LIGHTNING PROTECTION INSTALLATION

4.(A) GENERAL SPECIFICATION

4.1 SATISFACTORY INSTALLATION

The whole of the installation shall be carried out in accordance with:

- (a) The latest SANS Code of Practice for the Protection of Structures against Lightning SANS 10313; SABS IEC 61024 (1), 61024 (1 -1); SABS IEC 61312 (1); SABS IEC 61662 & NRS 042.
- (b) The KwaZulu-Natal Department of Works General Electrical Specification.
- (c) The Municipal By-Laws and any other special requirements as deemed necessary by the Local Supply Authority;
- (d) Local Fire Regulations.

2. S.A.B.S. APPROVED DRAWINGS

Within 30 days after the Sub-Contractor shall submit to the Departments Representative two complete sets of paper prints bearing the official SANS stamp plus a copy of their certificate indicating that the designs as detailed fully accord with their latest recommendations in terms of the SANS Codes of Practice and Specifications as applicable.

3. TEST ON COMPLETION

Upon completion of the lightning protection system, the following tests shall be witnessed by an appointed representative of the Employer. The results shall be recorded on suitable test certificates which must be signed by both the Contractor and the Employers representative. A sketch must be included on each test certificate indicating the positions of each earth electrode in relation to some permanent reference point. It must also indicate the positions at which tests were carried out, the type of test and the results of these tests.

3.1 Earth Resistance Test

The Earth Resistance Test shall involve measuring the resistance to earth of each rod-type electrode, or group of rod-type electrodes, or trench earth which would normally be connected to one down-conductor or earth terminal. This test must be made with the electrodes completely disconnected from any part of the structure or lightning protection system.

3.2 **Electrical Continuity Tests**

(a) External Down-Conductors

Electrical continuity between the lower ends of external down-conductors which must all be disconnected from the earthing system during the test shall not exceed 1 (one) ohm.

(b) Metallic Services

Electrical continuity between any metallic structures of services (e.g. rainwater pipes) which form an integral part of the lightning protection system shall not exceed 1 (one) ohm. These tests should be carried out with all other components of the lightning protection system disconnected from the component being tested.

4. **DESCRIPTION OF MATERIAL**

4.1 Air Terminals and Down-conductors

All conductors must be in accordance with the requirements of BSS 1474 or American Standards Specification 6063. All aluminium conductors shall have a cross-section area of not less than 30 mm² (domestic dwelling only) or 50 mm² for all other applications. The dimensions of flat section conductors to be 20 mm x 3 mm. Where conductors are mounted in stand-off guides, the cross-section area of the conductor must be not less than 70 mm² to give adequate mechanical strength.

4.2 Conductor Guides

The conductor must be mounted in aluminium alloy guides conforming with the material specification given in 4.1 above. The guides must allow for free longitudinal movement of the conductor to cater for expansion and contraction of the system caused by temperature variation. The minimum thickness of any part of the guide shall not be less than 3 mm. The guides must be securely attached to the structure using two stainless steel screws and plugs, the use of plated screws is not permitted.

The conductor system shall be supported in guides so that an air gap exists at all times between the aluminium and the surface of the structure, the guides being seated upon plastic or other similar insulating material. Should conductors be installed directly upon the surface of concrete or cement plaster, an insulating strip is to be installed over its whole length to prevent contact between the two surfaces. Guides shall be installed to support the conductor at intervals not exceeding 1,2 metres horizontally or 1,5 metres vertically.

<u>N.B.</u>: No part of an aluminium conductor system must be allowed to come into direct contact with concrete or cement plaster as this may cause the aluminium to corrode.

4.3 **Expansion Loops**

Where conductors are installed horizontally without deviation from a straight line over long distances, expansion loops must be provided at distances not exceeding 30 metres. These expansion loops must have a cross-sectional area which is at least equal to that of the conductor.

4.4 Protection of Down-conductors

Note: External down conductors are not to be installed unless specifically stated in the specifications.

Where external down-conductors are installed in areas which are readily accessible to the public, the lower ends of the conductors shall be enclosed in a semi-rigid insulating material. In the case of a circular section conductor this shall comprise a 2 metre length of 20 mm diameter galvanised conduit. This conduit shall be securely attached to the wall by means of galvanized steel saddles fixed with stainless steel screws and plugs, spaced at intervals not exceeding 1 m. Where a flat section conductor is used this shall be covered by a similar length of 25 mm galvanised conduit. The lower end of the conduit shall be positioned as close as practicable to ground level, i.e. immediately above an aluminium to copper joint. The ends of the conduit shall not be sealed by means of coupling and blank stoppers on both ends. A minimum clearance hole is to drilled through each stopper to allow down conductors to be installed.

4.5 **Earthing Electrodes**

Earthing electrodes must consist of either copper-clad steel rods not less than 12 mm in diameter and having a minimum copper thickness of 0,20 mm driven into the ground, or a 50 mm² (35 mm² for domestic dwellings) bare copper conductor buried in a trench, or a combination thereof. Where copper clad steel electrodes are used they must have a suitable bond between the steel core and copper exterior to prevent moisture ingress between the two metals. Where it is necessary to extend earth rods, an electrolytically compatible corrosion resistant, coupling device, which prevents ingress or moisture into the joint shall be used. The copper conductor below the down-conductor joint shall be covered by a semi-rigid P.V.C. conduit for a distance of approximately 200 mm above ground and 400 mm below ground.

4.6 **Joints Above Ground**

Circular section aluminium conductors shall be jointed by aluminium ferrules or lugs which are securely crimped into place. Aluminium lugs must be bolted together using 10 mm diameter aluminium bolts and washers. The material specification for these components must conform with that laid down in paragraph 4.1. Alternatively heavily tinned copper lugs and ferrules may be used. The lugs should be joined together by means of 10 mm diameter copper, brass or bronze bolts and washers. Care should be taken to inhibit corrosion where dissimilar metals are used by thoroughly cleaning the surfaces of the metal before assembly and subsequently sealing the joint with an inert tenacious compound or tape.

Flat section aluminium conductors shall be joined by double riveting, using aluminium rivets which comply with the material specification laid down in 4.1. Alternatively 2 x 6 mm diameter stainless steel bolts, nuts and washers may be used. Fold over type bends will not be permitted.

Down-conductors are to be terminated approximately 200 mm above finished ground level. Circular section aluminium is to be jointed to a 50 mm² (35 mm² in the case of domestic dwellings) stranded copper conductor by securely crimping in place two heavily tinned lugs and bolting these together using 10 mm diameter copper, brass or bronze nuts, bolts and washers.

N.B.: Under no circumstances shall aluminium conductors be buried in the ground.

4.7 **Joints Below Ground**

A joint in the stranded copper conductor which forms part of the earthing system must be made by using a crimped copper ferrule clamping (not lugs) using two copper line taps of suitable dimensions, or exothermic welding. The copper earth conductor must be joined to an earth rod by either clamping, using a standard earth rod clamp or copper line tap or by exothermic welding. Joints which are made between dissimilar metals (i.e. copper conductor to galvanized steel water main), must be thoroughly cleaned before assembly. They shall be rendered watertight using waterproof adhesive tape on a suitable compound for a minimum distance of 200 mm in all directions from the joint.

4.8 **Bonds**

Where it is necessary to bond the aluminium conductor to any other metallic surface, this must be done by bolting or riveting. When attaching aluminium to a dissimilar metal the joints are to be thoroughly cleaned and sealed to prevent corrosion.

5. **GENERAL INSTALLATION PROCEDURE**

5.1 Air Terminals for Non-metallic Pitched Roofs

Aluminium conductors are to be installed along all ridges of roofs and projections such as dormer windows, etc., terminating at the ends with conductors running downwards over the surface of the roof and the eaves. Non-metallic chimneys must be protected by means of a finial of sufficient length to cover the chimney within a 45° angle struck downwards from its point. Alternatively it should have a conductor installed in the form of a closed loop upon the upper surface. The conductors are to follow the outer contour of the stack and must be bonded at a convenient point to the nearest component of the air terminal system.

<u>N.B.</u>: This bond may run in a horizontal or downward direction, but under no circumstances must any part of it run above horizontal.

Conductors may be dead-ended (i.e. have one end free and unbonded), providing that the length of such a conductor does not exceed 10 metres and that the unbonded end is either at the same level or higher than the bonded end. This technique may be used where ridge conductors are installed over dormer windows, etc.

In all cases where metallic gutters have been installed along the eaves of a pitched roof, these must be bonded to the air terminal system. Where metallic gutters do not exist, however, a conductor must be installed over the surface of the roof at eaves level to which the remainder of the air terminal system is to be bonded, with the following exceptions:

- (a) Where the maximum distance from the ground level to the eaves of the building is less than 4 metres and the pitch of the roof is more than 1 in 2 (27° from the horizontal).
- (b) Where the maximum distances from ground level to the eaves is less then 7 metres and the pitch of the roof is more than 1 in 1,5 (34° from the horizontal).
- (c) Where the distance from the ground level to the eaves is more than 7 metres and the pitch of the roof is more than 1 in 1 (i.e. the included angle at the apex of the roof is less than 90°).

Under these circumstances eaves conductors need not be installed.

Any non-metallic objects which protrude above the general roof lines, such as Cape Dutch gable ends, must be protected as described above with a suitable air terminal system. Any metallic objects which protrude above the general roof line, such as hot water expansion pipes must be bonded as directly as possible to the nearest eaves conductor, gutter or other part of the lightning system.

<u>N.B.</u>: These bonding conductors must run in a horizontal or preferably a downward direction, from the vent pipe, etc., to the lightning protection system.

5.2 Air Terminals for Metallic Pitched Roofs

Buildings with roofs covered with electrically continuous metal sheets do not require separate air terminals but must be earthed via down conductors generally as described in 5.6 and 5.7. Any non-metallic objects projecting above the general roof line must be separately protected as described in 5.1 and bonded to the metal roof covering.

5.3 Air Terminals for Non-metallic flat or Mono-pitched Roofs

For flat or mono pitched roofs of non-metallic construction the air terminal system must consist of aluminium alloy conductors installed around the outer perimeter of each section of the roof structure. These conductors must be installed on top of parapet walls if these exist. Lift motor rooms, tank rooms, penthouses, etc., which protrude above the general roof line must have air terminal conductors installed around the outer perimeter of each roof slab or parapet wall. Any metallic objects which protrude above the roof line, such as expansion pipes, signs, flag poles, handrails, etc., must be bonded directly to the nearest component of the lightning protection system as described in 5.1.

<u>N.B.</u>: It is not permissible for the ends of conductors to be bonded directly to the perimeter air terminal system if the latter is installed upon a parapet wall having a height exceeding 500 mm above roof slab level. In these circumstances the conductors are to be bonded directly to the down conductors.

5.4 Air Terminals for Metallic flat or Mono Pitched Roofs

Metallic flat or mono pitched roofs do not require separate air terminal conductors, providing that there is electrical continuity between the metallic roofing sheets, (see 5.2). A metallic roof surrounded by a non-metallic parapet wall shall have conductors installed at the top of the parapet wall and these must be bonded to the metallic roof at intervals not exceeding 20 metres. If the parapet wall is clad with metal over its upper surface or a handrail is installed which affords good electrical continuity, separate air terminal conductors need not be installed. Under these circumstances the metal handrail or cladding must be bonded to the metal roof covering at intervals not exceeding 20 metres.

If a parapet wall is clad with metal over its surface or a handrail is installed which affords good electrical continuity, separate air terminal conductors need to be installed. Under these circumstances the metal handrail or cladding must be bonded to the metal roof covering at intervals not exceeding 20 metres.

All non-metallic covering such as slates, tiles, asbestos cement sheeting, etc., supported by a steel structure being electrically continuous throughout may be treated as being of a complete metal construction. In these circumstances no separate air terminal system need be installed providing the steel roof structure is bonded to earth at intervals given in 5.5.

5.5 **Down Conductors for Non-metallic Structures**

Down conductors must be installed at regular intervals around structures and to run as directly as possible between the air terminal and earthing system. They must, where practicable, be positioned at the external corners of the structure. The maximum separating distance between down conductors around the perimeter of the structure must not exceed 30 metres. In the case of very tall buildings having a slender base (i.e. chimney stacks, water towers, etc.), a minimum of two down conductors must be installed.

The lower ends of down conductors are to be terminated and bonded to the earthing system approximately 200 mm above finished ground level. Under no circumstances must aluminium conductors be buried underground. Test joints must be provided between the down conductors and earthing system. Down conductors must run vertically between the air terminal and earthing systems. Where this is impracticable, their course may be deviated to run at any angle up to and including horizontal.

Where it is necessary to run conductors horizontally over the upper surface of a structural protrusion, such as an exposed concrete slab, the conductor may run down vertically over the edge of the slab and return to the main structure, so that the distance between the upper and lower conductors exceeds one third of the length of the horizontal run. Looped down conductors are not permitted. Down conductors must not run over the underside of large overhangs which are less than 6 metres above ground level, or other areas where people are likely to be present during a thunderstorm.

External or internal metallic rainwater pipes may be used as down conductors providing these are of substantial section and are jointed by screwing one length into another or welding. Thin gauge galvanized steel pipes whose sections are held together by friction, rivets or screws must not form part of a lightning protection system.

5.6 Down conductors for reinforced concrete framed structures

The steel reinforcement of this type of structure may be used in place of down conductors. Where the reinforcing system is used, the air terminal system must be bonded to it at a maximum of 30 metre intervals using steel clamps. This bond may be achieved by clamping, with a steel clamp, a steel conductor to a selected reinforcing bar, the opposite end of this conductor must terminate at a corrosion resistant metallic terminal such as Grade 316 stainless steel.

The reinforcing system of prefabricated concrete buildings must not be used unless special provision is made for bonding the various prefabricated sections together.

The terminals should be mounted flush with the face of the concrete. An aluminium alloy bond must then be taken from the air terminal system and be connected to the stainless steel terminal by means of a heavily tinned crimp lug for circular section aluminium, or a suitable bi-metallic joint in the case of flat section aluminium. A similar system must be used to bond the reinforcing system at ground level to the earthing system at points directly below the air terminal bonds. Here copper conductors must be used as the external bonding material.

Under no circumstances must copper, or other non-ferrous material be allowed to come into contact with steel reinforcing bars, as this may cause severe corrosion and subsequent structural damage. The lightning protection system must not be bonded to any part of the structure which is electrically isolated from the remainder of the building, i.e. cantilevered sections. In these circumstances, or where it is otherwise impracticable to use the reinforcing system, external down conductors must be installed as described in 5.5.

5.7 <u>Down conductors for steel framed structures</u>

Where the framework of a building is constructed of structural steel columns, these may be used in place of down conductors providing the separating distance between them does not exceed 30 metres. The upper ends of the columns must be bonded to the air terminal systems and the lower ends to the earthing system.

5.8 Earthing by means of vertically installed rod type electrodes

Rod-type electrodes must be driven into the ground at a position directly below each down connector. The maximum earthing resistance of each electrode or number of electrodes bonded to any one down conductor shall not exceed N X 30 ohms, where N equals the total number of down conductors which are bonded to a common air terminal system, or 200 ohms whichever is the lower value.

The minimum horizontal separating distance between rod-type electrodes bonded together must not be less than their installed depth.

The upper ends of installed rod-type electrodes are to be terminated approximately 500 mm below finished surface level. A 50 mm² copper bonding conductor must be installed to run between each earthing electrode system and the lower ends of the adjacent down conductors. A joint is to be made between each of these bonding conductors and the down conductors at a position approximately 200 mm above finished ground level. These bonding conductors must be installed in P.V.C. conduit securely affixed to the wall (see 3.4). The length of this P.V.C. conduit must be approximately 600 mm and must be installed so that approximately 200 mm protrudes above ground level, the remainder being buried into the soil.

5.9 Earthing by means of metallic water mains

Where two or three down conductors are installed the water mains may serve as an earth terminal for one of these. Where three of more down conductors are installed the water mains may serve as an earth terminal for two of these. Regardless of whether the water mains are used as an earth terminal or not, the incoming metal water pipe must be bonded to the lightning protection earthing system underground.

5.10 Earthing by means of trench type electrodes

Where the soil conditions prevent the satisfactory installation of rod-type electrodes, a trench earth system must be installed. This method is to comprise a 50 mm² stranded copper conductor installed horizontally into a trench at a depth of 500 mm below finished ground level. The conductor is to follow the general outline of the structure to be protected and be installed 1 metre away from the outside walls. Where the building stands on rocky ground, the trench earth may be attached to the lower part of the wall in areas where rock protrudes through the soil. The conductor must, however, be buried wherever possible as described above.

Each down conductor must be bonded to the trench earth system as directly as possible by means of a copper conductor.

Trench earth systems must have a maximum earth resistance of 30 ohms. An isolated length of trench earth mat must be bonded to the down conductor system in such a way as to reduce the length of dead-ends to the minimum.

Should trench earths be installed beneath pathways where people are likely to be present during a thunderstorm, a plastic, bitumastic or ceramic pipe must be installed having a length similar to the width of the pathway and the trench earth conductor run inside it.

N.B.: The maximum useful length of a dead-ended trench earth is 80 metres.