morning; and
- Bidders to supply availability of spares for the installed equipment to be supported for the duration
 of the contract and highlight all related risks and or there are possible discontinuation of
 parts/spares 1 year in advance.
- Bidders are requested to provide pricing schedules for Maintenance and support of the existing systems.
- All prices to be in ZAR as requested both inclusive and exclusive of VAT.
- Pricing must include all applicable taxes and shipping to the location of implementation.

- Pricing must consider site establishment, Permits and Induction training.
- The provider must make provision for after hours, weekends and public holidays support at no additional costs (call out cost to be charge as an when required)
- The Service Provider's proposal must also cater for short notice call-out in an emergency where the supported system may be affected by other interruptions or change processes within the airport (e.g., power). This Bidders must provide a call-out basis and hour rate at the specific site. For planned activities advance notice will be given to the service provider.
- The Bidders' proposal must include after-hours telephone numbers, where support personnel are reachable. It is the responsibility of the Service Providers to ensure their resources are always available and reachable; and
- The Services shall be delivered in terms of SABS standards, OHS Act, manufacturer's specifications, and other statutory regulations.
- The Service Provider's proposal must make provision for enough personnel at each airport, during normal working to perform maintenance and support of the Tetra Radio Communication System.
 The number of resources allocated should consider the Service Level Agreement ("SLA") requirements as stipulated below to ensure that SLA targets are met.

7. Special Instructions to Bidders: Supply & Installations

- The Potential Service Providers proposal must make provision for enough personnel at each airport during the installation phase of the project and this should be costed as part of the submission.
- ACSA would not be liable for any additional costs the Potential Service Provider didn't include or omitted in his/her proposal unless the Potential Service Provider can proof beyond reasonable doubt that this was unforeseen.
- The Potential Service Provider has the right to request TPEC members to review the current installation with the aim of ensuring that future installation is costed correctly.
- The new installation will follow a PMBOK approach using a Project Manager. Risk mitigation and communication plans will be developed. Periodic progress reports will be provided.
- The Potential Service Provider should ensure that critical equipment as part of the installation is costed for correctly (Scaffolding and or cherry picker). Where possible that Scaffolding and or cherry picker cannot be costed; cost to hire should be presented as part of the proposal.
- As per safety reequipments an appropriate stepladder with maximum safety requirements (can be used up to a maximum height of 6 meters).
- Due to the Airport environment; all new installations will be done after hours; regional Airports earliest 19h00pm and International Airports earliest 21h00pm.

8. Safety Requirements

- The safety of the passengers and fire prevention are important in public buildings. Due to the nature
 of the airports, thousands of people pass through the airport, shop outlets and other public areas
 every day.
- Any potential injury to people or to property must be prevented; and
- The Service Provider will be required to provide a completed safety file for ACSA approval at each airport and have the necessary personal protective equipment.

9. Current Landscape

Environmental Influences

Tetra Radio Communication System are subject to a variety of environmental influences which are not encountered in typical office environment. Extreme temperatures, dust, water, and humidity pose challenges to the normal functioning of the units. Additional mechanical stress and vandalism need to be considered. Also, electromagnetic compatibility is an issue in public environment like airports and train stations.

Reliability during operation

Tetra Radio Communication System is used daily as part of Airports Operations across different departments. Normally the Tetra Radio Communication System need to function 24 x 365 throughout the year. Special care needs to be taken to make the Radios function reliably and to protect them against excessive wear and tear.

Safety Requirements

Safety of the passengers and fire prevention are key issues in public buildings. Thousands
of people pass through the airport or train station, shop outlets and malls, etc. each day
and any potential injury or damage must be prevented at all cost.

Availability

The Tetra Radio Communication System lifespan is typically 7 to 10 years. In case of replacement of Tetra Radio Communication System or extension of existing installations it is important to get identical products as originally installed. Therefore, it is important to have a product which is available in the same configuration regarding form, fit and functionality for a long period of time.

10. Current Installed Equipment

- Tetra Radio Communication System
 - Allow airport Users and stakeholders to have a real-time representation of key airport operational aspects;
 - Facilitate the implementation of active collaborative decision making (i.e. efficient, timely and reliable communication) throughout the airport community;
 - o Facilitate communication with ATC; and
 - Listen to the communication between the pilot and the ATC; and to communicate with both the ATC and the pilot.

1) National System Overview

TNX A TNX B (Tetra Node Exchange Servers) VLS(Voice Logging Server)	TNX – is the Tetra Node Exchange, a system controller that interconnects and integrates the mission critical voice and data for all the sites, and supports the positioning, recording, telephonic interfacing and coverage extenders, etc The TNX also stores the data and configurations of the system, as well as the making of back-
	ups.VLS – is a server that records and stores all voice and data going through the Tetra system
BSS1 Tetra Site 1(FSC)	This is a Tetra site with digital carriers/repeaters (TBS's) that provides radio frequency coverage to allow digital terminals /radios to transmit and receive over the network. This is also backed up by a Fall-Back site controller (FSC).
BSS2 Tetra Site 2(FSC)	This is a Tetra site with a digital carriers/repeaters (TBS's) that provides radio frequency coverage to allow digital terminals /radios to transmit and receive over the network. This is also backed up by a Fall-Back Site Controller (FSC).
Conventional Site (Analog Gateway)	This is a Tetra site with analogue carriers and gateways that assist in linking and converting analogue signals to digital signals and vice versa. This helps analogue (VHF/UHF) terminals/radios to interact with digital terminals/radios.
ULM(Unified Location Manager) STI(SIP Telephone Interface) DAS(Distributed Antenna System)	ULM – This is used for the live tracking of GPS enabled terminals /radios. STI – This links to the ACSA Telephone exchange, and enables digital terminals to interact with telephones DAS – Assists with in-building and basement coverage
	NB; the radio system is an IP base network that is dependent on ACSA's network.

Table 1 National System Overview

A. ORTIA Radio Network Layout

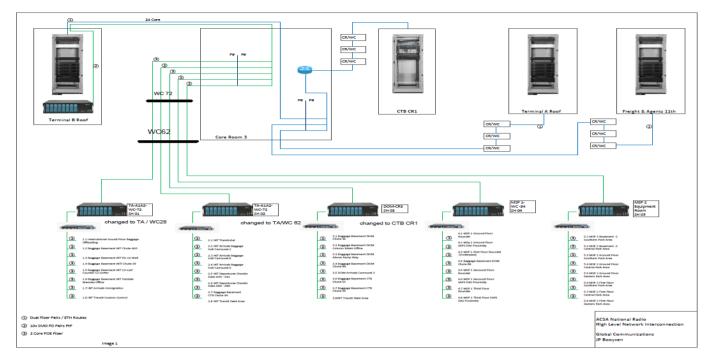


Figure 1: ORTIA Layout

i) Bill of Quantities for ORTIA Servers

Location	Server Name	Operating System	Server Type	Primary Role
AMSR	Main TNX	CentOS7	cPCI Blade	Radio Core Main
AMSR	Standby TNX	CentOS7	cPCI Blade	Radio Core /stby
AMSR	Team Link Core	CentOS7	HP DL 20	WiFi/Lte Bridge
	Team Link Gateway			
AMSR	(Redundant)	CentOS7	HP DL20	WiFi/Lte Gateway
	Automatic Vehicle Location			
AMSR	Server	Ubuntu	Dell R220	Vehicle/Personnel Tracking
AMSR	Voice Logging Server	Suse 11.3	Dell R220	Voice and Data Recorder
	SIP Telephone Interface			
AMSR	Server	Suse 11.3	Dell R220	Telephone bridge

Table 2 Servers

ii) Bill of Quantities for ORTIA Radio Terminals

Deliverables	QTY
Handheld Radios	300
Handheld radios intrinsically safe	100
Mobile Radio (Vehicle radio)	80
Data Modem	70
Air band Handheld Radios	12
Air band Desktop Radios	18
Air band Mobile Radios	25
Analogue Gateway	8

Table 3 Radio Terminals

iii) Bill of Quantities ORTIA Radio System Hardware

Deliverables	QTY
Base Station	2
Radio IP switch	2
Voice & Recorder	1
Radio Network Management System	1
PABX/PSTN Gateway	1
Repeater	8
Dispatcher	4

Table 4 Radio System Hardware

iv) Bill of Quantities ORTIA Ground-to-air Radio System

Deliverables	QTY
Ground to Air workstation application	1
IP Radio communication integration	1
Work station	9
Head phones	34
PTT (Push to talk) Foot Switch	9

Table 5 Ground-to-air Radio System

B. CTIA Radio Network Layout

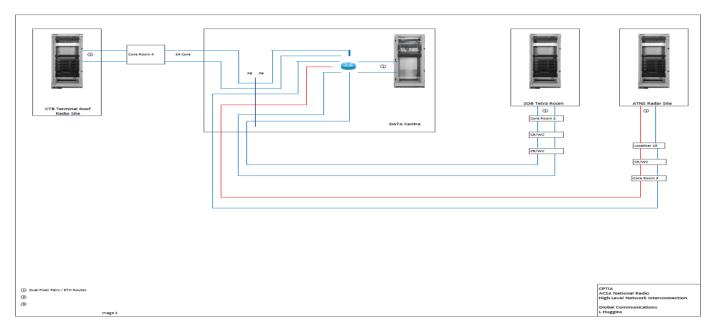


Figure 2: CTIA Layout

v) Bill of Quantities CTIA Servers

Location	Server Name	Operating System	Server Type	Primary Role
Data Centre	Main TNX	CentOS7	cPCI Blade	Radio Core Main
Data Centre	Standby TNX	CentOS7	cPCI Blade	Radio Core /stby
Data Centre	Team Link Core	CentOS7	HP DL 20	WiFi/Lte Bridge
	Team Link Gateway			
Data Centre	(Redundant)	CentOS7	HP DL20	WiFi/Lte Gateway
	Automatic Vehicle			Vehicle/Personnel
Data Centre	Location Server	Ubuntu	Dell R220	Tracking
Data Centre	Voice Logging Server	Suse 11.3	Dell R220	Voice and Data Recorder
	SIP Telephone			
Data Centre	Interface Server	Suse 11.3	Dell R220	Telephone bridge

Table 6 Server

vi) Bill of Quantities for CTIA Radio Terminals

Deliverables	QTY
Handheld Radios	200
Handheld radios intrinsically safe	80
Mobile Radio (Vehicle radio)	25
Desktop Radios	8
Data Modem	131
Air band Handheld Radios	10
Air band Desktop Radios	8
Air band Mobile Radios	25
Analogue Gateway	8

Table 7 Radio Terminals

vii) Bill of Quantities CTIA Radio System Hardware

Deliverables	QTY
Base Station	2
Radio IP switch	1
Voice & Recorder	1
Radio Network Management System	1
PABX/PSTN Gateway	1
Repeater	2
Dispatcher	4

Table 8 Radio System Hardware

viii) Bill of Quantities CTIA Ground-to-air Radio System

Deliverables	QTY
Ground to Air workstation application	1
IP Radio communication integration	1
Workstation	6
Headphones	6
PTT Foot Switch	6

Table 9 Ground-to-air Radio System

C. KSIA Radio Network Layout

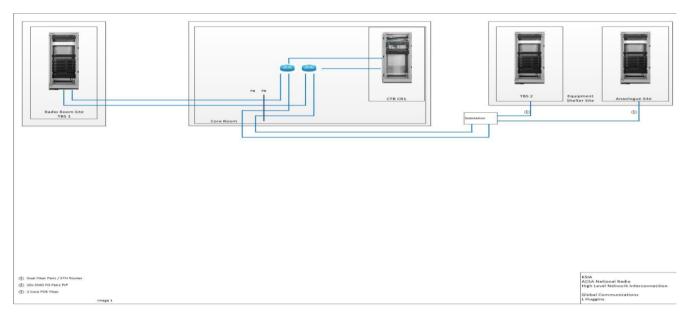


Figure 3: KSIA Layout

ix) Bill of Quantities for KSIA Servers

Location	Server Name	Operating System	Server Type	Primary Role
Data Centre	Main TNX	CentOS7	cPCI Blade	Radio Core Main
Data Centre	Standy/Backup TNX	CentOS7	cPCI Blade	Radio Core Main
Data Centre	Team Link Core	CentOS7	HP DL 20	WiFi/Lte Bridge
Data Centre	Team Link Gateway (Redundant)	CentOS7	HP DL 20	WiFi/Lte Bridge
Data Centre	Automatic Vehicle Location Server	Ubuntu	Dell R220	Vehicle/Personnel Tracking
Data Centre	Voice Logging Server	Suse 11.3	Dell R220	Voice and Data Recorder
Data Centre	SIP Telephone Interface			Telephone Bridge
	Server	Suse 11.3	Dell R220	

Table 10 Server

x) Bill of Quantities for KSIA Radio Terminals

Deliverables	QTY
Handheld Radios	200
Mobile Radio (Vehicle radio)	25
Desktop Radios	8
Data Modem	55
Air band Handheld Radios	10
Air band Desktop Radios	8
Air band Mobile Radios	25
Analogue Gateway	8

Table 11 Radio Terminals

xi) Bill of Quantities for KSIA Radio System Hardware

Deliverables	QTY
Base Station	2
Radio IP switch	1
Voice & Recorder	1
Radio Network Management System	1
PABX/PSTN Gateway	1
Repeater	2
Dispatcher	4

Table 12 Radio System Hardware

D. BFN Radio Network Layout

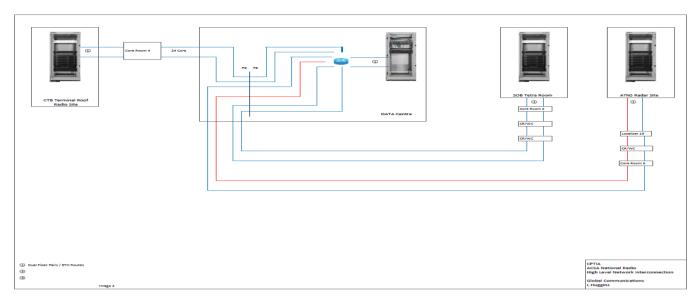


Figure 4: BFN Layout

xii) Bill of Quantities for BFN Servers

Location	Server Name	Operating System	Server Type	Primary Role
Data Centre	Main TNX	CentOS7	cPCI Blade	Radio Core Main
Data Centre	Standby TNX	CentOS7	cPCI Blade	Radio Core /stby
Data Centre	Team Link Core	CentOS7	HP DL 20	WiFi/Lte Bridge
Data Centre	Team Link Gateway (Redundant)	CentOS7	HP DL20	WiFi/Lte Gateway
Data Centre	Automatic Vehicle Location Server	Ubuntu	Dell R220	Vehicle/Perso nnel Tracking
Data Centre	Voice Logging Server	Suse 11.3	Dell R220	Voice and Data Recorder
Data Centre	SIP Telephone Interface Server	Suse 11.3	Dell R220	Telephone bridge

Table 13 Servers

xiii) Bill of Quantities for BFN Radio Terminals

Deliverables	QTY
Handheld Radios	50
Mobile Radio (Vehicle radio)	15
Desktop Radios	6
Data Modem	10
Air band Handheld Radios	6
Air band Desktop Radios	8
Air band Mobile Radios	18
Analogue Gateway	4

Table 14 Radio Terminals

xiv) Bill of Quantities for BFN Radio System Hardware

Deliverables	QTY
Base Station	2
Radio IP switch	1
Voice & Recorder	1
Radio Network Management System	1
PABX/PSTN Gateway	1
Dispatcher	2

Table 15 Radio System Hardware

E. UTN Radio Network Layout

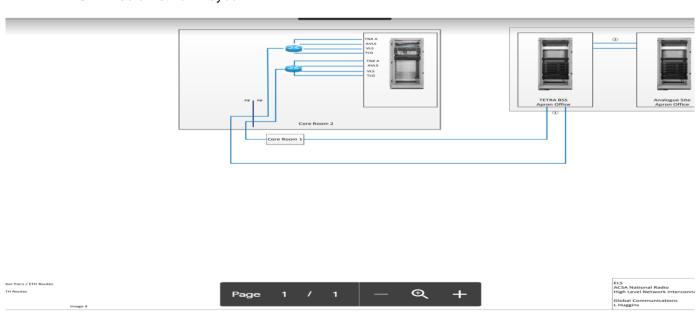


Figure 5: UTN Layout

xv) Bill of Quantities for UTN Servers

Location	Server Name	Operating System	Server Type	Primary Role
Wire Centre	Main TNX	CentOS7	cPCI Blade	Radio Core Main
Wire Centre	Team Link Core	CentOS7	HP DL 20	WiFi/Lte Bridge
	Automatic Vehicle			Vehicle/Personnel
Wire Centre	Location Server	Ubuntu	Dell R220	Tracking
				Voice and Data
Wire Centre	Voice Logging Server	Suse 11.3	Dell R220	Recorder

Table 16 Servers

xvi) Bill of Quantities for UTN Radio Terminals

Deliverables	QTY
Handheld Radios	30
Handheld radios intrinsically safe	0
Mobile Radio (Vehicle radio)	10
Data Modem	10
Air band Handheld Radios	6
Air band Desktop Radios	10
Air band Mobile Radios	10
Analogue Gateway	4

Table 17 Radio Terminals

xvii) Bill of Quantities for UTN Radio System Hardware

Deliverables	QTY
Base Station	2
Radio IP switch	1
Voice & Recorder	1
Radio Network Management System	1
PABX/PSTN Gateway	1
Dispatcher	2

Table 18 Radio System Hardware

F. ELS Radio Network Layout

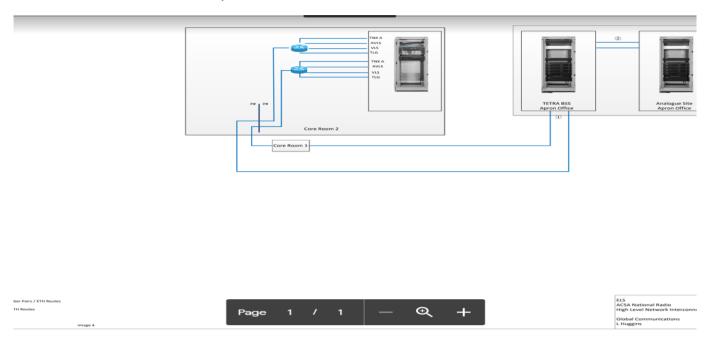
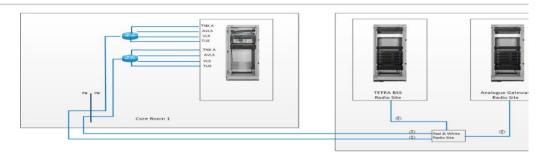


Figure 6: ELS Layout

xviii) Bill of Quantities for PLZ Radio Terminals

Deliverables	QTY
Handheld Radios	60
Mobile Radio (Vehicle radio)	12
Desktop Radios	5
Data Modem	10
Air band Handheld Radios	5
Air band Desktop Radios	12
Air band Mobile Radios	22
Analogue Gateway	4


Table 19 Radio Terminals

xix) Bill of Quantities for PLZ Radio System Hardware

Deliverables	QTY
Base Station	2
Radio IP switch	1
Voice & Recorder	1
Radio Network Management System	1
PABX/PSTN Gateway	1
Dispatcher	2

Table 20 Radio System Hardware

G. KIM Radio Network Layout

er Pairs / ETH Routes
TH Routes

KIM ACSA National Radio High Level Network Interconn Global Communications L Huggins

Figure 7: KIM Layout

xx) Bill of Quantities for KIM Servers

Location	Server Name	Operating System	Server Type	Primary Role
Core Room 1	Main TNX	CentOS7	cPCI Blade	Radio Core Main
Core Room 1	Team Link Core	CentOS7	HP DL 20	WiFi/Lte Bridge
	Automatic Vehicle			Vehicle/Personnel
Core Room 1	Location Server	Ubuntu	Dell R220	Tracking
	Voice Logging			Voice and Data
Core Room 1	Server	Suse 11.3	Dell R220	Recorder

Table 21 Servers

xxi) Bill of Quantities for KIM Radio Terminals

Deliverables	QTY
Handheld Radios	39
Mobile Radio (Vehicle radio)	19
Desktop Radios	6
Data Modem	15
Air band Handheld Radios	6
Air band Desktop Radios	4
Air band Mobile Radios	13
Analogue Gateway	4

Table 22 Radio Terminals

xxii) Bill of Quantities for KIM Radio System Hardware

Deliverables	QTY
Base Station	2
Radio IP switch	2
Voice & Recorder	1
Radio Network Management System	1
PABX/PSTN Gateway	1
Dispatcher	15

Table 23 Radio System Hardware

H. PLZ Radio Network Layout

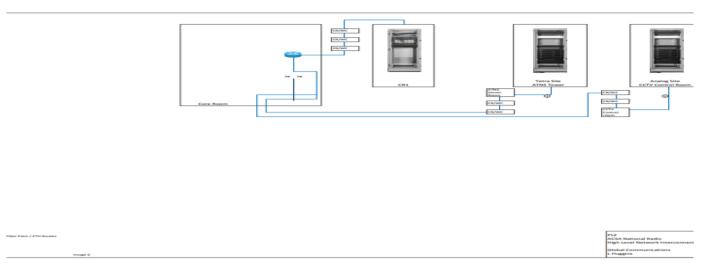


Figure 8: PLZ Layout

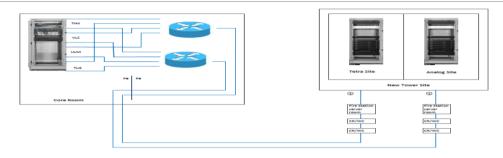
xxiii) Bill of Quantities for PLZ Servers

		Operating		
Location	Server Name	System	Server Type	Primary Role
Core Room 1	Main TNX	CentOS7	cPCI Blade	Radio Core Main
Core Room 1	Team Link Core	CentOS7	HP DL 20	WiFi/Lte Bridge
	Automatic Vehicle			Vehicle/Personnel
Core Room 1	Location Server	Ubuntu	Dell R220	Tracking
	Voice Logging			Voice and Data
Core Room 1	Server	Suse 11.3	Dell R220	Recorder

Table 24 Servers

xxiv) Bill of Quantities for PLZ Radio Terminals

Deliverables	QTY
Handheld Radios	50
Mobile Radio (Vehicle radio)	15
Desktop Radios	6
Data Modem	10
Air band Handheld Radios	6
Air band Desktop Radios	8
Air band Mobile Radios	18
Analogue Gateway	4


Table 25 Radio Terminals

xxv) Bill of Quantities for PLZ Radio System Hardware

Deliverables	QTY
Base Station	2
Radio IP switch	1
Voice & Recorder	1
Radio Network Management System	1
PABX/PSTN Gateway	1
Dispatcher	2

Table 26 Radio System Hardware

I. GRJ Radio Network Layout

GRJ ACSA National Radio High Level Network Intercon Global Communications L Huggins

Figure 9: GRJ Layout

xxvi) Bill of Quantities for GRJ Servers

Location	Server Name	Operating System	Server Type	Primary Role
Data Centre	Main TNX	CentOS7	cPCI Blade	Radio Core Main
Data Centre	Team Link Core	CentOS7	HP DL 20	WiFi/Lte Bridge
	Automatic Vehicle			
Data Centre	Location Server	Ubuntu	Dell R220	Vehicle/Personnel Tracking
Data Centre	Voice Logging Server	Suse 11.3	Dell R220	Voice and Data Recorder

Table 27 Servers

xxvii) Bill of Quantities for ORTIA Radio Terminals

Deliverables	QTY
Handheld Radios	75
Mobile Radio (Vehicle radio)	10
Data Modem	10
Air band Handheld Radios	6
Air band Desktop Radios	10
Air band Mobile Radios	22
Analogue Gateway	4

Table 28 Radio Terminals

xxviii) Bill of Quantities for GRJ Radio System Hardware

Deliverables	QTY
Base Station	2
Radio IP switch	1
Voice & Recorder	1
Radio Network Management System	1
PABX/PSTN Gateway	1
Dispatcher	2

Table 29 Radio System Hardware

11. System Documentation Requirement

 Where necessary the Bidders must provide ACSA with system documentation that includes architectural documents, training manual(s) and manuals.

12. Basic Corrective and Preventative Maintenance & Support Activities will include but not limited to:

- Downloading Tetra systems operations' data for reports
- Physical and visual inspections (preventative maintenance)
- Cleaning of equipment and sites
- Corrective maintenance if needed
- Generating of monthly reports and updating of the inventory
- Logging\managing\reporting and accepting calls via the ACSA Service Desk
- Clean bracketing
- Neaten cables
- Ensure that devices are mounted properly and securely fixed
- Preventative Maintenance which includes planned overhauls, replacements, inspections, tests, and any activity aimed at preventing failures through maintaining the condition of the infrastructure or assessing its condition for the purposes of corrective maintenance.
- Corrective maintenance which includes all activities following a preventative maintenance inspection.
- Breakdown maintenance which includes maintenance that is unforeseen and is necessary to
 restore the serviceability of the infrastructure, and functionality of the System. These break down
 maintenance could be requested after hours on weekend and public holiday. Bidders will be
 expected to respond and attend all the faults.
- The Service Provider will be held liable for any failure to the System that should have been
 prevented during preventative maintenance. Therefore, the service provider should include any
 further preventative maintenance recommendations, which in its opinion are necessary for the
 specific and other failure prevention.

Maintenance Schedule:

Component	Maintenance	Reporting
Base Stations	Monthly	Monthly
Control Equipment	Monthly	Monthly
Operator Terminals	Monthly	Monthly
Frequency coverage	Weekly	Monthly
Auxiliary Equipment	Monthly	Monthly

Table 30 Radio System Hardware

13. Service-Level Requirements (SLRs)

The following Service-Level Requirements (SLRs) represent minimum Service levels required. providers must consistently meet or exceed the following SLRs.

Review of Service Levels and KPIS

On an annual basis after the initial start-up (90 days), ACSA can request a change to any service level by providing notice to the provider that a service level needs to be changed.

This change can take effect only after the provider has had sufficient time (maximum 3 weeks) to review the requested change and determine if any modifications are required to the delivery of the support and maintenance services. Should changes be required by the provider, then ACSA must allow the provider reasonable time to make such changes before the service-level change takes place.

Priority levels

Priority Level 1 —	The incident has caused a complete and immediate work
Emergency/Urgent	stoppage affecting a critical function of the Tetra Radio
Critical Business Impact	Communication System or components, and a primary business
	process or a broad group of users (an entire department, floor,
	branch, line of business or external customer). No workaround
	available. Examples:
	All or more than 50% of the Tetra Radio Communication
	System or components are down
Priority Level 2 — High	A business process is affected in such a way that business
Major Business Impact	functions are severely degraded, multiple users are impacted, a
	key customer is affected, or a critical function is operating a
	significantly reduced capacity or functionality. A workaround may
	be available but is not easily sustainable. Examples:
	Between 20 and 100 Tetra Radio Ccommunication devices
	are not accessible as a result of system failure
Priority Level 3 —	A business process is affected in such a way that certain functions
Medium	are unavailable to End Users or a system and/or service is
Moderate Business	degraded. A workaround may be available. Examples:
Impact	2 than 20 Tetra Radio Communication devices are not
	accessible as a result of system failure.
Priority Level 4 — Low	An incident that has minor impact on normal business processes
Minimal Business Impact	and can be handled on a scheduled basis. A workaround is
	available or there is minimal negative impact on a user's ability to
	perform their normal daily work. Example:
	Neatening of cables
	Cleaning of equipment
	User account locked
	Adjustments (lights and sound)
	Individual radio communication devices are not accessible
	as a result of system failure

Table 31 – Priority Levels

Incident management

Time to resolve incidents/problems following responses to different incident priority level classifications.

Each IT Service categorizes incidents/problems according to the incident/problem resolution priorities listed below.

Table 32 - Incident Response and Resolution time (Office Hours)

Incident management response and resolution times for International Airports (Office Hours) Incident/Problem **SLR Performance** Performance Service Measure Resolution **Target** % Time to Notify ACSA of or to accept/acknowledge a Time to Respond <10 minutes 98.0% Priority 1 Time to Notify ACSA of or to accept/acknowledge a Time to Respond <20 minutes 98.0% Priority 2 Incident Time to Notify ACSA of or to accept/acknowledge a Time to Respond <120 minutes 98.0% Priority 3 or 4 Incident Time to Notify ACSA of or Time to Respond <3 hours 98.0% to accept/acknowledge a Priority 5 Incident Time to Restore Priority Level 1 <2 hours 98.0% (Not linked to hardware failure) Time to Restore Priority Level 2 <4 hours 98.0% (Not linked to hardware failure) Time to Restore Priority Level 3 <8 hours 98.0% (Not linked to hardware failure) Time to Restore Next business day Priority Level 4 or as prioritized by 98.0% (Not linked to provider hardware failure) Time to Restore Priority Level 5 To be agreed 98.0% (Not linked to hardware failure) Resolution Priority Level 1 To be agreed 98.0% (permanent fix)

Incident management resp Hours)	oonse and resolution t	imes for Internation	nal Airports (Office
Priority Level 2	Resolution (permanent fix)	To be agreed	98.0%
Priority Level 3	Resolution (permanent fix)	To be agreed	98.0%
Priority Level 4	Resolution (permanent fix)	To be agreed	98.0%
Priority Level 5	Resolution (permanent fix)	To be agreed	98.0%
Priority Level1-5 Hardware Failure	Fix/replacement	In line with the hardware support procured by ASCA	98.0%
Root-Cause Analysis	Time to Report	Within 48 hours of incident resolution	98.0%
	Formula	Number of requests Performance Targe requests occurring Interval	•
	Measurement Interval	Weekly	
	Reporting Period	Monthly	
	Measurement Tool		ervice management ') complimented with if applicable
	SLR Element Weighting Factor Allocation	50%	

Incident management response and resolution times for International Airports (After hours Hours) and regional airports.

Incident/Problem	Service Measure	Performance	SLR Performance	
Resolution		Target	%	
Time to Notify ACSA of or to	Time to Respond	<15 minutes	98.0%	
accept/acknowledge a				
Priority 1				
Time to Notify ACSA of or to	Time to Respond	<20 minutes	98.0%	
accept/acknowledge a				
Priority 2 Incident				
Time to Notify ACSA of or to	Time to Respond	<160 minutes	98.0%	
accept/acknowledge a				
Priority 3 or 4 Incident				
Time to Notify ACSA of or to	Time to Respond	<3 hours	98.0%	
accept/acknowledge a				
Priority 5 Incident				
Priority Level 1	Time to Restore	<3 hours	98.0%	
	(Not linked to			
	hardware failure)			
Priority Level 2	Time to Restore	<5 hours	98.0%	
	(Not linked to			
	hardware failure)			
Priority Level 3	Time to Restore	<10 hours	98.0%	
	(Not linked to			
	hardware failure)			
Priority Level 4	Time to Restore	Next business	98.0%	
		day or as		
	(Not linked to	prioritized by		
	hardware failure)	provider		
Priority Level 5	Time to Restore	To be agreed	98.0%	
	(Not linked to			
	hardware failure)			
	<u> </u>			

Incident management response and resolution times for International Airports (After			
hours Hours) and regional a	airports.		
Priority Level 1	Resolution (permanent fix)	To be agreed	98.0%
Priority Level 2	Resolution (permanent fix)	To be agreed	98.0%
Priority Level 3	Resolution (permanent fix)	To be agreed	98.0%
Priority Level 4	Resolution (permanent fix)	To be agreed	98.0%
Priority Level 5	Resolution (permanent fix)	To be agreed	98.0%
Priority Level1-5 Hardware Failure	Fix/replacement	In line with the hardware support procured by ASCA	98.0%
Root-Cause Analysis	Time to Report	Within 48 hours of incident resolution	98.0%
	Formula		
	Measurement Interval	Weekly	
	Reporting Period	Monthly	
	Measurement Tool		ool (Service NOW) rith other provider

Incident management response and resolution times for International Airports (After		
hours Hours) and regional airports.		
	SLR Element	50%
	Weighting Factor	
	Allocation	

Table 33 - Incident Response and Resolution time (After Hours) (and regional airports)

Service Availability

Availability SLR	
Component	Explanation of Component
Definition	Based on the availability of specifically identified managed objects. Total availability of the Service is based on the number of managed objects and the number of hours within the reporting time period.
	Downtime is subtracted from the total availability time to determine Availability
	The following downtimes are excluded from the adjusted calculation:
	 Prescheduled outages for preventative maintenance in the Tetra Radio Communication System environment Time required for third-party vendors to resolve hardware/software problems Downtime caused by customer facility power, network and/or HVAC outages or malfunctions Downtime attributed directly to customer personnel (such as relocating or reconfiguring devices without prior coordination, hardware negligence or abuse) Time where the customer is responsible for providing resolution. Acts of nature (such as lightning and floods)
Requirement Measurement Range	24 hours per day, 7 days per week (365 days a year) Priority 1 Objects = 98.0%
_	Priority 2 Objects = 98.0% Priority 3 Objects = 98.0%

ACSA

Annexure A - Scope of Work

	Priority 4 Objects = 98%	
	NOTE: Allocation of items will be done during contract negotiations. The provide can however suggest a list per category	
Measurement Tool	ACSA supplied Enterprise monitoring tools	
Frequency	Monthly	
Calculation Formula	Performance is calculated as follows:	
	DI = Total downtime hours	
	AI = Adjusted downtime hours based on exceptions	
	H = Hours in the month	
	OI = Total number of managed objects in the Priority	
	EI = Expected availability = H x OI	
	Report Only: Availability % = (EI — DI)/EI x 100	
	SLA: Adjusted Availability % = (EI — AI)/EI x 100	
SLR Element Weighting Factor	50%	
Allocation		

Table 34 Availability SLR

THE MATTER IS SUBMITTED FOR CONSIDERATION BY:

Prepared by:	
Name:	Lehlohonolo Moate
Designation:	Engineer: Airport Systems
Date:	
Supported by:	
Name:	Jessida Mainganya
Designation:	Acting Technical Manager: Airports Systems
Date:	
Supported by:	
Name:	Vishalan Govender
Designation:	Chief Technology Officer
Date:	