

GEOTECHNICAL INVESTIGATION: EXTENTION OF BOLOKANANG RURAL SETTLEMENT FREE STATE PROVINCE

Letaba Lab 2014-02-26

GEOTECHNICAL INVESTIGATION: EXTENTION OF BOLOKANANG RURAL SETTLEMENT FREE STATE PROVINCE

Conducted For:

GIBB ENGINEERING AND SCIENCE

P.O. Box 20083

Willows, Bloemfontein

9320

Tel: 051 447 1711

Manager: Frikkie de Wet

Compiled by:

Kevin Coertzen

BSc.Hons Geology

Geologist

0836076011

Kevinc@letabalab.co.za

Prepared By:

LETABA LAB BLOEMFONTEIN

P.O.Box: 22874

Bloemfontein

9313

Tel: 051 433 4057

Laboratory Manager: Jayson Wingrove

Overseen By:

Eugene van der Walt

BSc.Hons. Engineering Geology

Engineering Geologist

0847000990

Eugene@letabalab.co.za

26 February 2014

LIST OF ABBREVIATIONS AND DEFINTIONS

	California Bearing Ratio
CBR	CBR is a penetration test for evaluation of the mechanical strength of road subgrades and base-courses. It was developed by the California Department of Transportation before World War II.
	Class A: Hard rock excavation which may require the use of drill and blast methods to remove in-situ bedrock/boulder material to the required depth of excavation.
Excavation Classification	Class B: Boulder or soft bedrock excavation which may require the use of heavy mechanical earth moving equipment to remove in-situ bedrock/boulder material to the required depth of excavation.
	Class C: In-situ material excavation which may require the use of light mechanical earth moving equipment or laborers through the use of a pick-and-shovel system to remove in-situ bedrock/boulder material to the required depth of excavation.
	Dynamic Cone Penetrometer
DCP	The DCP works by using a 8 kg steel mass dropping 575 mm which hits the anvil. Each stroke causes penetration of a 20mm diameter cone (60° vertex angle) which sits at the base of assembly into the soil (underlying surface).
	The penetration rate of the cone of the DCP is inversely proportional to the resistance level of the terrain. The DCP test is an in-situ CBR or density testing of the soil.
	Light Dynamic Penetrometer
DPL	The Light Dynamic Penetrometer (DPL) with manual driving is the one allowing dynamic penetration tests with the lightest hammer (10 kg) in the whole range of dynamic penetrometers. The apparatus, held by its handles, is maintained vertically. The constant falling heights of its hammer (50 cm) drive the rods - fitted with a standard cone - into the soil.
Excavatability	The excavatability of an earth (rock and regolith) material is a measure of the material to be excavated with conventional excavation equipment such as a bulldozer with rippers, light mechanical excavator or other grading equipment.
MOD AASHTO	The Modified AASHTO Soil Classification System which was developed by the American Association of State Highway and Transportation Officials, and is used as a guide for the classification of soils and soil-aggregate mixtures for highway construction purposes.
Pedocretes	Pedocretes are soils which have to a less or greater extent been cemented or replaced by mineral constituents such as; carbonate (calcretes), iron oxide (ferricrete) or silica (silcrete).
Residual soil	Residual soils are soils that develop from the complete weathering of their underlying parent rocks and have the same general chemistry as those rocks.
ТР	Test Pit An excavation unit used to sample or probe a site before large-scale excavation or to check surface surveys. Typically small square trenches or holes arranged in such a way as to sample a site.
Transported Soil	Soils which form from the accumulation of material which has been transported by wind, water, ice and/or gravity.

Table of Contents

1		Introduction	1
	1.1	General	1
	1.2	Terms of Reference	1
	1.3	Scope of the investigation	1
	1.4	Available information	2
	1.5	Development within 1 : 100 year-flood lines	3
2		Description of Environment	4
	2.1	Site location and Description	4
	2.2	Topography	4
	2.3	Drainage	5
	2.4	Climate	5
	2.5	Vegetation	5
3		Site Geology and Groundwater Seepage	6
	3.1	Regional stratigraphic setting	6
	3.2	Prominent geological structures	6
	3.3	Groundwater occurrences	6
4		Nature of the investigation	7
	4.1	Desk study	7
	4.2	Field work	7
	4.3	Laboratory testing	7
	4.4	Reporting	8
5		Geotechnical Setting	9
	5.1	Trenching	9
	5.	1.1 Excavation of test pits	.9
	5.	1.2 Generalised engineering geological parameters	.9

5.2	Generalized soil profile	.10
5.3	Light Dynamic Penetrometer Tests	. 11
5.4	Engineering- and material characteristics	. 12
5.	4.1 Sampling	12
5.	4.2 Soil test results: Transported Material	12
5.	4.3 Soil test results: Residual Material	13
5.5	Slope stability	.14
5.6	Excavation classification	.14
5.7	Impact of geotechnical character on development	. 15
6	Site Classification	16
6.1	General	16
6.2	Site Classification	16
6.3	Detailed Site Suitability evaluation	. 18
6.4	Slope stability	. 18
7	Foundation Recommendations and Solutions	19
7.1	Zones A and B	. 19
8	Drainage	21
8.1	Surface Drainage	.21
8.2	Sub Surface Drainage	. 22
9	Conclusions and recommendations	23
10	Bibliography	25

List of Maps

Figure 1: Study Area Location

Figure 2: Study Area Location with a cross-sectional view of the site from A to B.

Figure 3: Study Area- Test Pit Locations

Figure 4: Study Area- Development Potential Zonation

Figure 5: Site Layout Provided by the Client

List of Appendices

Appendix A-Soil Profiles

Appendix B-Lab Results (Bulk Samples and Disturbed Samples)

Appendix C-DPL Restlts

1 Introduction

1.1 General

A detailed geotechnical investigation was conducted for the proposed extension of the existing Bolokanang Rural Settlement to the south east of Petrusburg in the Free State Province. This investigation was undertaken in order to assess the engineering geological character of the area, focusing on the geotechnical properties which will affect the overall development potential of the site.

1.2 Terms of Reference

Letaba Lab was appointed by GIBB Engineering and Science, as confirmed by means of a Letter of Appointment dated 17/01/2014, the geotechnical investigation commenced on the 30/01/2014.

The test pit positions and quantities were specified by the client upon appointment.

1.3 Scope of the investigation

The investigation had the following aims:

- to determine and describe the succession of soil and rock materials occurring beneath and across the site
- to assess the mechanical properties of the soil material covering the study area with regard to the founding of single- and double storey structures
- to evaluate site excavatability
- to recommend measures to be implemented during design and development of the area

The development potential of the study area is assessed based on the following premises:

Single- and double storey masonry structures will be constructed.

It must be noted that this investigation was conducted for design and construction purposes.

1.4 Available information

The following sources of information were utilized:

- Geological maps:
 - Geological Map of South Africa (Council of Geocsience)
- Topocadastral Map
 - 2925 AB (digital format)
- Site development plan
 - PLAN Number- 200372/1 Draft 1
 - Compiled by: L. Pienaar
 - Date: 11/09/2013
 - Scale 1:5000
 - DWG format
- Geotechnical site layout:
 - Google Earth
 - Google Maps

1.5 Development within 1 : 100 year-flood lines

It must be noted that the National Water Act (Act 36 of 1998) states the following regarding development within the 1:100 year-flood line of any stream or river (Thompson, 2006):

Section 21(c):

Impeding or diverting the flow of water in watercourses (including alteration of the hydraulic characteristics of flood events) requires licensing according to the Act

Section 21(i):

Any action that may alter the bed, banks, courses or characteristics of watercourses (including flood events) requires licensing according to the Act, including:

- i. widening or straightening of the bed or banks of a river to allow for the construction of a bridge, sports ground or housing development
- ii. altering the course of a river partially or completely (i.e.: river diversion) to be able to use or develop the area where the watercourse originally was.

2 Description of Environment

2.1 Site location and Description

The study area is defined as an irregular shaped parcel of land, sub divided into alternating rectangular and triangular structures/land use zones. The total combined surface area of these structures is approximately 80 ha. The study area is located to the south of the existing Bolokanang Rural Settlement which is falls within close proximity of the Petrusburg Town in the Free State province, South Africa. Moreover; Petrusburg forms the mid-point between the major towns of Bloemfontein and Kimberly along the National Road 8 (N8). (Figure 1).

This investigation forms as part of the analysis for the proposed extension of this settlement towards the south. The site plan provided by the client indicates the subdivision of the site into various land-use zones i.e. residential, business and roads. Each of these zones potentially require their own set of unique geotechnical recommendations.

The existing Bolokanang Rural Settlement is located at roughly the following co-ordinates:

Latitude: 29.127191° S **Longitude:** 25.422619° E

The site for this investigation is located roughly at the following coordinate:

Latitude: 29.136979° S **Longitude:** 25.422311° E

2.2 Topography

The site is located towards the western boundary of the Free State at an elevation of between 1 256 and 1 282 m above mean sea level (mamsl). The regional area is generally flat with occasional table top hill structures.

The study area represents slopes of less than 2°.

The contours of the site indicate that the south eastern portions are generally higher than the areas in the north and west.

The surface of the site hosts small/localised areas where the surface morphology/topography has been altered through on-going human.

2.3 Drainage

Due to its slope, the site will drained mainly by means of slow/low energy surface run-off (sheet-flow) with storm water eventually flowing from the high raised areas in the south east towards the north west.

The gentle sloping nature in the centeral portions of the site as well as the undulating topography in the western portions of the site may lead to ponding of water on the surface after prolonged precipitation events. In area where natural vegetation is removed it can be expected that on-going erosion of surface material may lead to desertification.

Surface water may flow along artificial paths after prolonged precipitation which will alter the natural drainage pattern of the area.

2.4 Climate

Petrusburg receives about **318mm** of rain per year, with rainfall occurring mainly during summer. It receives the lowest rainfall (1mm) in July and the highest (62mm) in March. The average midday temperatures for Petrusburg ranges from 17°C in June to 30.9°C in January. The region is the coldest during July when the mercury drops to 0°C on average during the night.

The Climatic N-Value (Weinert, 1980) for the area is **between 8 and 9**; indicating that principle mode of weathering within the regional setting will be the physical/mechanical decomposition of the parent rock rather than chemical disintegration which can be expected in areas with a wetter climate.

2.5 Vegetation

The site was seen to be well covered with grasses and small shrubs. In drier periods of the year this vegetation cover is degraded and exposed soils are eroded. On-going human activity has negatively affected the vegetation density in the area. Subsistence farming has led to the exposure of in-situ material, which can lead to greater degrees of erosion.

There is an overwhelming presence of termite mounds found to cover the site. Termites can drastically alter the geotechnical properties of the in-situ soil horizons.

3 Site Geology and Groundwater Seepage

3.1 Regional stratigraphic setting

According to the available electronic geological information; the study area is underlain by strata belonging to the Dwyka and Ecca Groups, which form the oldest sedimentary deposits in the Karoo Supergroup. These sedimentary units formed from the interbedded deposition of sand, silt and mud in the Karoo Basin, within the Carboniferous Period. These groups therefore comprise of a broad spectrum of interbedded sedimentary lithologies including carbonaceous Siltstones, Mudstones, Sandstones and micro Conglomerates. (Figure 2).

Furthermore, the Karoo sediments are extensively intruded by Doleritic dykes and sills. These igneous bodies intrude through weaknesses and discontinuities found within the older sedimentary units. These intrusions usually form the highest points in the regional landscape due to their greater resistance to weathering and erosion as compared to the older sedimentary strata. Although these bodies were not seen to transgress the site, micro structures such as hydrothermal veins, feeder dykes and micro folds can be expected.

No outcrops were observed, the study area is generally soil covered.

The study area does <u>not</u> reflect any risk for the formation of sinkholes or subsidences caused by the presence of water-soluble rocks (dolomite or limestone), and as such is <u>not</u> **deemed** "**dolomitic land**".

3.2 Prominent geological structures

The available geological information indicates the presence of large geological structures, namely geological contacts and igneous intrusions, within close proximity to the site. However, no evidence of such structures was noted on the site due to shallow depths of excavation and the absence of rock outcrops. It must be noted, as mentioned above, that the localised presence of igneous intrusions can lead to the formation of micro-structures which could transgress the site i.e. feeder dykes and hydrothermal veins. These structures can affect the geotechnical properties of the in-situ bedrock.

3.3 Groundwater occurrences

Significant groundwater seepage was **not** encountered in the test pits.

4 Nature of the investigation

4.1 Desk study

The investigation commenced with the conducting of the following actions:

- the collation and evaluation of available geological and geotechnical information
- the compilation of a base map showing the regional geological setting
- the planning and distribution of field testing locations

4.2 Field work

The field work phase was done by Letaba Lab Bloemfontein on the 30th of January 2014. Test pits and DPL tests were placed throughout the study area in such a way as to accurately describe the general soil conditions occurring within the boundaries of the study area. The succession of soil and rock layers exposed within the test pits was logged and a series of detailed photographs were taken of the different soil layers. Samples were taken of the soil and rock material deemed to be important to the proposed development.

4.3 Laboratory testing

The following tests were conducted on soil samples taken during the field work phase by the soils laboratory:

- Standard foundation indicator tests were conducted by Letaba Lab Bloemfontein on disturbed soil samples in order to determine its composition (i.e.: the relative percentages of gravel, sand, silt and clay present within each sample), to evaluate the heave and compressibility potential of these soils, and to calculate the maximum heave and/or differential settlement that can be expected. The following tests were conducted:
 - i. Atterberg Limits (Liquid Limit and Plasticity Index) and Linear Shrinkage
 - ii. Particle-size distribution
 - iii. pH and EC tests
- Standard road indicator tests were conducted by Letaba Lab Bloemfontein on bulk soil samples in order to determine its composition, and to evaluate the suitability of the materials for use in the construction of access roads and parking areas. The following additional tests were conducted:
 - i. Maximum Dry Density versus Optimum Moisture Content

Geotechnical Investigation – Bolokanang Rural Settlement

ii. Californian Bearing Ratio versus Compaction Effort (MOD AASHTO method)

4.4 Reporting

The investigation concluded with the compilation of a technical report detailing all methodology utilised during the study and all results obtained. This report includes a detailed potential evaluation of the site in terms of the proposed development, based on the results of the geotechnical investigation, with recommendations regarding foundation design and construction and excavatability.

5 Geotechnical Setting

5.1 Trenching

5.1.1 Excavation of test pits

A total of eight test pits, numbered TP1 to TP8, were excavated by means of a TLB-type light mechanical excavator (TLB model- Bell Turbo 4x4, series 315 SJ, 2011), at which time the exposed soil layers were profiled and sampled.

The test pit positions and quantities were specified by the client.

Test pit layout can be viewed in Figure 4

5.1.2 Generalised engineering geological parameters

The following **general** engineering geological characteristics were noted:

Excavatability

The TLB- type light mechanical excavator generally did <u>not</u> experience any trouble excavating test pits to a depth of 1.15 m below the natural ground level. Excavatability in the north portion of the site is notably worse than the southern and western portions of the site.

Test pits were excavated to a point at which refusal or maximum reach of the TLB-type light mechanical excavator was accomplished.

Rock- and/or pedocrete outcrops

Bedrock outcrop was **not** encountered within the study area.

Sidewall stability

The excavation sidewalls generally remained stable for a period of at least 1 hour with little or no over-break or collapse occurring.

Groundwater seepage

Significant groundwater seepage was **not** encountered in the test pits.

5.2 Generalized soil profile

Note: this description is based on field observations, and does **not** reflect the results of any laboratory tests.

The results of the trenching phase indicate that the study area is covered by a variable thickness of topsoil, comprising of transported material followed by a soil horizon comprised of residual material and highly weathered bedrock.

Soil profiles are included as Appendix A.

Transported Material

The uppermost soil horizon encountered across the site has formed a top soil cover with the presence of medium dense root structures and extensive biological activity (i.e animal burrows and insect tunnels). This top soil horizon was comprised of dusky reddish brown transported material deemed to be of alluvial origin with a loose to medium dense consistency. This soil was further classified as slightly moist silty sand.

In the northern portion of the site this transported horizon was notably thin stretching from the surface to depths of between 0.40 and 1.20 m below the natural ground level.

In the southern and western portions of the site this horizon was notably thick, stretching from the surface to depths of between 1.80 and 2.90 m below the natural ground level.

Residual Material

The above mention transported horizon was underlain by a soil horizon deemed to be comprised of residual material which has formed from the physical and chemical disintegration of the in-situ bedrock. This horizon displays a gradational change in colour, moisture, and consistency observed with depth. These gradational changes link directly to the variable amount and type of weathering of the in-situ bedrock. The residua is generally present as dry, very dense sub-angular silty gravels often with a light yellowish-orange colour. This horizons hosts a mixture of residual material, completely weathered bedrock and highly weathered bedrock fragments.

The presence of mottled and stained structures on the rocks within this horizon indicates the presence of ground water circulation and possible perched water tables after prolonged/heavy precipitation events.

This residual material occurred from depths of between 0.40 and 1.9 m and was seen to have a maximum thickness of up to 1.20 m thick.

It was within this horizon where refusal to excavation by the TLB-type light mechanical excavator took place within the very dense material and on highly weathered bedrock.

5.3 Light Dynamic Penetrometer Tests

DPL tests were carried out across the site to assess the consistency of the in-situ subsoils and provide an indication of the founding conditions and depth to bedrock beneath the site.

DPL tests were performed at natural moisture conditions and thus the values vary greatly from the CBR results measured under controlled conditions within the laboratory. This variation is mainly due to the lab specimens being analysed under saturated conditions. It should be noted that the strength of the in-situ soil changes greatly with change in moisture conditions. DPL test should therefore only be used as indicative statistics for the site.

It must be noted that the results of the DPL tests completed across the site were relatively uniform with few discrepancies. DPL results are seen to display an increase in bearing capacity/layer strength with depth.

DPL tests refused (in very dense material) at depths of between 0.60 and 3.60 m below natural ground level. DPL results are seen to mirror the occurrence of highly weathered bedrock fragments.

The presence of abundant gravel-and cobble- and boulder sized particles within soil horizons as well as the moisture content within each horizon may have had a detrimental effect on the accuracy of the DPL results.

Full DPL results can be viewed in Appendix C.

5.4 Engineering- and material characteristics

5.4.1 Sampling

The following samples were taken:

Disturbed Samples : 7 x Residual

8 x Transported

Bulk samples : 6 x Residual

2 x Transported

Detailed soil test results for both the disturbed and bulk samples are included in Appendix B.

5.4.2 Soil test results: Transported Material

In the light of the soil test results and visual observations, the geotechnical characteristics of the transported horizons can be as follows:

- This material is deemed compressible and potentially collapsible, with a <u>calculated</u> total settlement in excess of 20 mm.
- With reference to the results from the pH and EC tests completed for the samples it can be noted that this material is slightly basic and is therefore non corrosive to concrete and steel.

The results of road indicator test conducted on the bulk samples of this material can be summarized as follows:

- This material is deemed be to be slightly too moderately- plastic.
- This material classifies as a worse than G9- type material according to the COLTOclassification system.
- The results of these tests indicate that this material reacts well to compaction, with CBR-values of between 27 and 36 at a compaction effort of 90% MOD AASHTO increasing to between 46 and 57 at 100% MOD AASHTO. This translates to a calculated bearing capacity value of between 215 and 300 kPa at 93% MOD AASHTO, allowing for a Factor of Safety of 1.5.

5.4.3 Soil test results: Residual Material

In the light of the soil test results and visual observations, the geotechnical characteristics of the residual horizons can be as follows:

- This material is deemed compressible, with a <u>calculated</u> total settlement of between
 10 and 20 mm.
- With reference to the results from the pH and EC tests completed for the samples it can be noted that this material is slightly acidic and is therefore mildly corrosive to concrete and steel.
- The residual material was seen to exhibit highly variable mechanical properties.

The results of road indicator test conducted on the bulk samples of this material can be summarized as follows:

- This material is deemed be to be slightly too moderately- plastic.
- This material classifies as a G5-, G6-, G7-, G8-, G9 and worse than G9- type material according to the COLTO-classification system.
- The results of these tests indicate that this material reacts variably to compaction, with CBR-values of between 6 and 46 at a compaction effort of 90% MOD AASHTO increasing to between 21 and 68 at 100% MOD AASHTO. This translates to a calculated bearing capacity value of between 70 and 300 kPa at 93% MOD AASHTO, allowing for a Factor of Safety of 1.5.

5.5 Slope stability

In the light of the **gentle slopes** (less than 2°) present across the site, specialised methods for the stabilisation of cuts into the natural slopes are not deemed necessary.

5.6 Excavation classification

Significant problems **are not** foreseen during the excavation of **shallow foundation trenches** to a depth of 1.15 m through the use of a TLB-type light mechanical excavator. Thereafter, significant problems **are** foreseen during the excavation of **deep service trenches**.

It must be noted that the conditions of the site can vary over short distances due to the presence of a very dense residual material and varying weathering horizons; therefore excavatability should be accessed on-site accordingly.

The following additional comments on excavation of service trenches apply:

- Trenches near the non-perennial streams may have to be dewatered, especially after heavy precipitation events.
- The side walls of deep excavations should preferably be shored to prevent injury or death due to side wall failure.

5.7 Impact of geotechnical character on development

The geotechnical characteristics exhibited by the soil material covering the study area is deemed to have the following effects with regard to development:

- 1. Seepage / groundwater
 - = Not applicable.
- 2. Erodability of soil

The average slope across the area is less than 1 : 7.5 and some of the material (transported horizons) classifies as SM and SC according to the Unified Soil Classification.

- Not applicable.
- 3. Difficulty of servicing of land due to slopes

Type 1 site: The average slopes across the site is steeper than 1 : 100 but is flatter than 1 : 20.

- = Difficulties associated with the provision of waterborne sanitation, drainage of site and provision of pump stations.
- 4. Difficulty of excavation due to slopes

Average slope measured across the erf in any direction is flatter than 1 : 10 and material to a depth of 1.5 m below pre-development level is classified as hard excavation.

- = Additional cost if trench excavation.
- 5. Precautionary measures in sites underlain by dolomite / limestone

The study area is <u>not</u> deemed dolomitic land.

= <u>Not</u> applicable.

6 Site Classification

6.1 General

The results of this study reveal that the whole site exhibits geological characteristics that may require the implementation of specific design and/or precautionary measures to reduce the risk of structural damage due to adverse geotechnical characteristics.

These include (in order of importance):

- The difficulty of servicing due to poor excavatability in the northern portion of the site.
- The presence of gentle slopes (less than 2°).
- The occurrence of compressible and potentially collapsible soil material throughout the study area

However, these characteristics do not disqualify the site from being used for the proposed settlement, but rather require the implementation of site-specific precautionary measures.

6.2 Site Classification

In the light of the results of this study, the study area can be divided into the following development potential zones (Figure 5):

Zone A

The central to southern portions of the study area is deemed the most suitable for the proposed development, provided due cognisance is given to the following characteristics during the design and construction phases of the development:

- The presence of compressible and potentially collapsible material with an expected settlement in excess of 20 mm, that will require specialised foundation design and construction methods.
- Average slopes of less than 2º; localised ponding probable as well as difficulty of servicing.

Zone A classifies as Site Class **S2/C1** according to the system used by the National Home Builders Registration Council (NHBRC) and as a **2A** Collapsible material with a thickness of more than 750 mm, **2I** slopes of less than 2 degrees type site according to the classification system proposed by Partridge, Wood and Brink (1993).

Geotechnical Investigation - Bolokanang Rural Settlement

Zone B

The northern portion of the study area is deemed to be suitable for the proposed development, and requires that due cognisance be given to the following characteristics during the design and construction phases of the development:

- The presence of compressible and potentially collapsible material with an expected settlement in excess of 20 mm, that will require specialised foundation design and construction methods.
- Difficulty of excavation due to very dense material forming between 10 and 40 % of the total volume up to depths of 1.5 m below ground level.
- Slopes in the northern and eastern portions less than 2º, localised ponding probable as well as difficulty of servicing.

Zone B classifies as Site Class **S2/C1** according to the system used by the National Home Builders Registration Council (NHBRC) and as a **2F** Difficulty of excavation due to very dense material forming between 10 and 40 % of the total volume up to depths of 1.5 m, **2A** Collapsible material with a thickness of more than 750 mm, **2I** slopes of less than 2 degrees type site according to the classification system proposed by Partridge, Wood and Brink (1993).

6.3 Detailed Site Suitability evaluation

6.3.1 Soil excavatability

Zone A

It should be possible to excavate to a depth of up to 1.90 m with the use of a TLB-type light mechanical excavator without serious difficulty.

> Zone B

It should be possible to excavate to a depth of 1.15 m with the use of a TLB-type light mechanical excavator without serious difficulty, after which the very dense material in the area may require the use of power tools or a heavy mechanical excavator to excavate.

6.4 Slope stability

All Zones

In the light of the very gentle slopes present throughout the study area, specialised methods for the stabilisation of the natural slopes are not deemed necessary.

The sidewalls of deep trenches must preferably be supported to prevent injury or loss of life through sidewall collapse.

7 Foundation Recommendations and Solutions

7.1 Zones A and B

The results of this investigation reveal that the soils covering the study area may undergo a degree of **consolidation and collapse** (i.e.: loss of volume) under loading or when saturated, requiring that structures be adequately strengthened to prevent structural damage due to **settlement/collapse** beneath foundations.

It is thus recommended that EITHER of the following foundation designs be utilised for structures to be placed within this zone:

OPTION 1

Stiffened strip footings or cellular raft

- Stiffened or cellular raft with articulation joints or lightly reinforced masonry.
- Site drainage and plumbing/service precautions
- Bearing pressures not to exceed 50 kPa
- Fabric pressure not to exceed 50 kPa

OPTION 2

Deep strip foundations

- Normal construction with drainage requirements
- Founding on a competent horizon below problem horizon
- Fabric re-enforcement in floor slabs

Geotechnical Investigation - Bolokanang Rural Settlement

OPTION 3

Soil raft:

- Remove in-situ material to 1.0 m beyond the perimeter of the structure to a depth of 1.5 times the widest foundation or to a competent horizon and replace with material compacted to 93% MOD AASHTO density at -1% to +2% of optimum moisture content.
- Normal construction with lightly reinforced strip footings and light reinforcement in masonry
- Site drainage and plumbing/service precautions.

It must be noted that differential settlement is assumed to equal 75% of the total settlement. The relaxation of some of these requirements, e.g. the reduction or omission of steel or articulation joints, may result in a Category 2 level of expected damage. Furthermore these are merely recommendations. Please consult a qualified professional for additional options and final designs.

8 Drainage

8.1 Surface Drainage

It is recommended that an efficient surface drainage system be installed around all structures and along all roads throughout the study area in order to:

- prevent the ponding of water next to structures directly after heavy precipitation events, this may lead to differential settlement as the saturated material undergoes densification
- prevent large-scale changes in soil moisture beneath the structures on a seasonal basis
- prevent the seasonal formation of perched water tables (i.e.: short-term groundwater seepage) within the soil material at shallow depth
- prevent the possible lateral movement of liquids within the upper soil horizons

The precautionary measures should ideally include:

- the sealing of open ground surfaces by means of either of the following:
 - a. the cultivation of a natural soil cover (e.g.: grass)
 - b. compaction of the soil surface
 - c. bitumen or concrete paving
- the removal of surface water to a distance of at least 1 m beyond structures by means of watertight paving
- the removal of surface run-off by means of an efficient surface drainage system
- roads should preferably be constructed parallel to the natural surface elevation contours rather than perpendicular to it, in order to reduce run-off velocities

8.2 Sub Surface Drainage

The seasonal occurrence of perched water tables at relatively shallow depth within the study area may lead to structural damage due to rising damp.

However, implementation of a sub-surface drainage system is not deemed necessary if adequate damp-proofing measures are taken beneath individual structures and the above-mentioned surface drainage system is implemented.

9 Conclusions and recommendations

- A detailed geotechnical investigation was conducted for the proposed extension of the
 existing Bolokanang Rural Settlement to the south east of Petrusburg in the Free State
 Province. This investigation was undertaken in order to assess the engineering geological
 character of the area, focusing on the geotechnical properties which will affect the overall
 development potential of the site.
- 2. In the light of the results of this study, it can be stated that the natural soil underlying the study area exhibit some adverse geotechnical characteristics that may require the implementation of specific design and/or precautionary measures to reduce the risk of structural damage, or may hamper the development of certain areas. However, these characteristics do not disqualify the site from being used for the proposed development, but rather require the implementation of site-specific precautionary measures during the design and construction phases of the development.

The whole study area is deemed suitable for development, but will require that due cognisance be given to the following adverse geotechnical characteristics:

- This material is deemed compressible and potentially collapsible soils with a calculated total settlement in excess of 20 mm.
- The study area classifies as Site Class S2/C1 (NHBRC, 1999).
- 3. The site can be further classified in development potential zones according to the system proposed by Partridge, Wood and Brink (1993). Each zone requires that due cognisance be given to the unique adverse geotechnical characteristics.

Zone A

The central to southern portions of the study area is deemed the most suitable for the proposed development, provided due cognisance is given to the following characteristics during the design and construction phases of the development:

- O The presence of **compressible and potentially collapsible material** with an expected **settlement** in **excess of 20 mm**, that will require specialised foundation design and construction methods.
- Average slopes of less than 2°; localised ponding probable as well as difficulty of servicing.

Geotechnical Investigation - Bolokanang Rural Settlement

Zone A classifies as Site Class **S2/C1** according to the system used by the National Home Builders Registration Council (NHBRC) and as a **2A** Collapsible material with a thickness of more than 750 mm, **2I** slopes of less than 2 degrees type site according to the classification system proposed by Partridge, Wood and Brink (1993).

Zone B

The northern portion of the study area is deemed to be suitable for the proposed development, and requires that due cognisance be given to the following characteristics during the design and construction phases of the development:

- The presence of compressible and potentially collapsible material with an expected settlement in excess of 20 mm, that will require specialised foundation design and construction methods.
- Difficulty of excavation due to very dense material forming between 10 and 40 % of the total volume up to depths of 1.5 m below ground level.
- Slopes in the northern and eastern portions less than 2º, localised ponding probable as well as difficulty of servicing.

Zone B classifies as Site Class **S2/C1** according to the system used by the National Home Builders Registration Council (NHBRC) and as a **2F** Difficulty of excavation due to very dense material forming between 10 and 40 % of the total volume up to depths of 1.5 m, **2A** Collapsible material with a thickness of more than 750 mm, **2I** slopes of less than 2 degrees type site according to the classification system proposed by Partridge, Wood and Brink (1993).

- 4. Significant problems are not foreseen during the excavation of **shallow foundation trenches** as well as **deep service trenches to a depth of 1.90 m** within **Zone A** through the use of a TLB-type light mechanical excavator.
- 5. Significant problems are not foreseen during the excavation of shallow foundation trenches to a depth 1.15 m within Zone B through the use of a TLB-type light mechanical excavator. Significant problems are foreseen during the excavation of deep service trenches within Zone B through the use of a TLB-type light mechanical excavator.
- 6. In the light of the results of this investigation, it is recommended that foundation- and service trenches be inspected by an engineering geologist or geotechnical engineer in order to identify and assess any variance in the geotechnical character exposed in these trenches.

10 Bibliography

BYRNE, G, EVERETT, J P and SCHWARTZ, K, 1995.

A guide to practical geotechnical engineering in Southern Africa. Third Edition, Franki.

BRANDL, G. 1986

The geology of the Pietersburg Area. Geological Survey

DEPARTMENT OF PUBLIC WORKS, 2007.

Identification of problematic soils in Southern Africa – Technical notes for Civil and Structural Engineers PW2006/1. July 2007.

DEPARTMENT OF WATER AFFAIRS AND FORESTRY, 1997.

A protocol to manage the potential of groundwater contamination from on site sanitation. National Sanitation Co-ordination Office, Directorate of Geohydrology, Edition 1.

KIJKO, A, GRAHAM, G, BEJAICHUND, M, ROBLIN, D and BRANDT, M B C, 2003.

Probabilistic peak ground acceleration and spectral seismic hazard maps for South Africa. Council for Geoscience report 2003/0053.

LOW, A B and REBELO, A G, 1996.

Vegetation of South Africa, Lesotho and Swaziland. The Department of Environmental Affairs and Tourism.

MIDGLEY, D C, PITMAN, W V and MIDDLETON, B J, 1994.

Surface water resources of South Africa 1990, Book of Maps. Water Research Commission report number 298/1.2/94.

NATIONAL DEPARTMENT OF HOUSING, 2002.

Geotechnical site investigations for housing developments. *Project Linked Greenfield Subsidy Project Developments: Generic Specification GFSH-2*. September 2002.

PARTRIDGE, T C, WOOD, C K, and BRINK, A B A, 1993.

Priorities for urban expansion within the PWV metropolitan region. The primary of geotechnical constraints. South African Geographical Journal: Vol. 75.

WEINERT, H H, 1980.

The natural road construction materials of Southern Africa. Academia, Cape Town.

MAPS

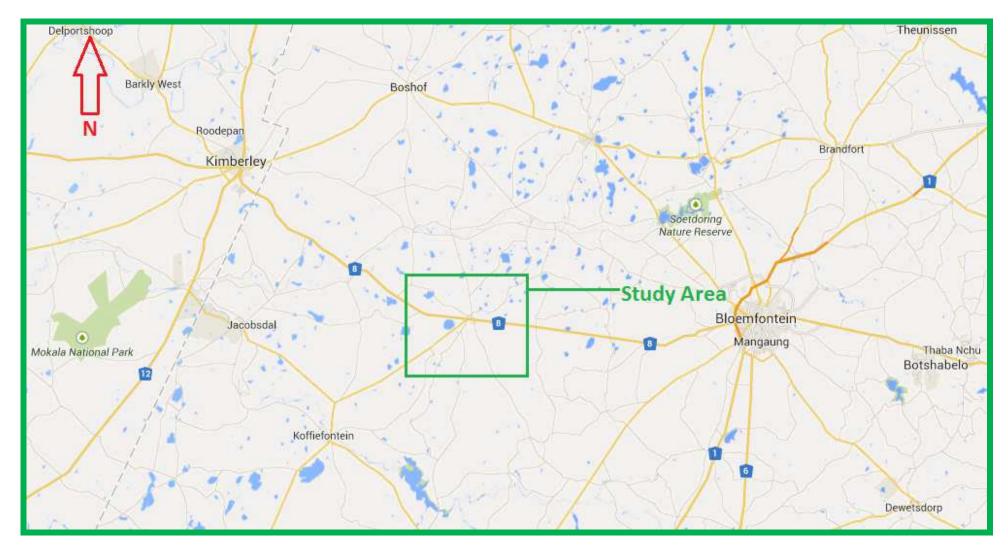
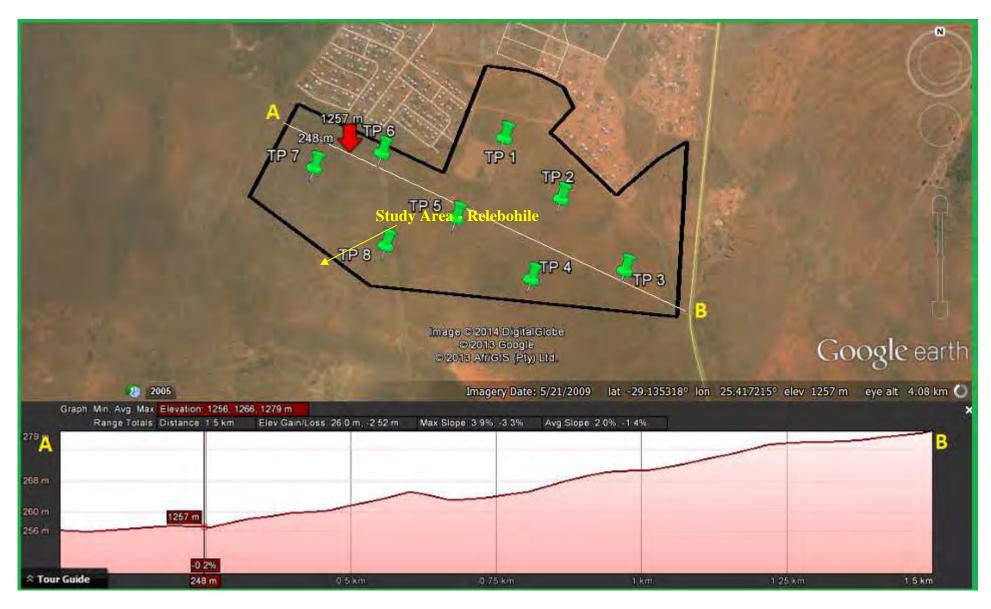


Figure 1: Study Area Location



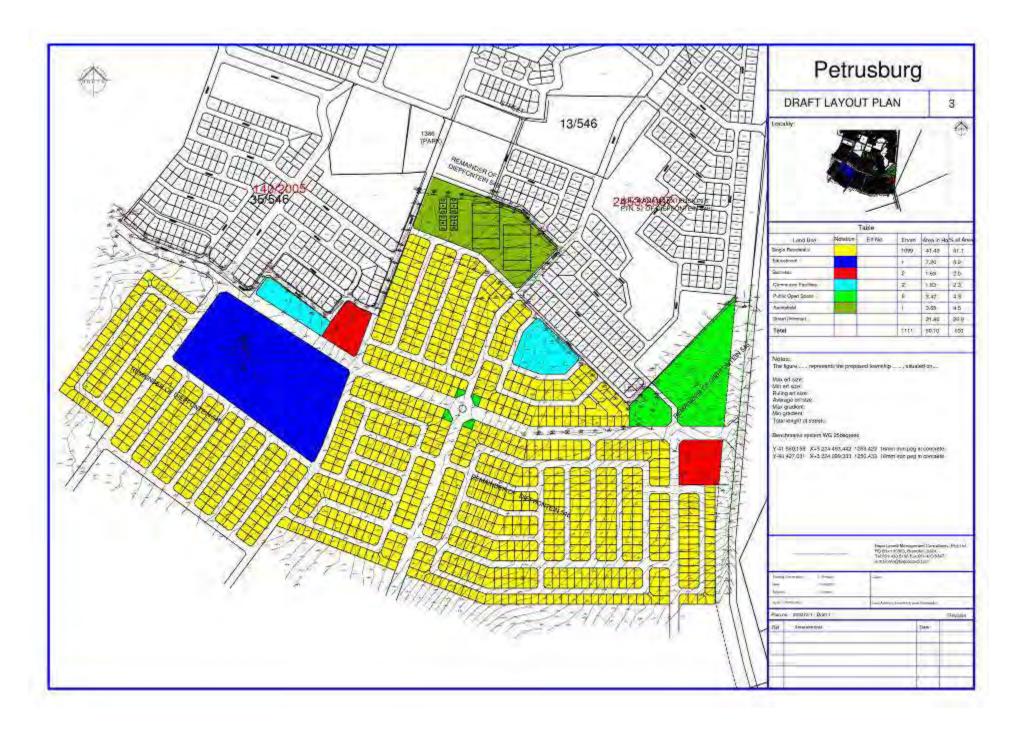
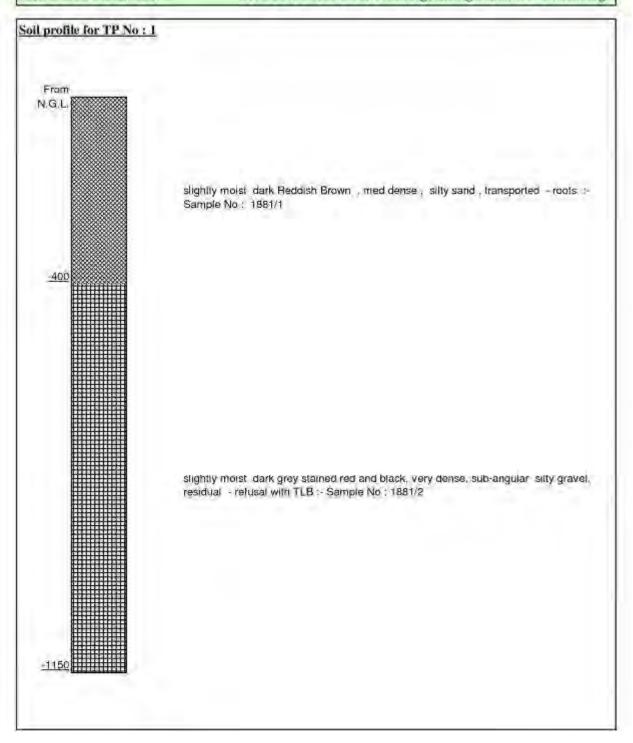
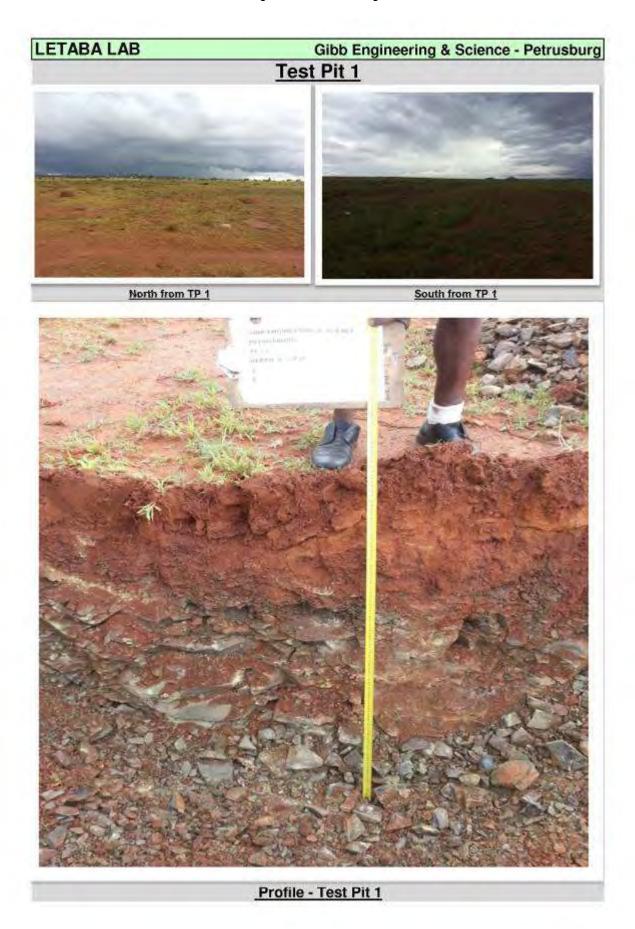

Figure 2: Study Area- Cross-sectional view

Figure 3: Study Area - Test Pit Locations

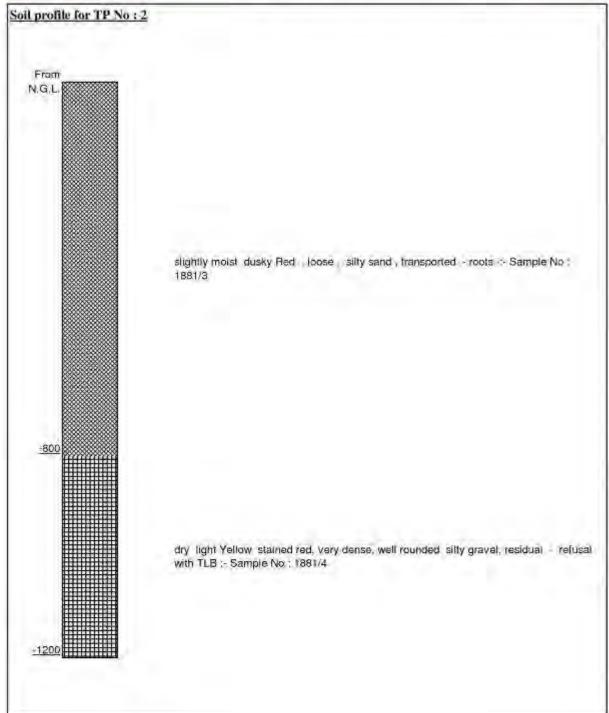
Figure 4: Study Area- Development Potential Zonation

LETABA LAB PETRUSBURG




TP:	CO-ORDINATES	DPLNo.
	PROPOSED CONSTRUCTION APEA COVERED	
TP: 1	S29°8.115' E25°25.348'	DPL No. 1
TP: 2	S29°8.226' E25°25.466'	DPL No. 2
TP:3	S29°8.356' E25°25.598'	DPL No. 3
TP: 4	S29°8.372' E25°25.404'	DPL No. 4
TP: 5	S29°8.261' E25°25.247'	DPL No. 5
TP: 6	S29°8.142' E25°25.092'	DPL No. 6
TP: 7	S29°8.169' E25°24.950'	DPL No. 7
TP: 8	S29°8.311' E25°25.100'	DPL No. 8

Appendix A


Soil Profiles

SOIL PROFILES FOR Gibb Engineering & Science - Petrusburg

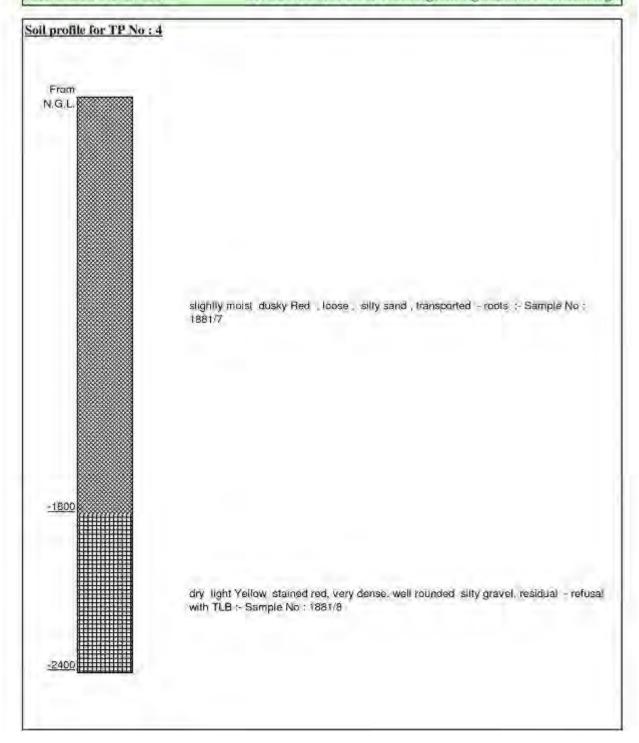
SOIL PROFILES FOR Gibb Engineering & Science - Petrusburg

Gibb Engineering & Science - Petrusburg

Test Pit 2

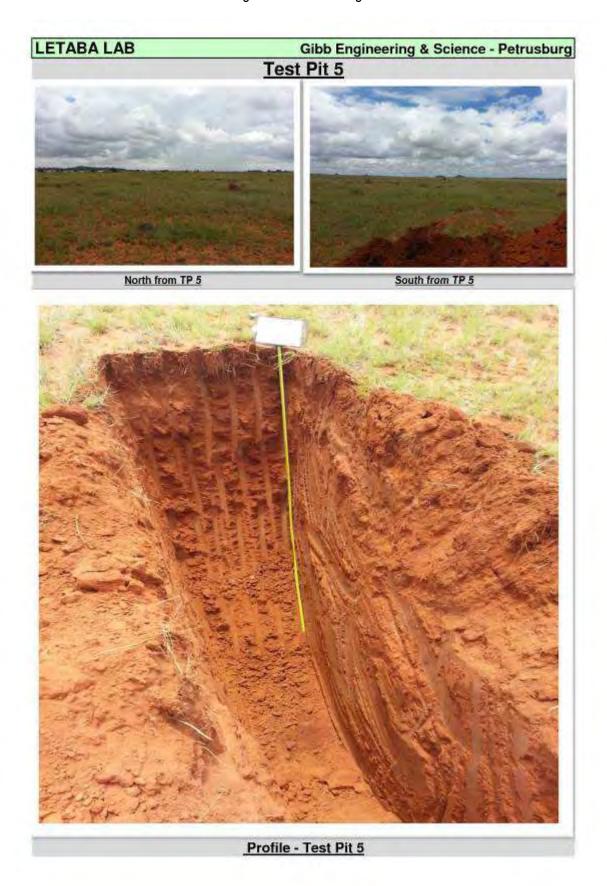
North from TP 2

South from TP 2

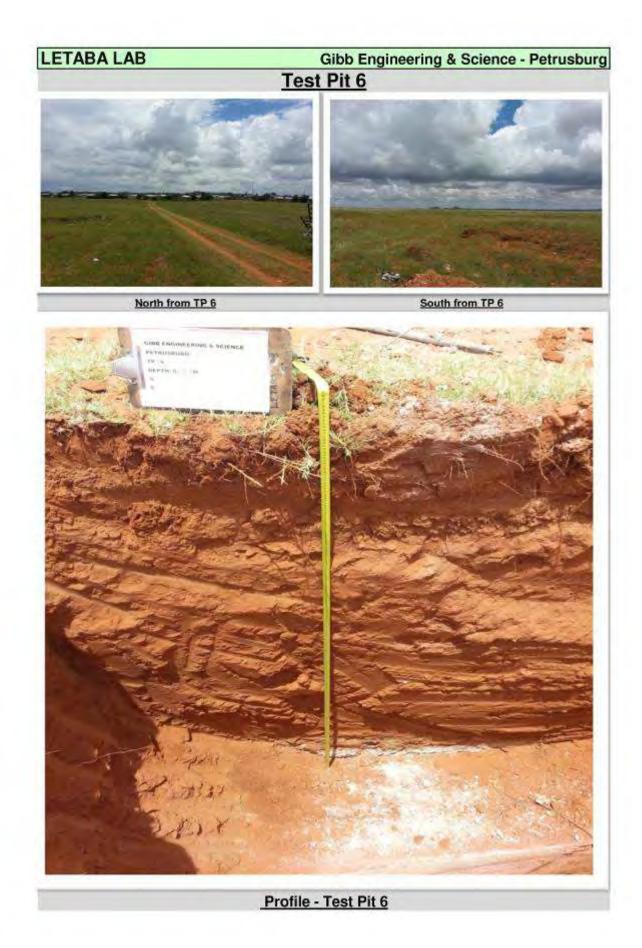


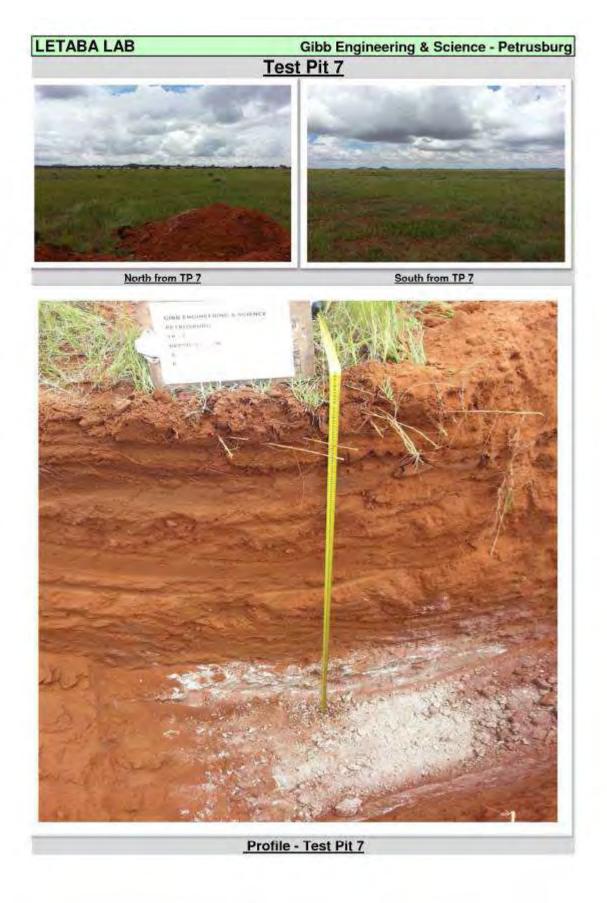

Profile - Test Pit 2

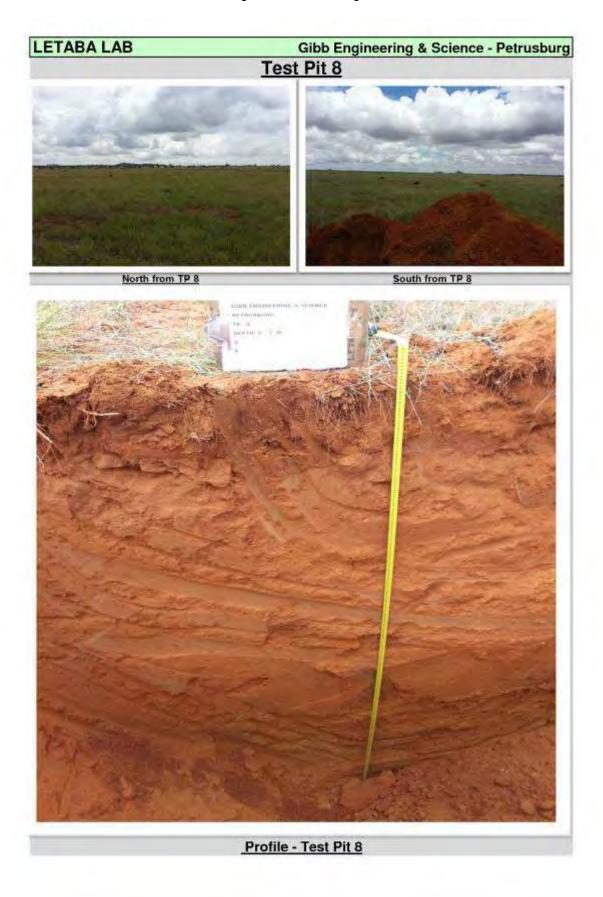
LETABA LAB SOIL PROFILES FOR Gibb Engineering & Science - Petrusburg Soil profile for TP No: 3 From N.G.L. slightly moist dark Red , loose , rounded sifty sand , fransported :- roots and Not sampled -300 slightly moist dark Red , med dense , rounded sitty sand , transported :- and Sample No 1881/5 dry light Olive stainded Grey, very dense , sub-angular silty gravel, residual :- refusal with TLB and Sample No : 1881/6



SOIL PROFILES FOR Gibb Engineering & Science - Petrusburg




LETABA LAB SOIL PROFILES FOR Gibb Engineering & Science - Petrusburg Soil profile for TP No : 5 From N.G.L. slightly moist dark Reddish Orange $\,$, med dense $\,$, silty sand , residual $\,$ - Max reach with TLB :- Sample No : 1881/9


LETABA LAB SOIL PROFILES FOR Gibb Engineering & Science - Petrusburg Soil profile for TP No: 6 From N.G.L. slightly moist dusky Red., med dense., slity sand., transported. - roots. - Sample No. 1881/14 dry white, Orange , very dense, sub-rounded silly graval, calcrete, residual - refusal with TLB - Sample No : 1881/15

LETABA LAB SOIL PROFILES FOR Gibb Engineering & Science - Petrusburg Soil profile for TP No: 7 From N.G.L. slightly moist dusky Red . med dense , silty sand . transported - roots : Sample No : 1881/12 -1900dry White, very dense, sifty gravel, calcrete, residual - refusal with TLB :- Sample No 1881/13

LETABA LAB SOIL PROFILES FOR Gibb Engineering & Science - Petrusburg Soil profile for TP No: 8 From N.G.L slightly moist dusky Red., med dense, silty sand, transported - roots: Sample No; -1800 dry light Reddish Orange , med dense , silty sand , residual - Max reach with TLB :-Sample No : 1881/11

Appendix B

Lab Results

Bulk Samples

P.O. Box 22874 Extonweg Bloemfontein 158 Lang Street Hilton Park, Unit C4 Bloemfontein 9301 Tel. No: 051 433 4057 Fax No: 051 433 4236 Cel. No: 084 405 4711

CIVIL ENGINEERING MATERIALS LABORATORY 9313
Reg No. 2011/02/1577/23

01 e-mail .jayson@letaba-lab.co.2a

GRAVEL, SOIL AND SAND TEST REPORT **GIBB ENGINEERING & SCIENCE** Doc No: 1881/2(i) Date Sampled Client 29-Jan-14 3 Bermakor park: 52 Roid str. Bloemfortein 9300 Petrusburg Date Tested : 06-Feb-14 Contract TP:1 sampled by lab Description Sieve Analysis Atterbera Description Limits (%) Cumulative percentage passing Classification Grading Modulus Shrinkage Index 1998 Highway Group Index Liquid Limit Unified Soil E 0 425 0.075 19.0 13.2 53.0 4.75 Sample 2.00 Plasticity COLTO (Unified Soil Classification) 37 88 mean US drk Brown Silly/Clayey sand 0.4-1.15 1881/2 100 90 58 42 31 15 2.13 24 5 sm/sc G7 A-1-b 0 **GRADING ANALYSIS** 106 PASSING 1881/2 80 70 CUMULATIVE PERCENT 60 50 40 30 20 10 ø 0.075 0.425 2.00 13.20 19,00 Sieve Size 4.75 mm GENERAL PERFORMANCE AS GRAVEL WEARING COURSE Effective size (mm): <0.075 500 Class D Uniformity co-eff. : 5057 Slippery 400 Curvature co-eff.: 31.1 PRODUKT Good - may be dusty 300 Oversize Index : 0 Class A Class C Class E 200 Erodicle materials Shrinkage Product : 73 **Favels** SPRINKAGE Grading co-eff. 33.9 100 Class B: Revels and corregates CBR RESULTS (%) : 0 10 25 30 40 45 @ 100% comp. 36 0 5 GRADING COERFICIENT @ 98% comp. 31 @ 97% comp. : 28 @ 95% camp. : 23 REMARKS @ 93% comp : 19 @ 90% comp : 13 Soil Mortar Analysis Coarse Sand (<2.0>0.425mm): 11.0% Fine Sand (< 0.425>0.075mm) | 15,5% Material < 0.075mm: 15.1% sase note that test results are unly relevent to the sample i sted, which were sampled in accordance with TMHS 17891, and were uncontaminated and fit for leating. Any results may only be reprecised in their entirely with the written consent of Lelaba Lab (Ply) Ltd. and any remarks made lall outside the scope of our Cuality Document. Jayson Wingrove Signature: Technical signatory (Name):

LETABA LAB TMH 1;1986 Method A7 & A8 CBR and Modified A.A.S.H.T.O Density test report GIBB ENGINEERING & SCIENCE Date tested: 06-Feb-14 Contract: Petrusburg Doc no: 1881/2(ii) Sample no: 1881/2 Description: TP :1 sampled by lab Maximum dry density = 1980 kg/m³ % Optimum moisture content = 8.9 1990 1980 1970 1960 1950 8 1940 1930 1920 % Moisture California Bearing Ratio (readings) MOD 20 Not 10 2.0 3.0 4.0 5.0 Penetration (mm) 9.0 1.0 6.0 7.0 8.0 California Bearing Ratio 1,000,0 OBR @ 2.54 mm - CBR @ 5,08 mm --- CBR @ 7.52 mm 100.0 8 10.0 1.0 91 92 99 101 % Compaction % Compaction 100 98 97 95 93 90 **CBR of 13.344 kN** 36 31 28 23 13 Briquette Info Mod N.R.B. Proc. Dry Density (sg/m²) 1977 1880 1779 Compaction Moisture (%) 8.6 8.5 8.6 99.8% 95.0% 89.8% Compaction (%) 0.54 0.63 0.75 Please note that lest results are only relevant to the sample tested, which were sampled in accordance with TMHS 1991, and were uncontaminated and fit for testing. Any results may only be reproduced in their entirety with the within consent of Letaba Lab (Ph) Ltd. and any remarks made fall outside the scope of our Quality Document. Technical signatory (Name): Jayson Wingrove Signature:

P.O. Box 22874 Extorweg Bloemfontein

158 Lang Street Hilton Park, Unit C4 Bloemfontein

Tel. No: 051 433 4057 Fax No: 051 433 4236 Cel. No. 084 405 4711

CIVIL ENGINEERING MATERIALS LABORATORY 9313 Reg No. 2011/07/1577/23

9301

e-mail . jayson@lefaba-lab.co.za

GRAVEL, SOIL AND SAND TEST REPORT **GIBB ENGINEERING & SCIENCE** Doc No: 1881/4(i) Date Sampled Client 29-Jan-14 3 Bermakor park, 52 Roid str. Bloemfontein 9300 Petrusburg Date Tested : 06-Feb-14 Contract TP:2 sampled by lab Description Sieve Analysis Atterbera Description Limits (%) Cumulative percentage passing Classification Grading Modulus Shrinkage Index 1998 Highway Group Index Liquid Limit Unified Soil E 0.425 0.075 19.0 13.2 53.0 4.75 Sample 2.00 Plasticity COLTO (Unified Soil Classification) 37 88 mean US drk Yei, Orange Silty/Clayey 0.8-1.2 1881/4 100 99 84 59 29 1.27 5 G6 A-2-4 0 21 sand **GRADING ANALYSIS** 106 PASSING 1881/4 80 70 PERCENT 60 50 40 CUMULATIVE 30 20 10 0.075 0.425 2.00 13.20 Sieve Size 4.75 mm GENERAL PERFORMANCE AS GRAVEL WEARING COURSE Effective size (mm): <0.075 500 Class D Uniformity co-eff. : 447 Slippery 400 Curvature co-eff.: 13.4 Good - may be dusty 300 Oversize Index : 0 Class A Class C Class E Erodicle materials Shrinkage Product : 130 200 **Favels** SPRINKACK Grading co-eff : 15.6 100 Class B: Revels and corrugates CBR RESULTS (%) : 0 10 25 30 40 45 @ 100% comp. 50 0 5 GRADING COSEFICIENT @ 98% comp. 40 @ 97% comp. . 35 REMARKS @ 95% comp. : 28 @ 93% comp. : 22 @ 90% comp. : 16 Soil Mortar Analysis Coarse Sand (<2.0>0.425mm) : 25.1% Fine Sand (< 0.425 > 0.075mm) : 29.7% Material < 0.075mm: 29.5% ease note that test results are unly relevent to the sample r sted, which were sampled in accordance with TMHS 17891, and were uncontaminated and IV for leating. Any results may only be reprecised in their entirely win the written consent of Lelaba Lab (Ply) Ltd. and any remarks made lall outside the scope of our Cuality Document. Jayson Wingrove Signature: Technical signatory (Name):

LETABA LAB TMH 1:1986 Method A7 & A8 CBR and Modified A.A.S.H.T.O Density test report GIBB ENGINEERING & SCIENCE Date tested: 06-Feb-14 Contract: Petrusburg Doc no: 1881/4(ii) Sample no: 1881/4 Description: TP :2 sampled by lab Maximum dry density = 2060 kg/m³ % Optimum moisture content = 8.3 2070 2060 2050 2040 2030 S 2020 2010 2000 % Moisture California Bearing Ratio (readings) MOD 20 (Not 10 2.0 3.0 4.0 5.0 Penetration /mml 7.0 9.0 6.0 8.0 California Bearing Ratio 1,000,0 OBR @ 2.54 mm - CBR @ 5,08 mm **** CBR @ 7.52 mm 100.0 \$ 10.0 1.0 93 99 101 % Compaction % Compaction 100 98 97 95 93 90 **CBR of 13.344 kN** 50 40 35 28 22 16 Briquette Info Mod N.R.B. Proc Dry Density (sg/m²) 2059 1956 1853 Compaction Moisture (%) 6.1 8.0 8.1 100.0% 94.9% 89.9% Compaction (%) 0.55 0.63 0.71 Please note that lest results are only relevant to the sample tested, which were sampled in accordance with TMHS 1991, and were uncontaminated and if for testing. Any results may be reproduced in their entirety with the written consent of Letaba Lab (Fty) Ltd. and any remarks made fall outside the scope of our Quality Document. Technical signatory (Name): Jayson Wingrove Signature:

P.O. Box 22874 Extensiveg Bloemfontein 158 Lang Street Hilton Park, Unit C4 Bloemfontein Tel. No: 051 433 4057 Fax: No: 051 433 4236 Cel. No: 084 405 4711

CIVIL ENGINEERING MATERIALS LABORATORY 9313
Reg No. 2011/02/1577/23

9301 e-mail: jayson@letaba-lab.co.2a

GRAVEL, SOIL AND SAND TEST REPORT **GIBB ENGINEERING & SCIENCE** Doc No: 1881/6(I) Date Sampled Client 29-Jan-14 3 Bermakor park, 52 Roid str. Bloomfontein 9300 Petrusburg Date Tested : 06-Feb-14 Contract TP:3 sampled by lab Description Sieve Analysis Atterbera Description Limits (%) Cumulative percentage passing Classification Grading Modulus Shrinkage Index 1998 Highway Liquid Limit Soil Group Index E 0.425 0.075 93.0 19.0 13.2 4.75 Sample 2.00 Unified : Plasticity COLTO (Unified Soil Classification) 37 88 mean US drk Brown Poorly graded 1.2-1.9 1881/6 100 84 44 30 20 10 2.40 23 4 1.9GP/GM/G G8 A-1-a 0 silty/clayey gravel **GRADING ANALYSIS** 106 90 PASSING 1881/6 80 70 PERCENT 60 50 40 CUMULATIVE 30 20 10 ø 0.075 0.425 2.00 13.20 Sieve Size 4.75 19,00 min GENERAL PERFORMANCE AS GRAVEL WEARING COURSE Effective size (mm): <0.075 500 Class D Uniformity co-eff.: 7171 Slippery 400 Curvature co-eff.: 575.4 PRODUKT Good - may be dusty 300 Oversize Index : 0 Class A Class C Class E Erodicle materials 200 Shrinkage Product - 38 Favels SPRINKAGE Grading co-eff. 30.8 100 Class B: Revels and corrugates CBR RESULTS (%) : 0 10 15 25 30 40 45 @ 100% comp. 34 0 5 GRADING COSSFICIENT @ 98% comp. . 27 @ 97% comp. : 24 REMARKS @ 95% comp. , 19 @ 93% comp.: 14 @ 90%.comp. : 9 Soil Mortar Analysis Coarse Sand (<2.0>0.425mm) 9.7% Fine Sand (< 0.425 > 0.075mm) . 10.0% Material < 0.075mm: 10.0% sase note that test results are unly relevent to the sample. sted, which were sampled in accordance with TMHS 1991, and were uncontaminated and IV for leating. Any results may only be reprecised in their entirely win the written consent of Lelaba Lab (Ply) Ltd. and any remarks made lall outside the scope of our Cuality Document. Jayson Wingrove Signature: Technical signatory (Name):

LETABA LAB CBR and Modified A.A.S.H.T.O Density test report Mothod A7 & A8 GIBB ENGINEERING & SCIENCE Date tested: 05-Feb-14 Contract: Petrusburg Doc no: 1881/6(ii) Sample no: 1881/6 Description: TP :3 sampled by lab Maximum dry density = 2043 kg/m³ Optimum moisture content = 9.0 % 2050 2040 2030 2020 2010 S 2000 1990 1980 % Moisture California Bearing Ratio (readings) MOD 20 30 10 G 0.0 3.0 4.0 5.0 Penetration /mml 6.0 1.0 7.0 8.0 9.0 California Bearing Ratio 1,000,0 OBR @ 2.54 mm - - CBP @ 5,08 mm ---- CBR @ 7.52 mm 100.0 8 10.0 1.0 99 101 % Compaction % Compaction 100 98 97 95 93 90 **CBR of 13.344 kN** 34 27 24 19 14 Briquette Info Mod N.R.B. Proc. Dry Density (sg/m²) 2041 1941 1839 Compaction Moisture (%) 8.7 8.6 8.7 99,9% 95.0% 90.0% Compaction (%) 0.49 0.59 0.70 Please note that lest results are only relayable to the sample tested, which were sampled in accordance with 116HS 1991, and were unconfaminated and M for tasking. Any essuits may only be reproduced in their entirety with the written consent of Letaba Lab (Pby Ltd. and any remarks made fail outside the scope of our Quality Document. Technical signatory (Name): Jayson Wingrove Signature:

P.O. Box 22874 Extenses Bloemfontein 158 Lang Street Hilton Park, Unit C4 Bloemfontein 9301 Tel. No: 051 433 4057 Fax: No: 051 433 4236 Cel. No: 084 405 4711

CIVIL ENGINEERING MATERIALS LABORATORY 5
Reg No. 2011/03/1517/23

e-mail: jayson@letabe-lab.co.za

GRAVEL, SOIL AND SAND TEST REPORT **GIBB ENGINEERING & SCIENCE** Doc No: 1881/7(i) Date Sampled Client 29-Jan-14 3 Bermakor park, 52 Roid str. Bloomfortein 9300 Petrusburg Date Tested : 06-Feb-14 Contract TP:4 sampled by lab Description Sieve Analysis Atterbera Description Limits (%) Cumulative percentage passing Classification Grading Modulus Shrinkage (ndex 1998 US. Highway Group Index Liquid Limit Unified Soil E 0 425 0.075 19.0 13.2 53.0 4.75 Sample 2.00 Plasticity (Unified Soil Classification) COLTO 37 88 mean drk Brown Silly/Clayey sand 0.1.8 1881/7 100 98 95 93 46 27 5 sm/sc >G9 A-4 2 0.65 2.3 **GRADING ANALYSIS** 106 90 PASSING 1881/7 80 70 PERCENT 60 50 40 CUMULATIVE 30 20 10 0.075 0.425 2.00 13.20 Sieve Size 4.75 min GENERAL PERFORMANCE AS GRAVEL WEARING COURSE Effective size (mm): <0.075 500 Class D Uniformity co-eff.: 124 Slippery 400 Curvature co-eff.: 0.8 PRODUKT Good - may be dusty 300 Oversize Index : 0 Class A Class C Class E 200 Endote materials Shrinkage Product - 215 Favels SPRINKAGE Grading co-eff 4.4 100 Class B: Revels and corrugates CBR RESULTS (%) : 0 5 10 25 30 40 45 @ 100% comp. 57 0 GRADING COERFICIENT @ 98% comp. . 51 @ 97% comp. : 48 @ 95% comp. 43 REMARKS @ 93% comp : 40 @ 90% comp. : 36 Soil Mortar Analysis Coarse Sand (<2.0>0.425mm) : 2.2% Fine Sand (< 0.425 > 0.075mm) 46.8% Material < 0.075mm : 46.5% sase note that test results are unly relevant to the sample. sted, which were sampled in accordance with TMHS 1991, and were uncontaminated and fit for leating. Any results may only be reprecised in their entirely will the written consent of Letaba Lab (Pty) Ltd. and any remarks made fall outside the scope of our Quality Document. Jayson Wingrove Signature: Technical signatory (Name):

LETABA LAB CBR and Modified A.A.S.H.T.O Density test report Mothod A7 & A8 GIBB ENGINEERING & SCIENCE Date tested: 05-Feb-14 Contract: Petrusburg Doc no: 1881/7(ii) Sample no: 1881/7 Description: TP :4 sampled by lab Maximum dry density = 2045 kg/m³ Optimum moisture content = 8.0 % 2050 2040 Dry Density karmo 2030 2020 2010 2000 1990 9 % Moisture California Bearing Ratio (readings) MOD 20 Not 10 0.0 3.0 4.0 5.0 Penetration (mm) 7.0 8.0 9.0 1.0 2.0 6.0 California Bearing Ratio 1,000,0 OBR @ 2.54 mm - CBP @ 5,08 mm **** CBR @ 7.52 mm 100.0 \$ 10.0 1.0 99 101 % Compaction % Compaction 100 98 97 95 93 90 **CBR of 13.344 kN** 57 51 48 43 40 36 Briquette Info Mod N.R.B. Proc. Dry Density (sg/m²) 2044 1943 1840 7.9 Compaction Moisture (%) 7.9 7.9 100.0% 95.0% 90.0% Compaction (%) 0.87 0.71 1.02 Please note that lest results are only relevant to the sample tested, which were sampled in accordance with TMHS 1991, and were uncontaminated and It for testing. Any results may be reproduced in their entirety with the within consent of Lelaba Lab (Fb) Ltd. and any remarks made fall outside the scope of our Quality Document. Technical signatory (Name): Jayson Wingrove Signature:

P.O. Box 22874 Extenses Bloemfontein 158 Lang Street Hilton Park, Unit C4 Bloemfontein 9301 Tel. No: 051 433 4057 Fax No: 051 433 4236 Cel. No: 084 405 4711

CIVIL ENGINEERING MATERIALS LABORATORY 9313
Reg No. 2011/02/1577/23

e-mail: jayson@letaba-lab.co.za

GRAVEL, SOIL AND SAND TEST REPORT Doc No: 1881/9(i) **GIBB ENGINEERING & SCIENCE** Client Date Sampled 29-Jan-14 3 Bermakor park, 52 Roid str. Bloemfortein 9300 Petrusburg Date Tested : 06-Feb-14 Contract TP:5 sampled by lab Description Sieve Analysis Atterbera Description Limits (%) Cumulative percentage passing Classification Grading Modulus Shrinkage Index 1998 US. Highway Group Index Liquid Limit Unified Soil E 0 425 0.075 19.0 13.2 63.0 4.75 Sample 2.00 Plasticity (Unified Soil Classification) COLTO 37 88 mean drk Fled, Orange 0-2.9 1881/9 100 99 99 97 48 0.56 23 5 sm/sc >G9 A-4 3 2.6 Sitty/Clayey sand **GRADING ANALYSIS** 106 90 PASSING 1881/8 80 70 PERCENT 60 50 40 CUMULATIVE 30 20 10 0.075 0.425 2.00 13.20 Sieve Size 4.75 min GENERAL PERFORMANCE AS GRAVEL WEARING COURSE Effective size (mm): <0.075 500 Class D Uniformity co-eff.; 113 Slippery 400 Curvature co-eff.: 0.9 PRODUKT Good - may be dusty 300 Oversize Index : 0 Class A Class C Class E Erodiole materials 200 Shrinkage Product - 252 Favels SPRINKACK Grading co-eff 1.4 100 Class B: Revels and corrugates CBR RESULTS (%) : 0 10 25 30 40 45 @ 100% comp. : 46 0 GRADING COERFICIENT @ 98% comp. 42 @ 97% comp. : 41 REMARKS @ 95% comp. : 38 @ 93% comp. : 33 @ 90% comp. : 27 Soil Mortar Analysis Coarse Sand (<2.0>0.425mm): 1.7% Fine Sand (< 0.425 > 0.075mm) 48.5% Material < 0.075mm : 48.5% sase note that test results are unly relevent to the sample. ded, which were sampled in accordance with TMHS 1591. and were uncontaminated and IV for leating. Any results may only be reprecised in their entirely win the written consent of Letaba Lab (Pty) Ltd. and any remarks made fall outside the scope of our Cuality Document. Jayson Wingrove Signature: Technical signatory (Name):

LETABA LAB TMH 1:1986 Method A7 & A8 CBR and Modified A.A.S.H.T.O Density test report GIBB ENGINEERING & SCIENCE Date tested: 06-Feb-14 Contract: Petrusburg Doc no: 1881/9(ii) Sample no: 1881/9 Description: TP :5 sampled by lab Maximum dry density = 1906 kg/m³ Optimum moisture content = 8.5 % 1910 1900 1890 1880 1870 1850 1850 % Moisture California Bearing Ratio (readings) MOD 20 Not 10 0.0 4.0 5.0 Penetration (mm) 8.0 9.0 1.0 2.0 3.0 6.0 7.0 California Bearing Ratio 1,000,0 OBR @ 2.54 mm - CBR @ 5,08 mm --- CBR @ 7.52 mm 100.0 B 10.0 1.0 99 101 % Compaction % Compaction 100 98 97 95 93 90 **CBR of 13.344 kN** 46 42 41 38 33 27 Briquette Info Mod N.R.B. Proc Dry Density (sg/m²) 1906 1813 1715 Compaction Moisture (%) 8.4 8.4 8.4 100.0% 95.1% 90.0% Compaction (%) 0.60 0.87 0.71 Please note that lest results are only relevant to the sample tested: which were sampled in accordance with TMHS 1991, and were uncontaminated and hi for testing. Any results may only be reproduced in their entirety with the written consent of Letaba Lab (Pty) Ltd. and any remarks made fall outside the scope of our Quality Document. Technical signatory (Name): Jayson Wingrove Signature:

P.O. Box 22874 Extonweg Bloemfontein

158 Lang Street Hilton Park, Unit C4 Bloemfontein

Tel. No: 051 433 4057 Fax No: 051 433 4236 Cel. No. 084 405 4711

CIVIL ENGINEERING MATERIALS LABORATORY Reg No. 2011/07/577/23

9301

e-mail . jayson@lefaba-lab.co.za

GRAVEL, SOIL AND SAND TEST REPORT Doc No:1881/11(**GIBB ENGINEERING & SCIENCE** Client Date Sampled 29-Jan-14 3 Bermakor park, 52 Roid str. Bloomfontein 9300 Petrusburg Date Tested : 06-Feb-14 Contract TP:8 sampled by lab Description Sieve Analysis Atterbera Description Limits (%) Cumulative percentage passing Classification Grading Modulus Shrinkage (ndex 1998 US. Highway Group Index Liquid Limit Unified Soil 3 E 0 425 0.075 19.0 13.2 4.75 Sample 53.0 2.00 Plasticity (Unified Soil Classification) COLTO 37 88 mean drk Yei, Orange Silty/Clayey 1,8-3,0 1681/1 100 99 98 95 47 0.60 25 4 2.1 sm/sc >G9 A-4 2 sand **GRADING ANALYSIS** 100 90 PASSING 1881/11 80 70 PERCENT 60 50 40 CUMULATIVE 30 20 10 0.075 0.425 2.00 13.20 Sieve Size 4.75 min GENERAL PERFORMANCE AS GRAVEL WEARING COURSE Effective size (mm): <0.075 500 Class D Uniformity co-eff.: 119 Slippery 400 Curvature co-eff.: 0.8 PRODUKT Good - may be dusty 300 Oversize Index : 0 Class A Class C Class E Erodicle materials 200 Shrinkage Product : 199 Favels SPRINKAGE Grading co-eff 1.7 100 Class B: Revels and corrugates CBR RESULTS (%) : 0 10 15 25 30 40 45 @ 100% comp. 51 0 GRADING COERFICIENT @ 98% comp. 46 @ 97% comp.: 44 REMARKS @ 95% comp. : 39 @ 93% comp. : 35 @ 90% comp. : 30 Soil Mortar Analysis Coarse Sand (<2.0>0.425mm) 3.4% Fine Sand (< 0.425 > 0.075mm) 47.6% Material < 0.075mm : 47.3% sase note that test results are unly relevent to the sample. sted, which were sampled in accordance with TMHS 17891, and were uncontaminated and fit for leating. Any results may only be reprecised in their entirely will the written consent of Letaba Lab (Pty) Ltd. and any remarks made fall outside the scope of our Quality Document. Jayson Wingrove Signature: Technical signatory (Name):

LETABA LAB TMH 1;1986 Method A7 & A8 CBR and Modified A.A.S.H.T.O Density test report GIBB ENGINEERING & SCIENCE Date tested: 06-Feb-14 Contract: Petrusburg Doc no: 1881/11(ii) Sample no: 1881/11 Description: TP :8 sampled by lab Maximum dry density = 1993 kg/m³ Optimum moisture content = 7.0 % 2000 1990 1980 Density karing 1970 1960 8 1950 1940 1930 % Moisture California Bearing Ratio (readings) MOD 20 30 10 0.0 2.0 3.0 4.0 5.0 Penetration /mml 8.0 9.0 1.0 6.0 7.0 California Bearing Ratio 1,000,0 OBR Ø 2.54 mm - CBR @ 5,08 mm --- CBR @ 7.52 mm 100.0 B 10.0 1.0 99 101 % Compaction % Compaction 100 98 97 95 93 90 **CBR of 13.344 kN** 51 46 44 39 35 30 Briquette Info Mod N.R.B. Proc Dry Density (sg/m²) 1993 1893 1793 Compaction Moisture (%) 7.0 7.0 7.0 100.0% 95.0% 90.0% Compaction (%) 0.54 0.66 0.79 Please note that lest results are only relevant to the sample tested, which were sampled in accordance with TMHS 1991, and were uncontaminated and It for testing. Any results may be reproduced in their entirety with the within consent of Lelaba Lab (Fb) Ltd. and any remarks made fall outside the scope of our Quality Document. Technical signatory (Name): Jayson Wingrove Signature:

P.O. Box 22874 Extenweg Bloemfontein 158 Lang Street Hilton Park, Unit C4 Bloemfontein 9301 Tel. No: 051 433 4057 Fax No: 051 433 4236 Cel. No: 084 405 4711

CIVIL ENGINEERING MATERIALS LABORATORY 9
Reg No. 2011/03/1577/23

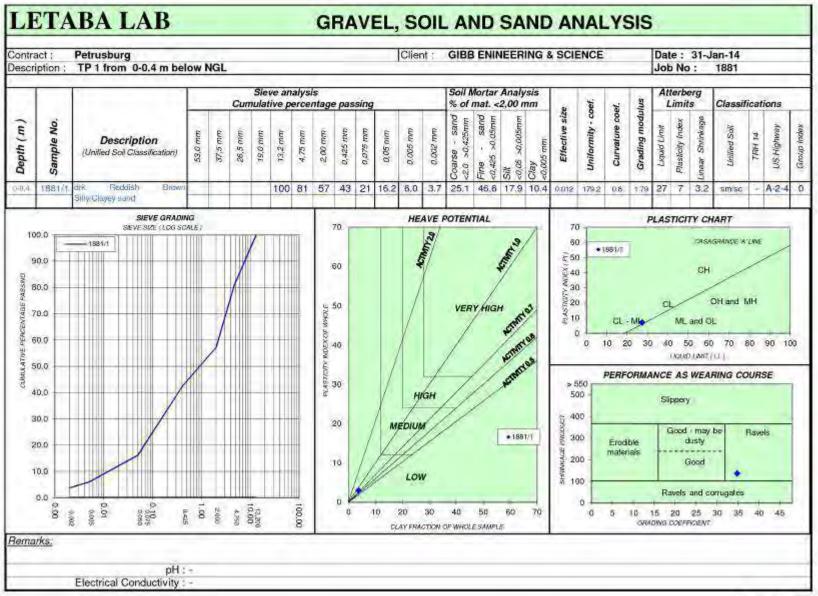
e-mail: jayson@letaba-lab,co,za

GRAVEL, SOIL AND SAND TEST REPORT **GIBB ENGINEERING & SCIENCE** Doc No: 1881/13(| Date Sampled : Client 29-Jan-14 3 Bermakor park, 52 Reid str. Bloemfortein 9300 Petrusburg Date Tested : 06-Feb-14 Contract TP:7 sampled by lab Description Sieve Analysis Atterbera Description Limits (%) Cumulative percentage passing Classification Grading Modulus Shrinkage Index 1998 Highway Group Index Liquid Limit Unified Soil 3 E 0.425 0.075 19.0 13.2 53.0 Sample 4.75 2.00 10 Plasticity (Unified Soil Classification) 37 88 mean 700 US II Brown Silly/Clayey sand 1.9-2.4 1881/13 100 95 91 83 74 53 42 29 15 2.14 23 sm/sc G5 0 1.9 A-1-a **GRADING ANALYSIS** 106 PASSING 1881/13 80 70 PERCENT 60 50 40 CUMULATIVE 30 20 10 ø 0.075 0.425 26,50 37,50 2.00 19,00 Sieve Size 4.75 mm GENERAL PERFORMANCE AS GRAVEL WEARING COURSE Effective size (mm): <0.075 500 Class D Uniformity co-eff. : 6618 Slippery 400 Curvature co-eff.: 31.0 PRODUKT Good - may be dusty 300 Oversize Index : 5 Class A Class C Class E 200 Erodicle materials Shrinkage Product : 56 **Favels** SPRINKACK Grading co-eff 26.0 100 Class B: Revels and corrugates CBR RESULTS (%) : 0 10 15 25 30 40 45 @ 100% comp. 68 0 5 GRADING COSEFICIENT @ 98% comp. - 61 @ 97% comp. 58 @ 95% comp. : 52 REMARKS Please note that this is a calcretic material and was classified as such @ 93% comp. - 50 @ 90% comp. 46 Soil Mortar Analysis Coarse Sand (<2.0>0.425mm): 12.4% Fine Sand (< 0.425 > 0.075mm) 1 14.7% Material < 0.075mm: 14.7% sase nore that test results are unly relevent to the sample i sted, which were sampled in accordance with TMHS 17891, and were uncontaminated and fit for leating. Any results may only be reprecised in their entirely win the written consent of Lelaba Lab (Ply) Ltd. and any remarks made lall outside the scope of our Cuality Document. Jayson Wingrove Technical signatory (Name): Signature:

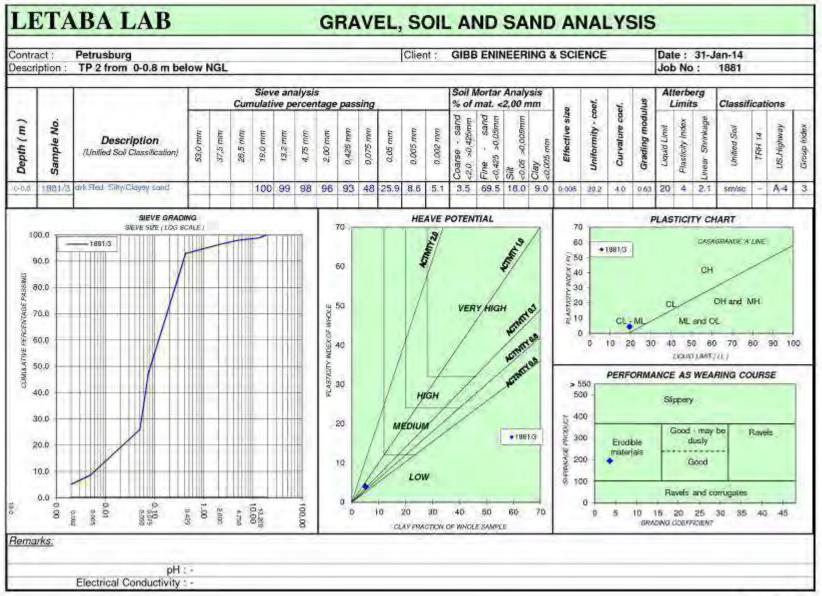
LETABA LAB TMH 1;1986 Method A7 & A8 CBR and Modified A.A.S.H.T.O Density test report GIBB ENGINEERING & SCIENCE Date tested: 05-Feb-14 Contract: Petrusburg Doc no: 1881/13(ii) Sample no: 1881/13 Description: TP :7 sampled by lab Maximum dry density = 1975 kg/m³ Optimum moisture content = 7.3 % 1980 1970 Dry Density kalm3 1960 1950 1940 1930 1920 % Moisture California Bearing Ratio (readings) MOD 20 Not 10 0.0 2.0 3.0 4.0 5.0 Penetration (mm) 8.0 9.0 1.0 6.0 7.0 California Bearing Ratio 1,000,0 OBR @ 2.54 mm - CBR @ 5,08 mm --- CBR @ 7.52 mm 100.0 \$ 10.0 1.0 99 % Compaction % Compaction 100 98 97 95 93 90 **CBR of 13.344 kN** 68 61 58 52 50 46 Briquette Info Mod N.R.B. Proc. Dry Density (sg/m²) 1975 1876 1777 7.2 Compaction Moisture (%) 7.2 7.2 100.0% 95.0% 90.0% Compaction (%) 0.39 0.55 0.71 Please note that lest results are only relevant to the sample tested, which were sampled in accordance with TMHS 1991, and were uncontaminated and if for testing. Any results may be reproduced in their entirety with the written consent of Letaba Lab (Fty) Ltd. and any remarks made fall outside the scope of our Quality Document. Technical signatory (Name): Jayson Wingrove Signature:

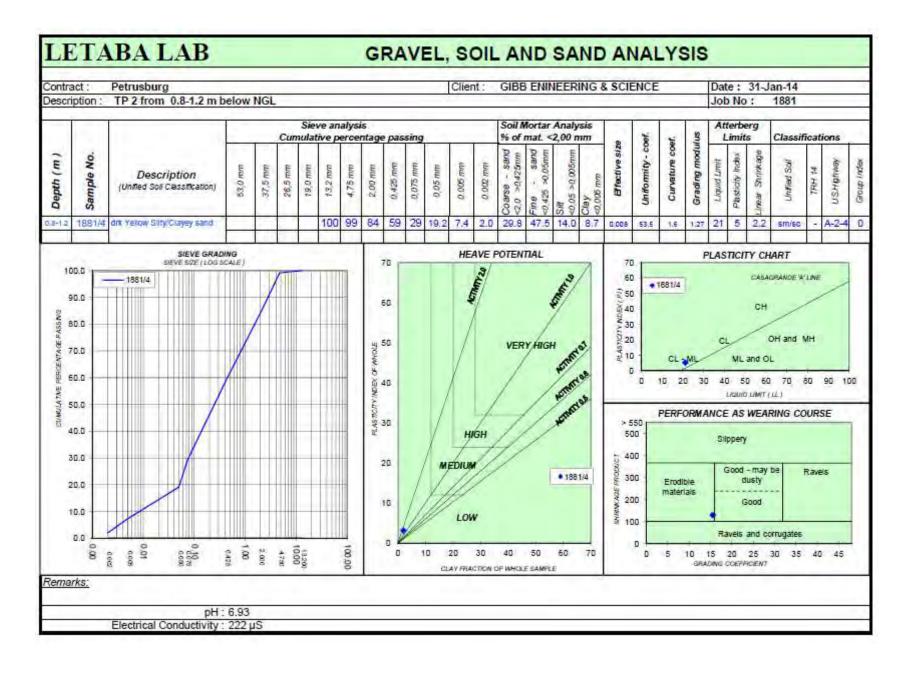
P.O. Box 22874 Extensiveg Bloemfantein 158 Lang Street Hilton Park, Unit C4 Bloemfontein 9301 Tel. No: 051 433 4057 Fax No: 051 433 4236 Cel. No: 084 405 4711

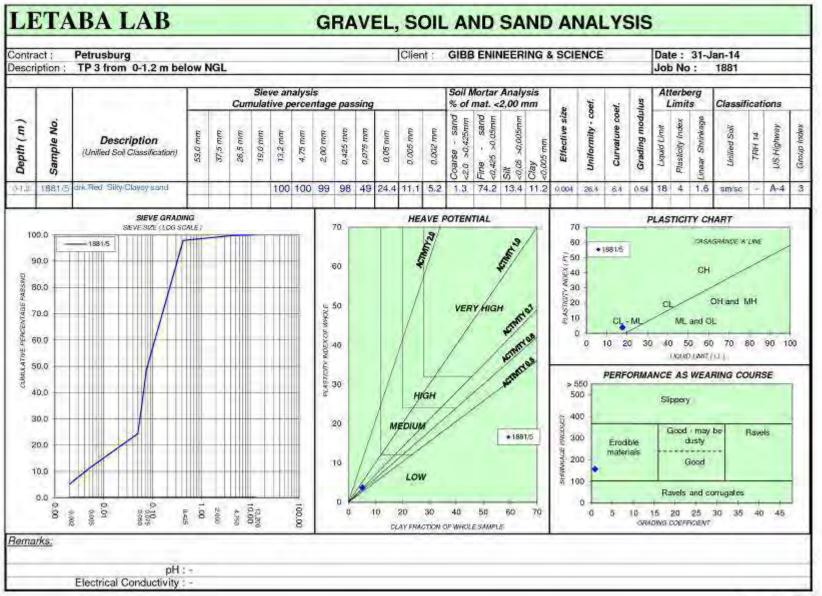
CIVIL ENGINEERING MATERIALS LABORATORY 9313 Reg No. 2011/02/1577/23 e-mail . jayson@letaba-lab.co.za

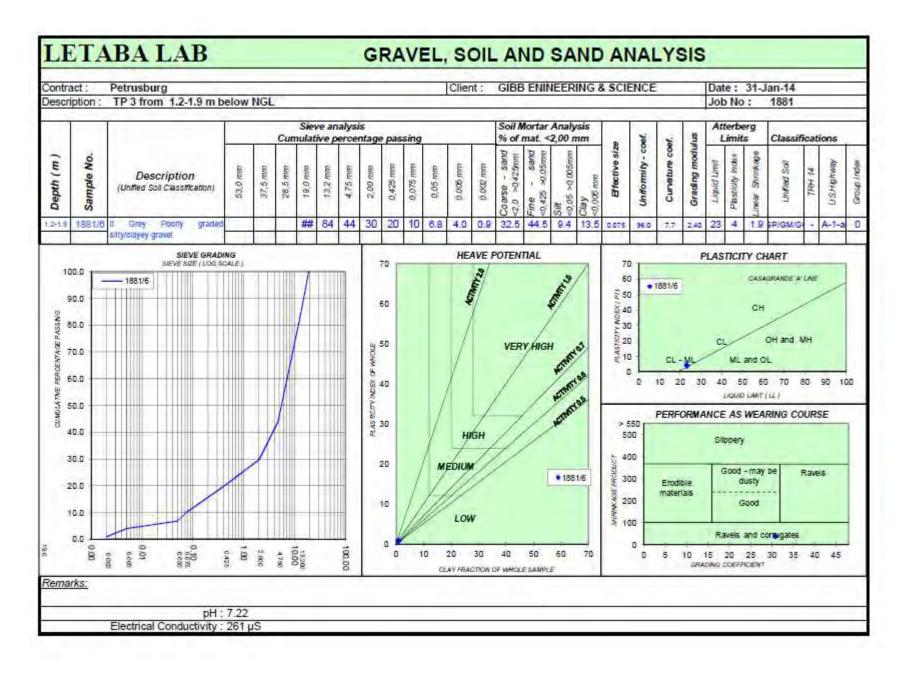

GRAVEL, SOIL AND SAND TEST REPORT **GIBB ENGINEERING & SCIENCE** Doc No: 1881/15(Date Sampled : Client 29-Jan-14 3 Bermakor park, 52 Reid str. Bloemfortein 9300 Petrusburg Date Tested 06-Feb-14 Contract TP:6 sampled by lab Description Sieve Analysis Atterbera Description Limits (%) Cumulative percentage passing Classification Grading Modulus Shrinkage Index 1998 Highway Group Index Liquid Limit Unified Soil E 0.425 0.075 19.0 13.2 53.0 Sample 4.75 2.00 Plasticity (Unified Soil Classification COLTO 37 88 mean US It Fled. Orange Poorly 2,3-2,7 1881/15 100 92 87 77 64 45 21 11 2.22 23 4 G9 A-1-a 0 sp/sm/sc graded silty/clayey sand **GRADING ANALYSIS** 100 PASSING 1881/15 80 70 PERCENT 60 50 40 CUMULATIVE 30 20 10 0.075 0.425 26,50 37,50 2.00 19,00 Sieve Size 4.75 min GENERAL PERFORMANCE AS GRAVEL WEARING COURSE Effective size (mm): <0.075 500 Class D Uniformity co-eff. : 3923 Slippery 400 Curvature co-eff.: 140.1 PROMINET Good - may be dusty 300 Oversize Index : 0 Class A Class C Class E Erodicle materials Shrinkage Product : 45 200 **Favels** SPRINKACK Grading co-eff 29.7 100 Class B: Revels and corruptes CBR RESULTS (%) : 0 10 15 25 30 40 45 @ 100% comp. : 21 0 5 GRADING COEFFICIENT @ 98% comp. : 16 @ 97% comp. : 14 @ 95% camp. . 10 REMARKS Please note that this is a calcretic material and was classified as such @ 93% comp. : 9 @ 90% comp. : 6 Soil Mortar Analysis Coarse Sand (<2.0>0.425mm) : 24.0% Fine Sand (< 0.425>0.075mm) . 10.6% Material < 0.075mm: 10.8% ease note that test results are only relevent to the sample r sted, which were sampled in accordance with TMHS : 1991, and were uncontaminated and IV for leating. Any results may only be reprecised in their entirely will the written consent of Letaba Lab (Pty) Ltd. and any remarks made fall outside the scope of our Country Document. Jayson Wingrove Signature: Technical signatory (Name):

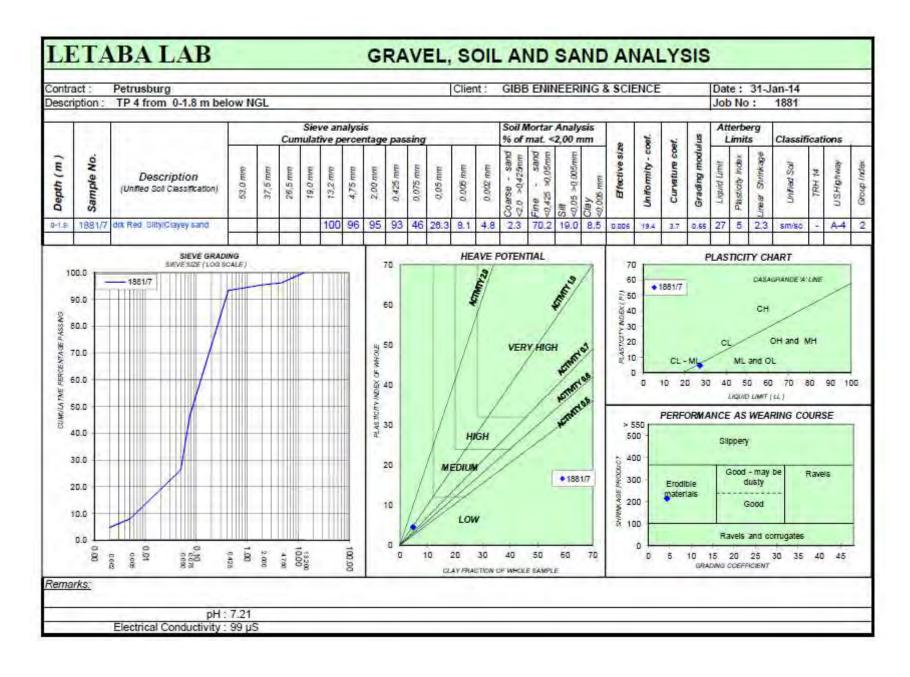

LETABA LAB CBR and Modified A.A.S.H.T.O Density test report Mothod A7 & A8 GIBB ENGINEERING & SCIENCE Date tested: 05-Feb-14 Contract: Petrusburg Doc no: 1881/15(ii) Sample no: 1881/15 Description: TP :6 sampled by lab Maximum dry density = 1710 kg/m³ Optimum moisture content = 9.9 % 1720 1710 Dry Density kalm3 1700 1690 1680 1670 1660 11 % Moisture California Bearing Ratio (readings) MOD 20 Not 10 0.0 1.0 2.0 3.0 4.0 5.0 Penetration /mml 6.0 7.0 8.0 9.0 California Bearing Ratio 1,000,0 OBR @ 2.54 mm - CBR @ 5,08 mm ---- CBR @ 7.52 mm 100.0 \$ 10.0 1.0 99 101 % Compaction % Compaction 100 98 97 95 93 90 **CBR of 13.344 kN** 16 14 10 Briquette Info Mod N.R.B. Proc Dry Density (sg/m²) 1709 1624 1538 Compaction Moisture (%) 9.8 9.8 9.8 100.0% 95.0% 90.0% Compaction (%) 0.63 0.87 0.47 Please note that lest results are only relevant to the sample respect which were sampled in accordance with TMHS 1991, and were uncontaminated and lift for testing. Any results may only be reproduced in their entirety with the written consent of Lelaha Lab (Ph) Ltd. and any remarks made fall outside the scope of our Quality Document. Technical signatory (Name): Jayson Wingrove Signature:

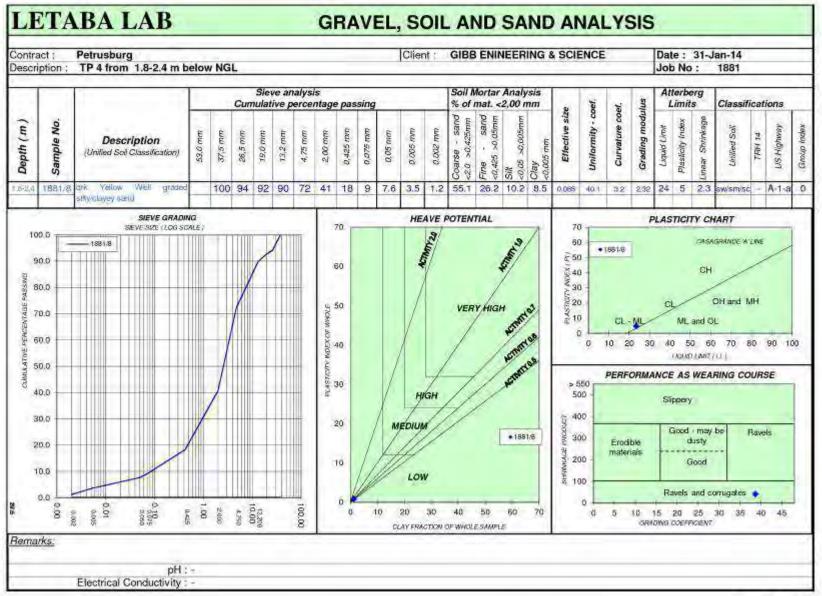

Appendix B

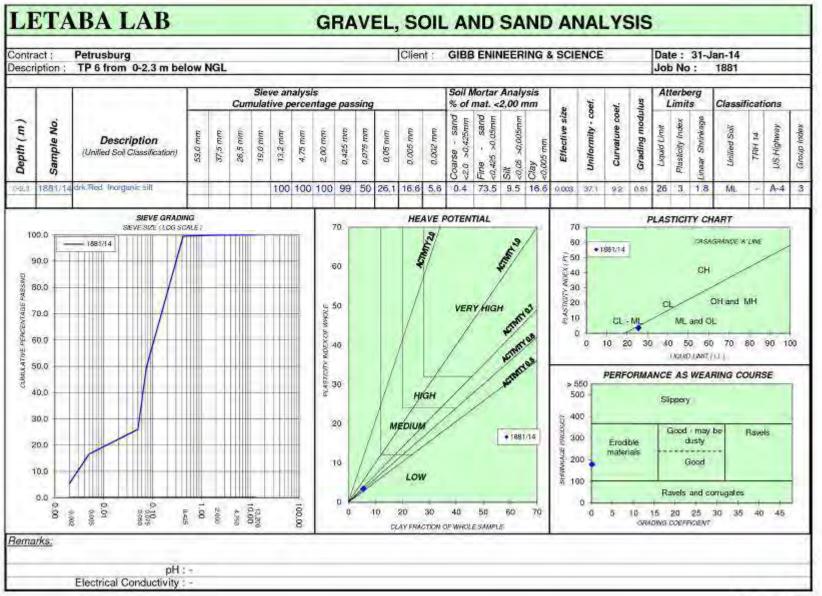

Lab Results

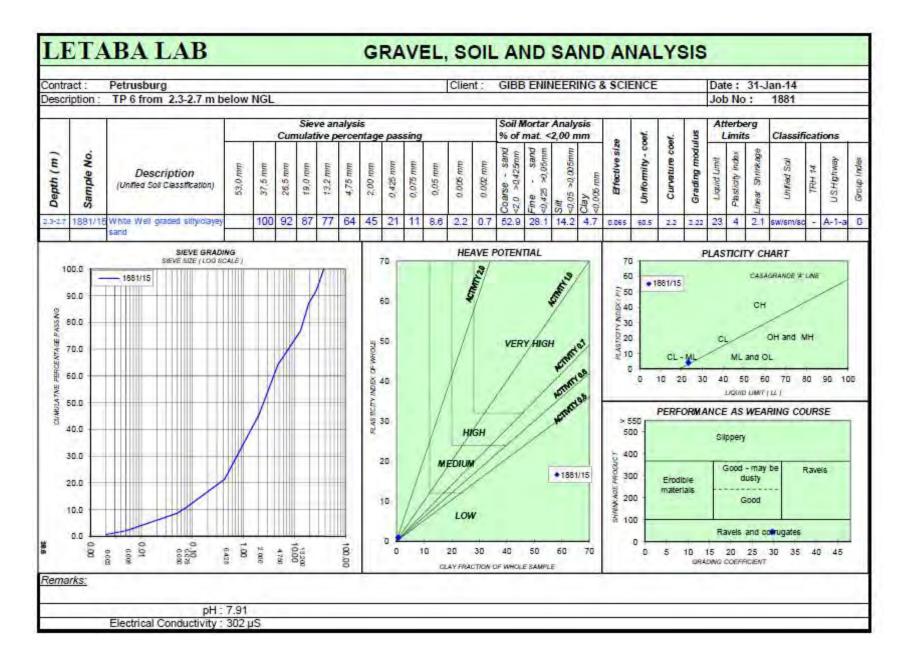

Disturbed Samples

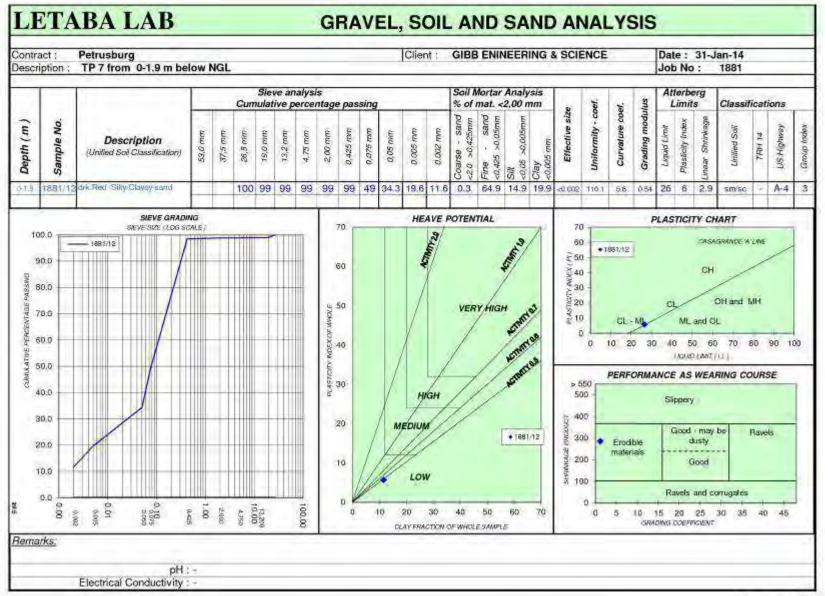


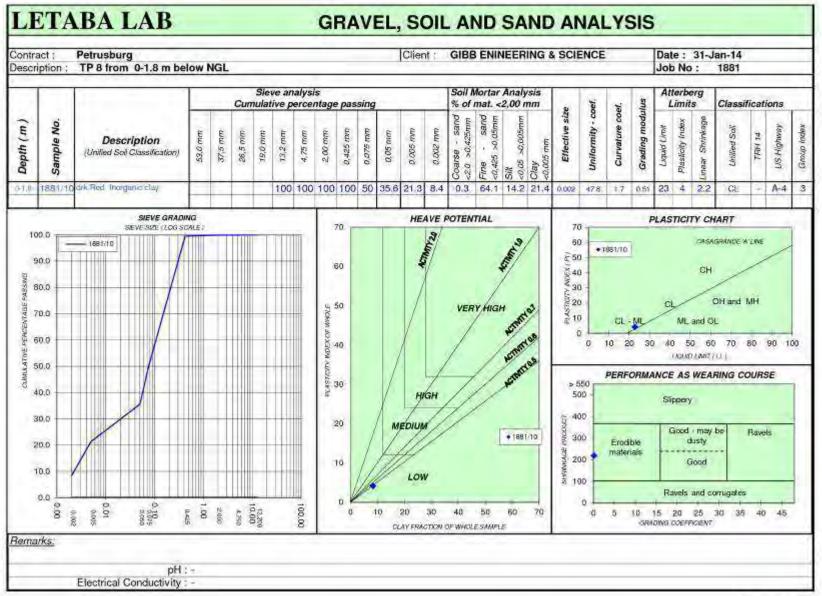


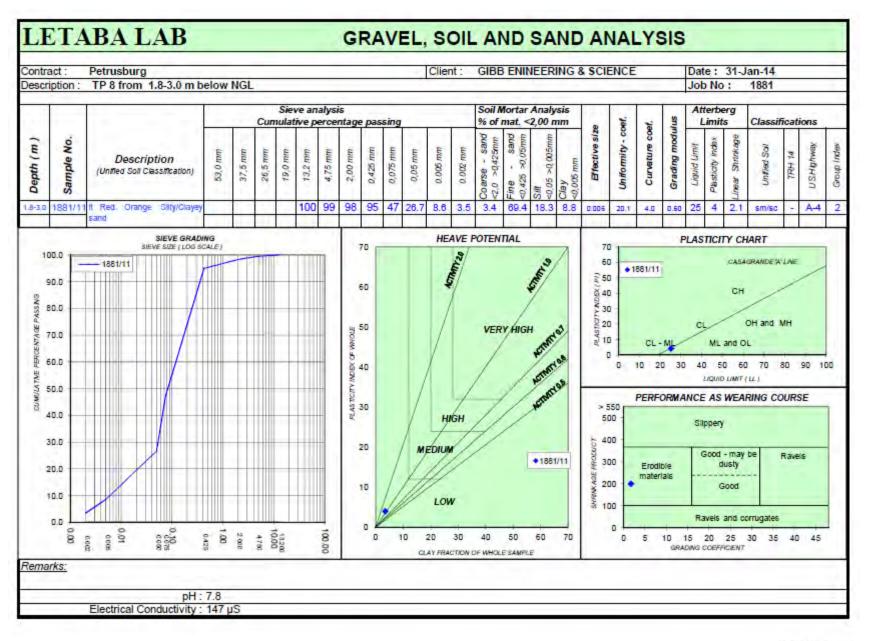












LETABA LAB Pty) Ltd Reg SECTIONIST

TVII. ENGINEERING MATERIALS LABORATORY

• P.O. Box 22874, Exton Road, 9301 • Tel. No: 051 433 4057 • Fax. No: 051 433 4236 • adminibil@letabalab.co.za

			SAM	PLE DATA												SUM	MARY OF	TEST SES	U.S.								
6. 6. 5. 5. 5.			1.31		SEVE ANALYSIS K PASSING											A TYERRURS CONSTANTS			MODER		CIR -		cas (ms/ucq+		STANUED WITH		
ETANCS.	Position	DEPH	SAMPLENO	asid:Prov	210	620	53.0	27.5	16.5	29.0	112	&PK	2.0	0.815	208	α		ıs	GM.	OMC	MUO	COMP MOST	SWEL	ven.	**	90%	п этимовтике
	TP1	0-04	1 001/1	dricreddish Brown siby/dayey sand							100	(0)	57	41	21	27	7	3.2	1.79								
	TP1	0.4-1.15	1 m1/2	drk limsen sity/dayey sand	-67			- 14		100	90	58	42	m	15	26	5	2.8	2.33	5.9	1980	8.5	0.54	23	19	13	
	TP2	0-031	1 001/1	drk Rad sitty/clayey sand						100	39	98	96	93	40	20	4	2.1	0.61				-	-			
	TP2	0.5-1.2	1001/8	drk yel. Orange sility/dayey sand	66				1 1 1	100	100	99	84	59	29	21	5	22	1.27	18.6	2052	1.1	0.55	25	23	16	
	TPS	0-12	1,861/5	drk Red sitty/clayey cand						-1.4	100	100	99	38	49	1,1	4	1.5	0.56					41			
	TPE	12-19	1801/6	drk Brown Poorly graded sitty/clayery gravel.	ca	-			1 = 1	100	iM	64	100	20	10	21	4	1.9	2,4	9	2041	9.7	0.49	19	14	9	
	TPA	0-1.8	1 mt/7	drk Brown sity dayey and	×03						100	96	95	91	46	27	5	2.3	0.65	18	2045	7.9	0.71	43	40	36	
	TPA	15-24	1,861/6	drk.Yellowwell graded stry/clayey sand				100	94	92	90	72	41	35	3	24	5	23	2.32							74	
	TPS	0-2.9	1881/9	drk Red arange sitty/dayey sand	>09	-			1	7	100	99	99	97	All	2.5	5	2.5	0.56	8.5	1906	8.8	0.0	30		27	
	TPG	0-23	Inti/ia	drk Red or gan it sit	-					-	100	100	100	99	50	26	1	1.0	0.51	-	-	-		1.00		7	
	TPG	23-2.7	1001/15	t Red. Crange Poorly goaded sitty dayey sand	(39)		7.7	100	92	107	177	66	45	23	10	20	16	2.1	2.22	99	1710	9,8	0.47	10	9	-5	
	TP7	0-15	1881/12	drk Red sitty/clayey can d					200	99	99	99	99	99	49	26	6	2.9	0.56								
	TRE	19-24	1881/15	it Brown siby/daywy sand	GS		100	25	91	83	74	53	42	29	-15	25	4	1.9	2.16	73	1975	7.2	0.39	52	50	-85	
	TPE	0-10	1881/10	Ork Red inorganic clay						1.1	100	100	100	100	50	23	4	2.2	0.51					2.0	A		
	TPS	15-3.0	1801/11	drk yet. Orange sility/dayey sand	103						100	99	96	95	47	25	· A	2.1	0.0	7	1991	7	0.56	39	35	30	
erage la	itan in kPa, v	obtained at	MOD ASSITO o	ong attion and DMC are shown against the arm unt of	tablishing	Agents.								омсо	od mum li	Malmure (antent,	MOD M	nàmum)	Dry Dens	ey, can				-	_	pressive Strength,

Appendix C

DPL Results

LETABA LAB 👓

P.Cr. Box 22874 Extenses Long Str. 158 Hillon Park Unit G4 Broemfontein, 9300 Tel No: 051 - 433 4057 Fax No: 051 - 433 4236 Cel No: 084 405 4711

CIVIL ENGINEERING MATERIALS LABORATORY 9001

e-mail: jayson@lelabalab.co.za

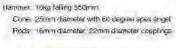
Clent: Gibb Engineering & Science

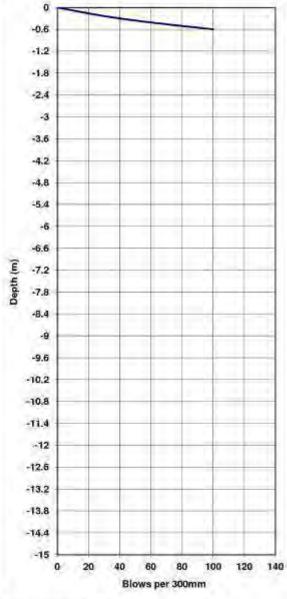
Jab.No. 1881

Contract Petrusburg

Date: 30-tay-2014

Description DPL done from existing ground level


Operator, Letaba Lab


Light Dynamic Penetrometer Probe --

Test No. DPL 1 at TP 1

THE INSITU STRENGTH DEPENDS ON SOIL MOISTURE CONTENT AND SHAIL STRUCTURE WHICH HAVE NOT BEEN ASSESSED AND MAY CHANGE. THE VALUES GIVEN ARE THEREFORE INDICATIVE ONLY AND SHOULD BE VERIFIED BY TEST OR OBSERVATION.

Depth	Blows per 300mm	Interred Consistency	Insitu Shear Strength
0			
0.8	40	Med.Dense	36 deg
0,6	100 ENB	Very Dense	,38 deg

LETABA LAB 👓

Long Str. 158 Hillon Park Unit C4 P.C. Box 22874 Extonweg Bloemfontein, 9300

Tel No: 051 - 433 4057 Fax No: 051 - 433 4236 Cel No: 084 405 4711

CIVIL ENGINEERING MATERIALS LABORATORY 9001

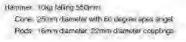
e-mail: jajeon@lekabatao.co.za

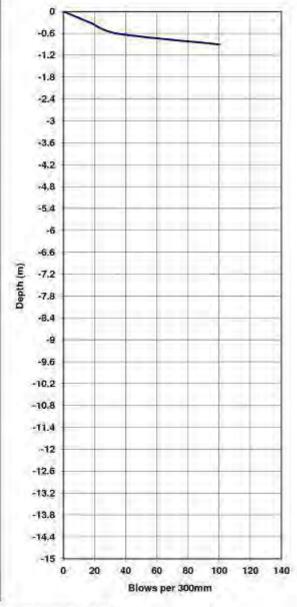
Gibb Engineering & Science Client:

Jab.Nc. 1881

Contract Petrusburg Bate: 30-tan-2014

Description DPL done from existing ground level


Operator, Letable Lab


Light Dynamic Penetrometer Probe --

Test No. DPL 2 at TP 2

THE INSITU STRENGTH DEPENDS ON SOIL MOISTURE CONTENT AND GRAIN STRUCTURE WHICH HAVE NOT BEEN ASSESSED AND MAY CHANGE. THE VALUES GIVEN ARE THEREFORE INDICATIVE ONLY AND SHOULD BE VERIFIED BY TEST OR CESSENVALON.

Depth	Blows per 300mm	Interred Consistency	Insitu Shear Strength
0			
0.8	17	Med.Darso	31 deg
0,6	34	Med Dense	35 deg
0.9	100	Very Demse	-38 deg
	END		

LETABA LAB 👓

P.C. Box 22874 Extonweg

Hammer 10kg falling 550mm

Long Str. 158 Hillon Park Unit C4 Bloemfontein, 9300

Tel No: 051 - 433 4057 Fax No: 051 - 433 4236 Cel No: 084 405 4711

CIVIL ENGINEERING MATERIALS LABORATORY 9001

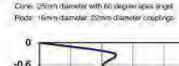
e-mail: jajeon@lekabatao.co.za

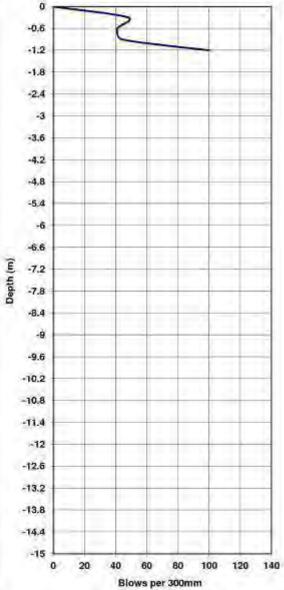
Gibb Engineering & Science Client:

Jab.Nc. 1881

Contract Petrusburg Bate: 30-tan-2014

Description DPL done from existing ground level


Operator, Letable Lab


Light Dynamic Penetrometer Probe --

Test No. DPL 3 at TP 3

THE INSITU STRENGTH DEPENDS ON SOIL MOISTURE CONTENT AND GRAIN STRUCTURE WHICH HAVE NOT BEEN ASSESSED AND MAY CHANGE. THE VALUES GIVEN ARE THEREFORE INDICATIVE ONLY AND SHOULD BE VERIFIED BY TEST OR COSERVATION.

Depth	Blows per 300mm	Interred Consistency	Insitu Shear Strength
0			
0.8	48	Dense	35 glog
0,6	41	Dense	36 deg
0.9	-44	Deose	36 deg
1.2	100	Very Doose	>38 000
	END		

LETABA LAB 👓

P.C. Box 22874 Extorriveg Long Str. 158 Hillon Park Unit G4 Broemfontein, 9300 Tel No: 051 - 433 4057 Fax No: 051 - 433 4236 Cel No: 084 405 4711

CIVIL ENGINEERING MATERIALS LABORATORY 9001

e-mai : japson@lekabatao.co.za

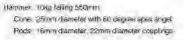
Clent: Gibb Engineering & Science

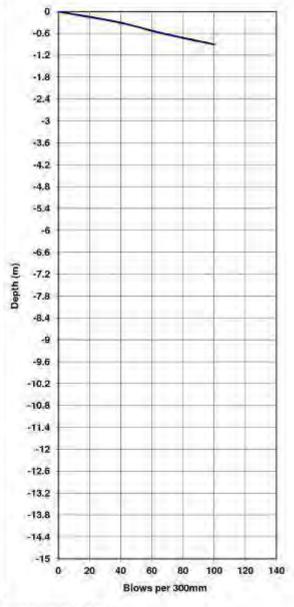
Jab.No. 1881

Contract Petrusburg

Bate: 30-tan-2014

Description DPL done from existing ground level


Operator, Letable Lab


Light Dynamic Penetrometer Probe --

Test No. DPL 4 at TP 4

THE INSITU STRENGTH DEPENDS ON SOIL MOISTURE CONTENT AND STAIN STRUCTURE WHICH HAVE NOT BEEN ASSESSED AND MAY CHANGE. THE VALUES GIVEN ARE THEREFORE INDICATIVE ONLY AND SHOULD BE VERIFIED BY TEST OR OBSERVATION.

Depth	Blows per 300mm	Interred Consistency	Insitu Shee Strength
0			
0.8	39	Med.Dorse	35 geg
0,6	67	Dense	37 deg
0.9	100	Very Deme	:38 deg

LETABA LAB 👓

P.C. Box 22874 Extonweg Long Str. 158 Hilton Park Und G4 Bloemfontein, 9300

Tel No: 051 - 433 4057 Fax No: 051 - 433 4236 Cel No: 084 405 4711

CIVIL ENGINEERING MATERIALS LABORATORY 9001

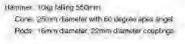
e-mail: jayson@lekabatap.co.za.

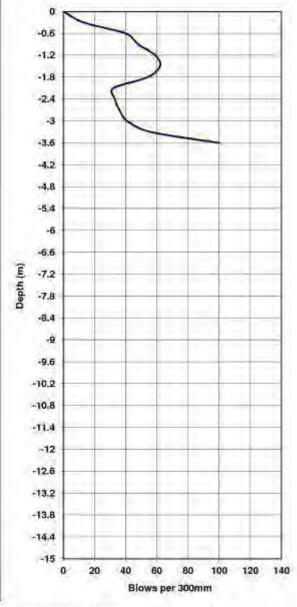
Gibb Engineering & Science Client:

Jab.Nc. 1881

Contract Petrusburg Bate: 30-tary2014

Description DPL done from existing ground level


Operator, Letabs Lab


Light Dynamic Penetrometer Probe --

Test No. DPL 5 at TP 5

THE INSITU STRENGTH DEPENDS ON SOIL MOISTURE CONTENT AND GRAIN STRUCTURE WHICH HAVE NOT BEEN ASSESSED AND MAY CHANGE. THE VALUES GIVEN ARE THEREFORE INDICATIVE ONLY AND SHOULD BE VERIFIED BY TEST OR DESERVATION.

Depth	Blows per 300mm	Interred Consistency	Insitu Shear Strength
0			
0.8	13	Loose	<30 deg
0,6	40	Med.Dense	36 deg
0.9	48	Deose	36 deg
1.2	59	Densé	37 090
1.5	,62	Dense	37 deg
1.8	54	Dense	37 deg
21	82	Med.Dense	35 deg
24	33-	Mod.Danse	35 mag
27	35	Med Dense	35 deg
3	44	Danse	36 deg
33	56	Derne	37 deg
3.6	END	Very Dense	>38 peg

LETABA LAB 👓

P.Cr. Box 22874 Extonweg Long Str. 158 Hillon Park Unit G4 Broemfontein, 9300 Tel No: 051 - 433 4057 Fax No: 051 - 433 4236 Cel No: 084 405 4711

CIVIL ENGINEERING MATERIALS LABORATORY 9001

e-mail: jayson@leksbalab.co.za

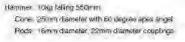
Clent: Gibb Engineering & Science

Jab.Nc. 1881

Contract Petrusburg

Bate: 30-tan-2014

Description DPL done from existing ground level


Operator, Letable Lab


Light Dynamic Penetrometer Probe --

Test No. DPL 6 at TP 6

THE INSITU STRENGTH DEPENDS ON SOIL MOISTURE CONTENT AND GRAIN STRUCTURE WHICH HAVE NOT BEEN ASSESSED AND MAY CHANGE. THE VALUES GIVEN ARE THEREFORE INDICATIVE ONLY AND SHOULD BE VERIFIED BY TEST OR OBSERVATION.

Depth	Blows per 300mm	Interred Consistency	Insitu Shear Strength
0			
0.8	13	Loose	<30 deg
0,6	-41	Dense	36 deg
0.9	47	Deose	36 deg
1.2	57	Dense	37 000
1.5.	65	Dense	37 deg
1.8	48	Dense	38 deg
21	52	Dense	37 deg
24	60	Danse	37 meg
27	100 F00	Mery Dense	-38 deg

LETABA LAB 👓

P.Cr. Box 22874 Extenseg Long Str. 158 Hilton Park Unit G4 Broemfontein, 9300 Tel No: 051 - 433 4057 Fax No: 051 - 433 4236 Cel No: 084 405 4711

CIVIL ENGINEERING MATERIALS LABORATORY 9001

e-mai : jayson@lelabatao.co.za

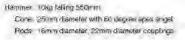
Clent: Gibb Engineering & Science

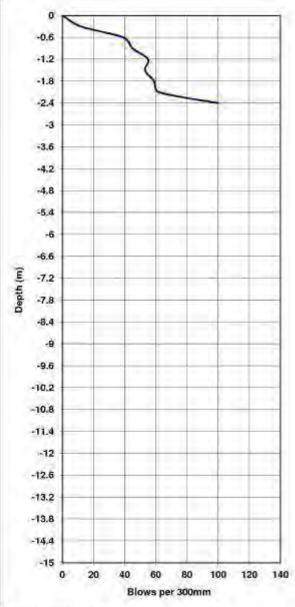
Jab.Nc. 1881

Contract Petrusburg

Bate: 30-tan-2014

Description DPL done from existing ground level


Operator, Letable Lab


Light Dynamic Penetrometer Probe --

Test No. DPL 7 at TP 7

THE INSITU STRENGTH DEPENDS ON SOIL MOISTURE CONTENT AND GRAIN STRUCTURE WHICH HAVE NOT BEEN ASSESSED AND MAY CHANGE. THE VALUES GIVEN ARE THEREFORE INDICATIVE ONLY AND SHOULD BE VERIFIED BY TEST OR OBSERVATION.

Depth	Blows per 300mm	Interred Consistency	Insitu Shea Strength		
0					
0.8	12	Loose	<30 deg		
0,6	39	Med.Dense	36 deg		
0.9	45	Deose	36 deg		
1.2	56	Dense	37 000		
1,5	53	Dense	37 deg		
1.6	59	Dense	37 deg		
21	62	Dense	37 deg		
24	100 END	Very Danse	-38 neg		

LETABA LAB 👓

P.Cr. Box 22874 Extenseg Long Str. 158 Hillon Park Unit G4 Broemfontein, 9300 Tel No: 051 - 433 4057 Fax No: 051 - 433 4236 Cel No: 084 405 4711

CIVIL ENGINEERING MATERIALS LABORATORY 9001

e-mai : jayson@lelabatao.co.za

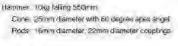
om: Gibb Engineering & Science

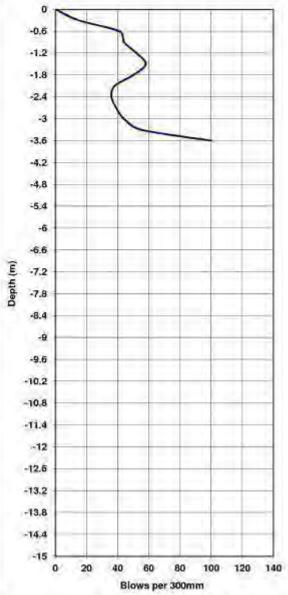
Job.No. 1881

Contract Petrusburg

Bate: 30-tan-2014

Description DPL done from existing ground level


Operator, Letable Lab


Light Dynamic Penetrometer Probe --

Test No. DPL 8 at TP 8

THE INSITU STRENGTH DEPENDS ON SOIL MOISTURE CONTENT AND GRAIN STRUCTURE WHICH HAVE NOT BEEN ASSESSED AND MAY CHANGE. THE VALUES GIVEN ARE THEREFORE INDICATIVE ONLY AND SHOULD BE VERIFIED BY TEST OR OBSERVATION.

Depth	Blows per 300mm	Interred Consistency	Insitu Shear Strength
0.			
0.8	15	Loose	<30 deg
0,6	41	Dense	36 deg
0.9	44	Deose	36 deg
1.2	52	Dense	37 000
1.5	58	Dense	37 deg
1.8	50	Dense	38 øeg
21	38	Mod.Dense	36 deg
24	36	Mod.Dense	35 mag
27	39	Med Dense	35 deg
3	184	Danse	BS deg
33	55	Denne	37 deg
3.6	(00	Very Dense	>38 deg
	END		

