

Works Information

Generation **Tutuka Power Station Engineering**

Title: In line or offline valve components Document Identifier: reconditioning - seat hard-facing weld overlay, or weld overlay on valve bodies and other components Alternative ReferenceN/A during planned outages and normal Number: maintenance at Tutuka **Power Station Works Information**

15ENG GEN-3118

Tutuka Power Station Area of Applicability:

Functional Area: **Engineering**

Revision: 1

21 Total Pages:

Next Review Date: N/A

Disclosure **Controlled Disclosure**

Classification:

Lekgala Mabelane

Turbine Engineer

Compiled by

Date: 13/05/25

Given Mkhonto

Supported by

Boiler Engineer

Date:

Lebogang Ramphago **Turbine Engineering**

Manager

Date:

Functional

Responsibility

Geoff Ledwaba

Authorized by

Engineering Group Manager

Date:

Unique Identifier: 15ENG GEN-3118

Revision: 1

Page: 2 of 21

Content

		Pa	ige						
1.	Intro	oduction	3						
2. Supporting Clauses									
	2.1 Scope								
		2.1.1 Purpose							
		2.1.2 Applicability							
		2.1.3 Effective date	3						
	2.2	Normative/Informative References	3						
		2.2.1 Normative	3						
		2.2.2 Informative	4						
	2.3	Definitions	4						
		1.1.1 Disclosure Classification	4						
	2.4	Abbreviations	4						
	2.5	Roles and Responsibilities	5						
	2.6 Process for Monitoring								
	2.7	Related/Supporting Documents	5						
3.	VAL	VES SCOPE OF WORK	5						
	3.1	HIGH LEVEL SCOPE PER VALVE TYPE	6						
		3.1.1 Parallel slide valves	6						
		3.1.2 Non-Return Valves	7						
		3.1.3 Globe valve	8						
		3.1.4 Gate Valve	8						
		• •							
		·							
	3.2								
		3.2.2 MATERIAL SPECIFICATION:	11						
4.	Acce	eptance	11						
5.	·								
6.	Dev	elopment Team	12						
7.	3.1.5 All types .9 3.1.6 Other components to be refurbished .10 3.2 DATA BOOKS .10 3.2.1 All test certificates .11 3.2.2 MATERIAL SPECIFICATION: .11 Acceptance .11 Revisions .11 Development Team .12								

CONTROLLED DISCLOSURE

Unique Identifier: 15ENG GEN-3118

Revision: 1

Page: 3 of 21

1. Introduction

This document outlines the scope of work that will be executed throughout the duration of the valve service contract. The scope combines the outage/shutdown scope and normal maintenance activities.

2. Supporting Clauses

2.1 Scope

The scope covers all valves which are open for refurbishment during planned outages and during normal maintenance at Tutuka Power Station. The service provider to ensure that reconditioned valve components will not require same reconditioning for 12 years intervals.

- Zero forced shut down for rework after the outage
- Zero trips as a result of outage poor workmanship

2.1.1 Purpose

To propose and approve a contracting strategy for reconditioning of valve components i.e valve seat overlay (re-stelliting) and weld repairs on valve bodies as required during valve refurbishment of all valves at Tutuka Power Station.

2.1.2 Applicability

This document shall apply to Tutuka Power Station valve for in-situ and off-site repairs contract on units 1-6.

2.1.3 Effective date

This document shall be in effect from date of authorization.

2.2 Normative/Informative References

Parties using this document shall apply the most recent edition of the documents listed in the following paragraphs.

2.2.1 Normative

- [1] ISO 3834: Quality requirements for welding
- [2] ISO 9001 Quality Management Systems.
- [3] API 598: Valve Inspection and Testing
- [4] ASME B16.34: Valves Flanged, Threaded, and Welding End
- [5] 240-106628253 Standard for welding Requirements on Eskom plants

Unique Identifier: 15ENG GEN-3118

Revision: 1

Page: 4 of 21

[6] 240-84979413 Maintenance and Repair of High Temperature and High Pressure valves and Fittings standard

- [7] 240-83539994 Standard for Non-Destructive Testing on Eskom plant
- [8] 240-142257054 Technical evaluation standard for the capability Assessment of Service Providers for the Refurbishments of Valves and fittings in Eskom Power Plants
- [9] 240-105020315 Standard for Low Pressure Valves
- [10] 240-84513751 Material Specification and certification Guideline for Power Generation Plant
- [11] 240-86546783 Procurement Standard for Material Certification Requirements Applicable to Metallic Products Used on Low and Medium pressure application

2.2.2 Informative

N/A

2.3 Definitions

N/A

1.1.1 Disclosure Classification

Public domain: published in any public forum without constraints (either enforced by law, or discretionary).

2.4 Abbreviations

Abbreviation	Description
BFPT	Boiler Feedpump Turbine
CRH	Cold re-heat
HRH	Hot-reheat
HP	High pressure
ISO	International Standard Organization
IP	Intellectual Property
IPT	Intermediate pressure turbine
IWT	International Welding Technologist
LP	Low Pressure
NDT	Non-Destructive Testing
NCR	Non-conformance report
OEM	Original Equipment Manufacturer
NRV	Assisted Non Return Valve
PEI	Production Engineering Integration

Unique Identifier: 15ENG GEN-3118

Revision: 1

Page: 5 of 21

PER	Pressure Equipment Regulations
PPE	Personal Protective Equipment
QM	Quality Management
QCP	Quality control plan
QMS	Quality Management System
RH	Re-heater
SANAS	South African National Accreditation System
SANS	South African National Standards
SWL	Safe working load
SOW	Scope Of Work
V/V	Valve

2.5 Roles and Responsibilities

Engineering – compile scope of work/ works information, Inspections

Senior Technologist – Reviews scope of work, conduct Inspections as and when available

Outages - Manages and supervise the contract during outages,

Maintenance – manages, supervises the contractor during normal on load condition, conducts inspections and QC during outages

2.6 Process for Monitoring

Once scope is issued the contractor will provide repair method statement and generate a QCP for each valve or component. Intervention points will be indicated by maintenance, engineering, mechanical QC and welding QC. All intervention points will be adhered to by both contractor and Eskom personnel.

The repairs will only start after method statement and QCP has been accepted.

There will be traceability of all material used, material certificates in accordance with EN10204:2004 to be provided in the data package

2.7 Related/Supporting Documents

N/A

3. VALVES SCOPE OF WORK

Unique Identifier: 15ENG GEN-3118

Revision: 1

Page: 6 of 21

The valve components recondition can be done in-situ or offline depending on the valve size or component to be repaired. The repair evaluation shall be agreed upon between Eskom and Contractor before issuing of method statement.

Maintenance and repair work of High Pressure / High Temperature and General Valves and fittings must adhere to Eskom Standard 240-84979413, Maintenance and Repair of High Temperature and High Pressure valves and Fittings standard.

All welding to be done by following the Eskom Standard 240-106628253, the standard for Welding requirements on Eskom Plant. The service provider or subcontractor shall be ISO 3834 certified. Should the service provider make use of any subcontractor, the responsibility will be for the service provider, to agree on all paperwork, communication and quality of work by the so-called subcontractor. Eskom will not be liable for any damage, loss, poor workmanship nor defects by the subcontractor. Any rework and or repairs by a subcontractor will be for the service provider account.

- Eroded valve body and valve components shall be sent for machining and welding build up repair to original size. This work shall be done according to Eskom welding standard.
- 2. When damages are noted on the spindle, seat, body, stuffing box or body seat and damage cannot be removed or by lapping the seats will be sent for re-stellite. The interfacing components shall be sent together to ensure proper fit after final machining.
- 3. NDT shall be conducted on all valve bodies and components sent for offsite weld overlay or reconditioning. All NDT to comply with Eskom doc 240-83539994 Standard for Non-Destructive Testing (NDT) on Eskom Plant.
- 4. The proposed valve list for repair is on Annexure A

3.1 HIGH LEVEL SCOPE PER VALVE TYPE

- 1. No repairs to be done nor to started until Eskom has received and accepted a method statement and QIP/QCP for the repairs.
- 2. Provide approved welding procedure and all documentation in line with Eskom welding standard
- 3. Each valve must have a detailed QIP/QCP indicating scope of work for specified valve.
- 4. All valves and components to be marked clearly by the service provider
- 5. Contractor to provide pressure test procedure in line with SANS 347 which will be reviewed and accepted by Eskom.

3.1.1 Parallel slide valves

1. Conduct as received dirty inspection and compile an inspection report.

Unique Identifier: 15ENG GEN-3118

Revision: 1

Page: 7 of 21

- 2. Sandblast/sponge blast valve body
- 3. All valves and components to be marked clearly by the service provider
- 4 Measure valve body seat face to face and record. Measure valve discs assembly.
- 5 Conduct a run out on spindle
- 6 NDT shall be conducted on all valve bodies and components sent for offsite weld overlay or reconditioning. All NDT to comply with Eskom doc 240-83539994 Standard for Non-Destructive Testing (NDT) on Eskom Plant.
- 7 Machine off the damage stellite
- 8 Obtain new body seat ring material if body seat damage and cannot be removed by skimming the stellite.
- 9 Conduct blue check of the seal surfaces.
- 10 Conduct pressure test at **1.25 x** the design pressure by an approved inspection authority: Provided that Category I equipment as categorized in terms of SANS 347 may be inspected, tested and witnessed by the user: Provided further that the user may, subject to the written approval of an approved inspection authority, dispense with the internal inspection and hydraulic pressure test where it could have an adverse effect on the operation or integrity of the pressure equipment
- 11 Issue Eskom calibration certificates
- 12 Issue Eskom pressure test report

3.1.2 Non-Return Valves

- 1. Conduct as received inspection and compile inspection report.
- 2. Sandblast/sponge blast valve body
- NDT shall be conducted on all valve bodies and components sent for offsite weld overlay
 or reconditioning. All NDT to comply with Eskom doc 240-83539994 Standard for NonDestructive Testing (NDT) on Eskom Plant.
- 4. Mark the seat ring angle before removing it.
- 5. Measure disc and body seat tilting angles.
- 6. Measure drive sizes of the drive arm and relative clearances.
- 7. Machine off damaged hard facing.
- 8. Obtain new body seat ring material if body seat damage and cannot be removed by skimming the stellite.
- 9. Perform blue check and record seat location on the disc.
- 10. Conduct pressure test at **1.25 x** the design pressure by an approved inspection authority: Provided that Category I equipment as categorized in terms of SANS 347 may be

Unique Identifier: 15ENG GEN-3118

Revision: 1

Page: 8 of 21

inspected, tested and witnessed by the user: Provided further that the user may, subject to the written approval of an approved inspection authority, dispense with the internal inspection and hydraulic pressure test where it could have an adverse effect on the operation or integrity of the pressure equipment

- 11. Issue Eskom calibration certificates
- 12. Issue Eskom pressure test report

3.1.3 Globe valve

- 1. Conduct as received inspection and compile inspection report.
- 2. Sandblast/sponge blast valve body
- NDT shall be conducted on all valve bodies and components sent for offsite weld overlay
 or reconditioning. All NDT to comply with Eskom doc 240-83539994 Standard for NonDestructive Testing (NDT) on Eskom Plant.
- 4. Conduct blue check to record sealing location on the poppet/plug
- 5. Measure and record the following:
 - a) Inner and outer diameter of the sealing surface taper.
 - b) Run out measurements of the spindle.
 - c) body bore.
- 6. Replace damaged components with new/manufactured ones.
- 7. Conduct pressure test at **1.25 x** the design pressure by an approved inspection authority: Provided that Category I equipment as categorized in terms of SANS 347 may be inspected, tested and witnessed by the user: Provided further that the user may, subject to the written approval of an approved inspection authority, dispense with the internal inspection and hydraulic pressure test where it could have an adverse effect on the operation or integrity of the pressure equipment
- 8. Issue Eskom calibration certificates
- 9. Issue Eskom pressure test report

3.1.4 Gate Valve

- 1. Conduct as received inspection and compile inspection report.
- 2. Sandblast/sponge blast valve body
- NDT shall be conducted on all valve bodies and components sent for offsite weld overlay or reconditioning. All NDT to comply with Eskom doc 240-83539994 Standard for Non-Destructive Testing (NDT) on Eskom Plant.

Unique Identifier: 15ENG GEN-3118

Revision: 1

Page: 9 of 21

- 4. Conduct a run out on spindle
- 5. Conduct blue check to record sealing location on the wedge seats.
- 6. Measure and record the following:
 - a) Body seat angle
 - b) Wedge seat angle
 - c) Remove off all stellite to base material if insufficient stellite remaining or severely damaged.
 - d) Re- stellite and ensure interfacing.
- 7. Replace damaged components with new/manufactured ones.
- 8. Conduct pressure test at **1.25 x** the design pressure by an approved inspection authority: Provided that Category I equipment as categorized in terms of SANS 347 may be inspected, tested and witnessed by the user: Provided further that the user may, subject to the written approval of an approved inspection authority, dispense with the internal inspection and hydraulic pressure test where it could have an adverse effect on the operation or integrity of the pressure equipment
- 9. Issue Eskom calibration certificates
- 10. Issue Eskom pressure test report

3.1.5 All types

- 1. Conduct as received inspection and compile inspection report.
- 2. Sandblast/sponge blast valve body
- NDT shall be conducted on all valve bodies and components sent for offsite weld overlay
 or reconditioning. All NDT to comply with Eskom doc 240-83539994 Standard for NonDestructive Testing (NDT) on Eskom Plant.
- 4. Remove damaged hard facing/Stellite
- 5. Replace damaged components with new/manufactured ones.
- 6. Conduct NDT Etching to confirm that all stellite has been removed.
- 7. Conduct liquid penetrant to check area for defects.
- 8. Weld new stellite according to Eskom welding procedure.
- 9. Take measurements on both valve body and discs/seats/wedges.
- 10. Machine the seat to size these sizes must match to OEM sizes as close as possible.
- 11. Lap the valve seats and discs/flap/ poppet.
- 12. Conduct blue check on sealing face.
- 13. Conduct pressure test on (parallel slide shall be test both sides of the seat) this applies to offline/workshop repairs.

Unique Identifier: 15ENG GEN-3118

Revision: 1

Page: 10 of 21

3.1.6 Other components to be refurbished

Individual valve components may require to be refurbished based on the damage noted during inspection.

- 1. Valve body
- 2. Spindle/stem/shaft
- 3. Gland follower
- 4. Stuffing box
- 5. Bonnets
- 6. Studs
- 7. Poppet or plug.

Note:

- The list of valves is not limited to the listed provided.
- List only displays valve DN 100 and larger. Small bore valves are also include in this scope.
- Shell Pressure test shall be done if repairs were conducted on the valve body.

3.2 DATA BOOKS

Each refurbished valve or individual components must have a refurbishment data book. It must include the following as a minimum:

- 1. Method statement/step by step procedure
- 2. Photos before and after repair to indicate valve condition.
- 3. NDE reports
- 4. Visual Inspection reports as listed in SOW
- 5. Calibration certificates.
- 6. Completed check sheets (QCP)
- 7. Material certificates
- 8. Sketch of the repair with final dimensions
- 9. Pressure test procedure for valve body or valve body seat assembly
- 10. Pressure test certificate
- 11. Signed off by AIA, service provider and Eskom.

Unique Identifier: 15ENG GEN-3118

Revision: 1

Page: 11 of 21

3.2.1 All test certificates

1. All valves will be subjected to a required Statutory Hydraulic Pressure Test and must be issued with pressure test certificate to be included in the databook.

- 2. The *works* are to be completed in accordance with the specifications in all respects and ready for take- over by the *Employer's* Representative except for the following work which may be done after the Completion Date, but before the dates stated below which are to be shown on the *Contractor's* program.
- 3. Completion of Documentation on delivery of valves to site.

3.2.2 MATERIAL SPECIFICATION:

- 1. The recommended stellite re-built on high pressure and high temperature valves is stellite 6 unless otherwise stated.
- 2. All materials used must be accompanied by material certificates.

4. Acceptance

This document has been seen and accepted by:

Note: Initials not acceptable

Full Name and Surname	Designation
Lekgala Mabelane	Turbine System Engineer
Marius Prinsloo	Boiler System Engineer
Given Mkhonto	Boiler System Engineer
Armando Mathebula	Valve maintenance Manager
Sinki Seloana	GX Engineering

5. Revisions

Note: Start with the latest Revision History in the first row and go backwards.

Date	Rev.	Compiler	Remarks
April 2025	1	Lekgala Mabelane	New Document

Unique Identifier: 15ENG GEN-3118

Revision: 1

Page: **12 of 21**

Date	Rev.	Compiler	Remarks

6. Development Team

The following people were involved in the development of this document:

Note :To include full name ,surname and designation (nicknames not permitted) $\ensuremath{\text{N/A}}$

7. Acknowledgements(if applicable)

N/A

Unique Identifier:

15ENG GEN-3118

Revision:

1

Page:

Work Package Number	AKZ	Boiler /Turbine	Valve Description	Valve Type	Valve Location Elevation	Valve Size (mm)
2	NB11S001	В	CIRC PMP SUCT V/V	WEDGE	BLR 45M	350
2	NB11S002	В	CIRC WTR P/P OUTL CTRL V/V	GLOBE	BLR 52M	300
2	NB11S003	В	CIRC WTR P/P OUTL V/V	WEDGE	BLR 52M	300
2	NB13S001	В	CIRC SYST B/D Q/DRN A REG V/V	GLOBE	BLR 7M	200/250
2	NB13S002	В	CIRC SYST B/D Q/DRN B REG V/V	GLOBE	BLR 7M	200/250
2	NB13S003	В	B/D VESS REG V/V	GLOBE	BLR 0M	350
2	NB13S004	В	CIRC SYST B/D Q/DRN A IV	WEDGE	BLR 12M	200
2	NB13S005	В	CIRC SYST B/D Q/DRN B IV	WEDGE	BLR 12M	200
2	NB14S001	В	CIRC WTR P/P L/O V/V	WEDGE	BLR 45M	125
2	NB41S101	В	BOILER WARM UP V 1	WEDGE	BLR 57M	150
2	NB41S102	В	BOILER WARM UP V 2	WEDGE	BLR 57M	150
2	NB41S103	В	BOILER WARM UP NRV	WEDGE	BLR 57M	150
2	NV02S001	В	R/HTR S/BLWR IV	WEDGE	BLR 81M	125
2	NV02S101	В	R/HTR S/BLWR IV	WEDGE	BLR 81M	125
2	RA11S001	В	MSSV 1	WEDGE	BLR 63M	250
2	RA12S001	В	MSSV 2	WEDGE	BLR 63M	250
2	RA13S001	В	MSSV 3	WEDGE	BLR 63M	250
2	RA14S001	В	MSSV4	WEDGE	BLR 63M	250
2	RL24S013	Т	FW PMPS DISCH MAIN IV	WEDGE	T -1M	400
4	NW01S001	В	HP BYP 1 SPRW REG V	GLOBE	BLR 63M	80/80
4	NW02S001	В	HP BYP 2 SPRW REG V	GLOBE	BLR 63M	80/80
4	NW03S001	В	HP BYP 3 SPRW REG V	GLOBE	BLR 63M	80/80

Unique Identifier:

15ENG GEN-3118

Revision:

1

Page:

Work Package Number	AKZ	Boiler/ Turbine	Valve Description	Valve Type	Valve Location Elevation	Valve Size (mm)
12	RM18S028	Т	LP HTR 3 FW INL (HTR 1&2 BYP) IV	PARALLEL	T 0M	250
12	RM50S200	Т	COND EMERG MAKEUP CTRL V/V	PARALLEL	T 0M	200
15	RF11S001	Т	HP HTR 5A BSTM V/V	PARALLEL	T 14M	350
15	RF12S005	Т	HP HTR 5B BSTM V/V	PARALLEL	T 14M	350
15	RF21S015	Т	HP HTR 6A BSTM V/V	PARALLEL	T 14M	250
15	RF31S022	Т	HP HTR 6B BSTM V/V	PARALLEL	T 14M	250
15	RH51S002	Т	LPT 1 BSTM TO LP HTR 3 IV	PARALLEL	T 14M	400
15	RH52S005	Т	LPT 2 BSTM TO LP HTR 3 IV	PARALLEL	T 14M	400
15	RH61S008	Т	IPT BSTM TO DST V/V	PARALLEL	T 10M	600
16	NB11S102	В	CIRC WTR P/P OUTL NRV	NRV	BLR 12M	300
16	RF11S008	Т	HP HTR 5A BSTM NRV	NRV	T 14M	350
16	RF12S007	Т	HP HTR 5B BSTM NRV	NRV	T 14M	350
16	RF21S018	Т	HP HTR 6A BSTM NRV	NRV	T 14M	250
16	RF31S025	Т	HP HTR 6B BSTM NRV	NRV	T 14M	250
16	RF41S056	Т	BFPT BLEDSTEAM NRV	NRV	T 14M	450
16	RH51S003	Т	LP HTR 3 BSTM NRV	NRV	T 14M	400
16	RH52S006	Т	LP HTR 3 BSTM NRV	NRV	T 14M	400
16	RH61S011	Т	DST BSTM NRV	NRV	T 12M	600
16	RH61S017	Т	DA BS PIPE NRV	NRV	D 33M	700
16	RL33S028	Т	HP HTR 5B IN L TO 6B INL NRV	NRV	T -1M	250
16	RM16S041	Т	LP HTR 3 OUTL NRV	NRV	T 8	400
16	RP12S009	Т	HP HTR 5A DRN TO DST TNK NRV	NRV	T 0M	250
16	RP22S010	T	HP HTR 5B DRN TO DST TNK NRV	NRV	T 0M	250

Unique Identifier:

15ENG GEN-3118

Revision:

1

Page:

Work Package Number	AKZ	Boiler /Turbine	Valve Description	Valve Type	Valve Location Elevation	Valve Size (mm)
16	RQ54S024	Т	AUX STM TO DA NRV	NRV	D 33M	250
17	RQ52S001	T	BFPT SAE A STM INL IV	PARALLEL	D 33M	100
17	RQ52S002	Т	BFPT SAE B STM INL IV	PARALLEL	D 33M	100
17	RQ53S003	Т	DST INL FROM AUX STM RNG IV	PARALLEL	D 42M	200
17	RQ54S021	Т	AUX STM RNG TO DST CTRL IV	PARALLEL	D 42M	250
17	RQ80S001	Т	AUX STM RNG CLD R/H SUPP MFOLD IV	WEDGE	BLR 26M	250
17	RQ84S001	В	AUX STM RNG CLD R/H SUPP CTRL IV	WEDGE	D 33M	200
17	RQ84S002	В	AUX STM RNG CLD R/H SUPP PRESS CV	WEDGE	D 33M	200
18	RM16S035	Т	LP HTR 3 FW INL IV 2	PARALLEL	T 5M	400
18	RM16S037	Т	LP HTR 3 FW OUTL IV	PARALLEL	T 10M	400
18	RM21S039	Т	LP HTR 3 FW BYP IV	PARALLEL	T 5M	250
18	RM42S168	Т	M CDNS FW TO GSC OUTL RECIRC IV	PARALLEL	T 5M	250
18	RP13S005	Т	HP HTR 6A EMERG DRN BYP IV	PARALLEL	T -1M	250
18	RP21S002	Т	HP HTR 5B DRN IV 1	PARALLEL	T -1M	250
18	RP23S006	Т	HP HTR 6B EMERG DRN IV	PARALLEL	T -1M	250
18	RW11S008	Т	BFPT COND EXTRN PMPS DISCH MOT IV	PARALLEL	T 5M	200
19	RL11S001	Т	EFP A SUCT IV	PARALLEL	T16	400
19	RL11S029	Т	EFP A SUCT BAL IV	PARALLEL	T 8M	100
19	RL11S032	Т	EFP A SUCT DRN TO EXP VES IV	PARALLEL	T16	100
19	RL11S033	Т	EFP A SUCT DRN TO RECOVY IV 1	PARALLEL	T16	100
19	RL11S034	Т	EFP A SUCT DRN IV	PARALLEL	T16	100
19	RL12S002	Т	EFP B SUCT IV	PARALLEL	T16	400
19	RL12S030	Т	EFP B SUCT BAL IV	PARALLEL	T 8M	100
19	RL12S035	Т	EFP B SUCT DRN TO EXP VES IV	PARALLEL	T16	100

Unique Identifier:

15ENG GEN-3118

Revision:

1

Page:

Work Package Number	AKZ	Boiler/ Turbine	Valve Description	Valve Type	Valve Location Elevation	Valve Size (mm)
19	RL12S036	Т	EFP B SUCT DRN TO RECOVY IV 1	PARALLEL	T16	100
19	RL13S003	T	BFPT SUCT IV	PARALLEL	T16	500
19	RL13S031	Т	BFPT SUCT BAL IV	PARALLEL	T 8M	100
19	RL13S038	Т	BFPT SUCT DRN TO EXP VES IV	PARALLEL	T16	100
19	RL13S039	Т	BFPT SUCT DRN TO RECOVY IV 1	PARALLEL	T16	100
19	RL13S040	Т	BFPT SUCT DRN IV	PARALLEL	T16	100
19	RL13S055	Т	BFP A/RHTR ATG SPR HTR NRV	NRV	T 8M	100
19	RL21S007	Т	EFP A DISCH IV	PARALLEL	T 0M	400
19	RL21S037	Т	EFP B SUCT VENT V/V	PARALLEL	T16	100
19	RL21S059	Т	EFP A DISCH L/O CTRL IV	PARALLEL	T 10M	100
19	RL21S063	Т	EFP A DISCH L/O NRV	PARALLEL	T 8M	100
19	RL21S066	Т	EFP A DISCH L/O IV	PARALLEL	T 8M	100
19	RL22S009	Т	EFP B DISCH IV	PARALLEL	T 0M	400
19	RL22S060	Т	EFP B DISCH L/O CTRL IV	PARALLEL	T 10M	100
19	RL22S064	Т	EFP B DISCH L/O NRV	NRV	T 8M	100
19	RL22S068	Т	EFP B DISCH L/O IV	PARALLEL	T 8M	100
19	RL23S011	Т	BFPT DISCH IV	PARALLEL	T 0M	500
19	RL23S061	Т	BFPT DISCH L/O CTRL IV	PARALLEL	T 10M	150
19	RL23S065	Т	BFPT DISCH L/O NRV	PARALLEL	T 8M	150
19	RL23S068	Т	BFPT DISCH L/O IV	PARALLEL	T 8M	150
19	RL25S014	Т	FW PMPS DISCH LOW LD CV A INL IV 1	PARALLEL	T 3M	250
19	RL25S016	Т	FW PMPS DISCH LOW LD CV A	GLOBE	T 3M	250

Unique Identifier:

15ENG GEN-3118

Revision:

1

Page:

19	RL25S017	T	FW PMPS DISCH LOW LD CV B	GLOBE	T 3M	250
19	RL25S018	T	FW PMPS DISCH LOW LD CV A OUTL IV 1	PARALLEL	T 3M	250

Unique Identifier:

15ENG GEN-31

Revision:

18 of 21

1

Page:

Work Package Number	AKZ	Boiler/ Turbine	valve Description	Valve Type	Valve Location Elevation	Valve Size (mm)
19	RL26S015	Т	FW PMPS DISCH LOW LD CV B INL IV 1	PARALLEL	T 3M	250
1 9	RL26S019	Т	FW PMPS DISCH LOW LD CV B OUTL IV 1	PARALLEL	T 3M	250
20	RF41S054	Т	BFPT IP B/STM SUPP IV	PARALLEL	T 14M	450
20	RF51S057	Т	BFPT COLD R/H STM SUPP IV	PARALLEL	T 13M	300
20	RL31S020	Т	HP HTR 5A FW INL IV	PARALLEL	T 0M	275
20	RL31S024	Т	HP HTR 6A FW OUTL IV	PARALLEL	T 0M	275
20	RL32S022	Т	HP HTR 5B FW INL IV	PARALLEL	T 0M	400
20	RL32S026	Т	HP HTR 6B FW OUTL IV	PARALLEL	T 0M	400
20	RN51S020	Т	LP HTR 3 EMERG DRN IV	PARALLEL	T 10M	150
20	RN52S026	Т	LP HTR 3 DRN PMP A DISCH IV	PARALLEL	T 0M	100
20	RN53S027	Т	LP HTR 3 DRN PMP B DISCH IV	PARALLEL	T 0M	100
20	SG01S001	Т	TURB CR/H G/STM SUPP IV	PARALLEL	T 14M	100
20	SG02S002	Т	TURB AUX G/STM SUPP NRV	NRV	T 14M	100
20	SG02S003		TURB AUX G/STM SUPP IV	PARALLEL	T 14M	100
24	RP11S001	Τ	HP HTR 5A DRN IV 1	PARALLEL	T -1M	250
24	RP12S095	Т	DST INL FROM HP HTR 5A	PARALLEL	D33M	250

Unique Identifier:

15ENG GEN-31

Revision:

1

Page:

			IV			
24	RP14S011	Т	HP HTR 6A CASCADE DRN IV	PARALLEL	T OM	200
24	RP14S014	Т	HP HTR 5A CASCADE IV	PARALLEL	T 0M	200
24	RP22S096	Т	DST INL FROM HP HTR 5B IV	PARALLEL	D33M	250
24	RP24S016	Т	HP HTR 6B CASCADE DRN IV	PARALLEL	T OM	200
24	RP24S019	Т	HP HTR 5B CASCADE DRN IV	PARALLEL	T 0M	200
17T	RQ53S006	Т	DST INL FROM AUX STM RNG NRV	PARALLEL	D 33M	200

Unique Identifier:

15ENG GEN-31

Revision:

20 of 21

1

Page:

Valve Location Work Package Boiler/ Valve Size Valve Description Valve AKZ Number **Turbine Elevation** (mm) Type 4 NW04S001 HP BYP 4 SPRW REG V BLR 63M В 80/80 **GLOBE** 10 RF61S029 CLD R/H STM TO DST V/V D 38M Т 400 PARALLEL 10 RH62S018 DA INL 4 FROM BSTM IV D 38M Т 500 PARALLEL D 38M 10 DA INL 3 FROM BSTM IV RH63S021 Т 500 PARALLEL D 38M 10 DA INL 2 FROM LP HTR 3 RM16S042 Т 300 PARALLEL IV 10 RM22S044 DA INL 1 FROM LP HTR 3 D 38M Т 300 PARALLEL IV 10 D 33M SD31S009 BFPT SAE A AIR LINE 2 IV Т 100 PARALLEL 10 D 33M SD31S011 BFPT SAE A AIR LINE 2 Т 100 AIR CV GLOBE D 33M 10 SD33S014 BFPT SAE A AIR LINE 1 IV Т 200 PARALLEL 10 SD33S016 BFPT SAE A AIR LINE 1 D 33M Т 175 GLOBE AIR CV 10 D 33M SD34S013 BFPT SAE B AIR LINE 1 IV Т 200 PARALLEL 10 SD34S015 BFPT SAE B AIR LINE 1 D 33M Т 175 AIR CV GLOBE

Unique Identifier:

15ENG GEN-31

Revision:

Page:

21 of 21

1

10	SD35S010	Т	BFPT SAE B AIR LINE 2 IV	PARALLEL	D 33M	100
10	SD35S012	Т	BFPT SAE B AIR LINE 2 AIR CV	GLOBE	D 33M	100
11	RQ80S102	В	AUX STM RNG MFOLD PRV	WEDGE	B 29M	200/250
12	RM16S018	Т	M CDNS FW TO GSC INL IV	PARALLEL	Т ОМ	400
12	RM16S020	Т	M CDNS FW TO GSC OUTL IV	PARALLEL	T 0M	400
12	RM16S024	Т	M CDNS FW TO DRNS CLR INL IV	PARALLEL	T OM	400