Bridge & Marine

Discipline's involvement

Discipline's involvement

- Piling and Pile Caps
- Superstructure
 - Precast Elements
 - Insitu Deck

Design criteria

Design ship characteristics

•	Deadweight tonnage (DWT)	50 000
•	Displacement (t)	66 000
•	Length overall (m)	250
•	Beam (m)	32
•	Draft (m)	13

Alternative ships

Two bunker barges each 75m in length

Design criteria and assumptions

- Vessel Loading
 - Mooring

Bow, stern and breasting, 3 per end at 20m centres, \pm 10m behind cope

Six spring line moorings at 20m centres along cope

Berthing

Eight fenders at 20m intervals along cope over \pm 140m

Set forward of the cope to prevent pile damage

Design criteria and assumptions

- Live Loading
 - Vehicular loads 10kPa over entire area
 - Crane outrigger load of 80t on 1m x 1m area
- Geometric requirements
 - Link to existing Berth 209
 - Link to possible future chemical berths
 - Have minimum effect on shoreline

Possible structures considered

- Gravity Structures
 - Dolphin structure with caissons
 - Anchored sheetpile wall
 - Block or counterfort wall structure
- Piled Structure
 - Due to poor soil conditions the only viable solution

Piling load transfer considerations

- End bearing piles bedrock too deep at 70 80m
- Friction piles mostly sand, friction not very high
- Combination of the above most suitable

Piles used

- Tubular steel driven piles with sacrificial casings
- Full load to be carried by reinforced concrete inside casing
- 73 dia. 700 and 5 dia. 800 piles
- Some piles raking to carry lateral loads
- Installation by vibration followed by top driving

TRANSNET

TRANSNET

Bridge & Marine

Deck Structure

- Precast Elements
 - Beams
 - Slab panels
 - Fender panels
- Insitu reinforced concrete
 - Pile caps
 - Beam connections
 - Deck
 - Upstand walls
 - Foam monitor towers

Problems encountered and solutions

- Contractor's Problems
 - Pile testing
 - Cracks in precast slab units
 - Placing of precast beams during construction
 - Access to place beams after last pile in position
 - Swells caused by passing vessels especially tugs
 - Cracks in walkway slab
- Design Problems
 - Cracks in some cantilever portions of the main deck
 - Cracks in upstand walls

Pile testing

- CAPWAP (Case Pile Wave Analysis Program) method of analysis
 - Safety Factor for working Load
 - Estimated settlement at 1 and 1.5 times design load
- Results
 - FOS of 1.82 compared to 2.00
 - Predicted settlements within prescribed 15 and 18mm respectively
 - 58% of load carried in end bearing

Lessons learnt

- Do not specify beam weight on construction drawings
- Ensure that prestressing sleeves can fit between the reinforcing
- Have sufficient construction joints in smaller elements i.e. bund walls
- Get Contractor to cast adjoining concrete elements at the same time

