

Item	Description	Unit	Qty	Rate	Amount
iteiii	Denver station	Oilit	Qty	Nate	Amount
	Deliver station				
	Clearing of existing debris/waste including carting				
1	away and pumping underground water out of the	Sum	1		
	trench				
2	Chop/break the existing reinforced concrete floor	m³	12		
	slab and cart away spoil	m³	12		
	Restricted excavation for the perforated pitch fibre				
3	sub-soil pipes (300 x 300) as shown in the drawing	m³	20		
		111	20		
	including compaction to 90% modified AASHTO				
4	Lay 100mm dia perforated pitch fibre pipe (sub-soil	m	50		
	drainage pipe) including 250 micron imprevious				
	membrane (bidum) as shown in the drawing along				
	the entire breadth of the station.rate to include				
	compacting to 90% modified AASHTO and				
	backfilling				
5	19mm crushed stone as shown in the drawing	m³	20		
6	Cast concrete 25 Mpa (300mm x 200mm x 80m)	m³	4.8		
7	Construct wing wall, headwall and apron slab for	m³	1.5		
	the eye of the sub-soil discharge point rate to				
	include reinforcement, formwork as show in the				
	drawing 25 mpa concrete				
8	Cast V-drain channel (500mm wide & 50mm thick)	m³	3.5		
	Sub-total 1				
	Toronga station				
1	Clearing of existing debris/waste including carting	Sum	1		
	away and pumping underground water out of the				
	trench				
2	Chop/break the existing reinforced concrete floor	m³	12		
	slab and cart away spoil	""	12		
3	Restricted excavation for the perforated pitch fibre	m³	20		
	sub-soil pipes (300 x 300) as shown in the drawing				
	including compaction to 90% modified AASHTO				
4	Lay 100mm dia perforated pitch fibre pipe (sub-soil	m	50		
	drainage pipe) including 250 micron imprevious				
	membrane (bidum) as shown in the drawing along				
	the entire breadth of the station.rate to include				
	compacting to 90% modified AASHTO and				
	backfilling				
5	19mm crushed stone as shown in the drawing	m³	20		1
6	Cast concrete 25 Mpa (300mm x 200mm x 80m)	m³	4.8		ļ
7	Construct wing wall, headwall and apron slab for		1.5		
	the eye of the sub-soil discharge point rate to	m³			
	include reinforcement, formwork as show in the				
	drawing 25 mpa concrete				
8	Cast V-drain channel (500mm wide & 50mm thick)	m³	3.5		<u> </u>
9	Install roof sheeting on the entrances of the sub-	Sum	1		
	ways to prevent rain water from entering				<u> </u>
	Sub-total 2				
	Sub-Total 3 (Sub-total 2 +1)				
	20% contingences				
	Sub-Total 4 (Sub-total 3+ contingences)				
	15% VAT				
	Grand Total				

Designed by Anele Mgudane **Pr Tech Eng** Programme Manager

(1)

Signed