

Office 128, Level One, Randburg, 2194

Durban:

34 St Andrews Road, Durban North. eThekwini, 4051

Harare.

224 Samora Machel Avenue Eastlea, Harare, Zimbabwe

Witbank, 1035

Cape Town:

Wale Street Chambers, 6th Floor, Church Street Side, Cape Town 8001

info@luhlazaconsulting.co.za

www.luhlazaconsulting.co.za

+27 63 769 4305

+27 63 769 4305

GEOTECHNICAL INVESTIGATION REPORT FOR A PROPOSED NEW MAKHAZA POLICE STATION IN CAPE TOWN.

LC021-23. R01 30 November 2023

jnature
A TON
Canadaute VV
1 . 10
Judido

CONTENTS

1	T	ERMS OF AGREEMENT AND SCOPE OF SERVICES	6
2	С	ODES OF PRACTICE AND STANDARDS	6
3	IN	NFORMATION SOURCES	7
4	D	ESCRIPTION OF THE STUDY AREA	7
5	G	ENERAL GEOLOGY OF THE SITE	9
6	IN	NVESTIGATION ACTIVITIES	10
	6.1	Test Pitting and Profiling	10
	6.2	DCP Testing	11
7	T	OPOGRAPHY	12
8	IN	NVESTIGATION RESULTS	13
	8.1	Soil Profiles	13
	8.2	DCP Test Results	14
9	G	ROUNDWATER	18
10) S	OIL LABORATORY RESULTS	19
11	D	ISCUSSION	21
	11.1	1 Proposed Development	21
	11.2	2 Site Stability	21
	11.3	3 General Earthworks	22
	11.4	The Trenchability/Excavatability on Site	23
	11.5	5 Classification of Material and Recommended Usage	24
	11.6	6 General Subgrade layer works Guidelines	25
	11.7	7 Founding Characteristics of the Site	25
	11.8	8 NHBRC Class Designation	26
	11.9	9 Foundation Recommendations for Structures	27
	1	1.9.1 Reinforced Raft Foundation	27
	11.1	10 Drainage and Stormwater Guidelines	28
12	2 C	ONCLUDING COMMENTS	30

13 REFERENCES
LIST OF FIGURES
Figure 1: Location Map of the proposed Makhaza Police Station highlighted by the red color on the Map8
Figure 2: Overview of site conditions: picture A-B showing overview test pit site, C showing material encountered throughout the site.
Figure 3: Geology Map of the area "3318 Cape Town" highlighted in red, Scale 1:250 000 9 Figure 4: Location of the Field Test Pit and DCP relative to the site
Figure 5: DCP testing conducted on site
LIST OF TABLES
Table 1: Summary of the Test Pit and DCP Positions
Table 3: Preliminary Estimate of Bearing Capacity/Presumed Bearing Pressure (kN/m²). reference
Table 4: Summary of DCP Results
Table 6: Guideline values for interpretation of soil conductivity (Duligal, E., 1996. Significance of Soil Resistivity on Corrosivity. Unpublished report compiled for Africon)
Table 7: Interpretation of conductivity tests (Duligal, E., 1996. Significance of Soil Resistivity on Corrosivity. Unpublished report compiled for Africon)
Table 8: Classification of Material for Machinery Excavation (SANS 1200 D)24 Table 9: Residential Site Class Designations (NHBRC HBM, Part 1, Section 2, Table 1) 26
Table 10: Allowable Bearing Capacity (Meyerhof, 1965 in Look, B, (2008))

LIST OF APPENDICES

TABLE OF ABBREVIATIONS

AASHTO	American Association of State Highway and Transportation
begl	Below existing ground level
CBR	California Bearing Ratio
DCP	Dynamic Cone Penetrometer Test
E	East
GM	Grading Modulus
IMC	Insitu moisture content
kN/m²	Kilonewtons per metre square
kPa	Kilopascals
LL	Liquid Limit
LS	Linear Shrinkage
Luhlaza	Luhlaza Advisory and Consulting Pty Ltd
m	Metre (s)
MDD	Maximum Dry Density
mm	Millimetre
MPa	MegaPascal
mS/m	Millisiemens per meter
No.	Number
N	North
OMC	Optimum Moisture Content
PI	Plasticity Index
SANS	South African National Standards
S	South
TLB	Tractor Loader Backhoe
TP	Test Pits
TRH	Technical Recommendations for Highways (1985)

1 TERMS OF AGREEMENT AND SCOPE OF SERVICES

Luhlaza Advisory and Consulting (Pty) Ltd was requested to carry out a Geotechnical investigation for the proposed new Makhaza Police Station in the Western Cape Province.

Luhlaza has carried out the following:

- a) A site reconnaissance survey.
- b) Excavation of inspection pits dug to 3.0m using hand tools.
- c) Dynamic Cone Penetration (DCP) tests to 3.0m.
- d) Laboratory testing of soil and rock samples.
- e) Preparing a geotechnical report.

The geotechnical report referenced LC021-23. R01 provides the results of the site investigation as well as foundation, slope stability, excavatability, earthworks, groundwater seepage, stormwater drainage and material usage.

2 CODES OF PRACTICE AND STANDARDS

The field investigation and the report were carried out in accordance with the current level of geotechnical standards practiced by professionals in South Africa.

The document referenced for use is "Site Investigation Code of Practice, 1st Edition, South African Institution of Civil Engineering – Geotechnical Division, January 2010".

The nature of geotechnical engineering is such that variations in soil conditions may occur even where sites seem to be consistent. It is essential that all important development stages, including but not limited to excavations, be inspected by a competent person who is suitably skilled and experienced because construction may disclose deviations from what is detailed here. This is to ensure that conditions at variance with those predicted do not occur and to undertake an interpretation of the facts supplied in this report.

It is possible that certain indications of ground stability, contamination, or groundwater levels were latent or otherwise not visible. Opinions are based on what was visible at the time the investigation was conducted.

3 INFORMATION SOURCES

The following maps, plans and shapefiles were available and used in the compilation of this report.

- a) A regional geological map shapefiles titled 3318 Cape Town, prepared by the Council for Geoscience to a scale of 1:250 000.
- b) Low-resolution satellite imagery sourced from Google Earth (2023).

4 DESCRIPTION OF THE STUDY AREA

The project area is located in Makhaza within the City of Cape Town Metropolitan Municipality in the Western Cape Province (Figure 1 and 2). The site comprises of an open field of land and the central coordinates of the site are 34.048346°S and 18.704592°E. The site can be accessed via the M9 Rd, Cekeca Rd and Dibana Road.

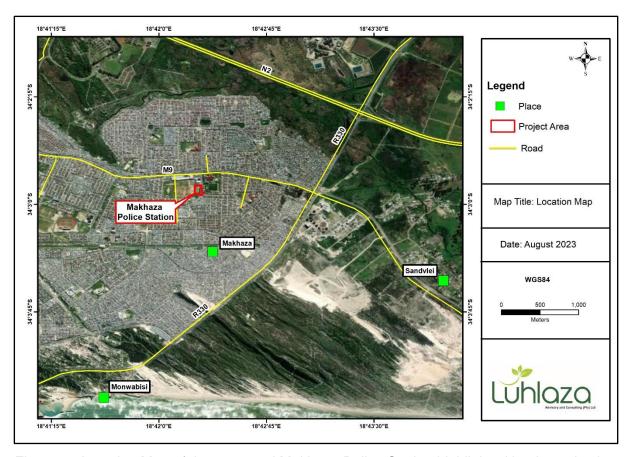


Figure 1: Location Map of the proposed Makhaza Police Station highlighted by the red color on the Map.

Figure 2: Overview of site conditions: picture A-B showing overview test pit site, C showing material encountered throughout the site.

5 GENERAL GEOLOGY OF THE SITE

The geological map "3318 Cape Town" (1:250 000; Figure 3), illustrates that the project area is underlain by generally unconsolidated, calcareous dune sand of the Witzand Formation of the Sandveld Group.

Based on the geology map of the area, the project area is not subject to the formation of sinkholes and subsidence due to the presence of water-soluble rock types (such as dolomite or limestone). The project area is therefore classified as 'non-dolomitic.

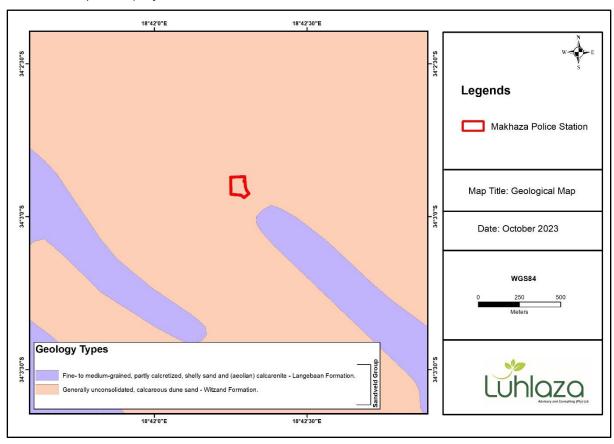


Figure 3: Geology Map of the area "3318 Cape Town" highlighted in red, Scale 1:250 000.

The available geological information does not indicate any geological structures (i.e., faults) in the immediate vicinity of the project area. As such there are no impact of any geological anomalies in the investigation area.

6 INVESTIGATION ACTIVITIES

The site investigation was carried out on the 29th of September 2023, which included:

- a) Excavation of test pits using hand tools.
- b) Dynamic Cone Penetrometer (DCP) testing.
- c) Collection of soil and rock samples for laboratory testing.

6.1 Test Pitting and Profiling

Twenty-two test pits (TP01 to TP22) were excavated at preselected points as indicated in Figure 4. The different soil horizons encountered in the test pits were described using moisture, color, consistency, structure, soil type and origin (MCCSSO classification system), standard descriptors. The test pits were excavated into the weathered bedrock to an approximate depth ranging from 2.5m to 3.0m below existing ground level (begl) (Table 1).

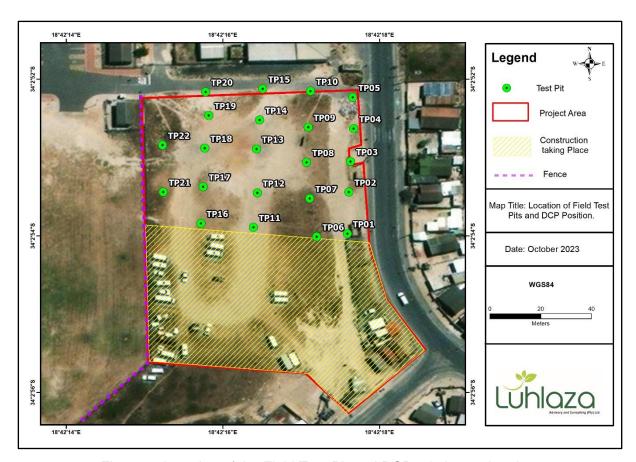


Figure 4: Location of the Field Test Pit and DCP relative to the site.

Table 1: Summary of the Test Pit and DCP Positions.

TP	Latitude (South)	Longitude (East)	Elevation (mamsl)	Depth of TP (m begl)	Depth of DCP (m begl)
01(DCP01)	34°02'53.97"S	18°42'17.59"E	23	3.0	3.0
02(DCP02)	34°02'53.44"S	18°42'17.61"E	23	3.0	3.0
03(DCP03)	34°02'53.05"S	18°42'17.63"E	23	3.0	3.0
04(DCP04)	34°02'52.63"S	18°42'17.67"E	23	3.0	3.0
05(DCP05)	34°02'52.23"S	18°42'17.66"E	23	3.0	3.0
06(DCP06)	34°02'54.01"S	18°42'17.20"E	23	2.5	2.5
07(DCP07)	34°02'53.52"S	18°42'17.11"E	23	2.5	3.0
08(DCP08)	34°02'53.06"S	18°42'17.07"E	23	2.5	2.5
09(DCP09)	34°02'52.61"S	18°42'17.09"E	23	2.5	2.5
10(DCP10)	34°02'52.15"S	18°42'17.12"E	23	2.5	2.5
11(DCP11)	34°02'53.89"S	18°42'16.39"E	23	2.5	2.4
12(DCP12)	34°02'53.45"S	18°42'16.44"E	23	2.5	2.5
13(DCP13)	34°02'52.89"S	18°42'16.43"E	23	2.5	3.0
14(DCP14)	34°02'52.52"S	18°42'16.47"E	23	3.0	3.0
15(DCP15)	34°02'52.07"S	18°42'16.50"E	23	3.0	3.0
16(DCP16)	34°02'53.84"S	18°42'15.72"E	23	2.5	2.5
17(DCP17)	34°02'53.37"S	18°42'15.75"E	23	2.5	3.0
18(DCP18)	34°02'52.88"S	18°42'15.77"E	23	3.0	3.0
19(DCP19)	34°02'52.46"S	18°42'15.82"E	23	3.0	3.0
20(DCP20)	34°02'52.01"S	18°42'15.81"E	23	3.0	3.0
21(DCP21)	34°02'53.44"S	18°42'15.24"E	23	2.5	2.5
22(DCP22)	34°02'52.84"S	18°42'15.23"E	23	2.5	2.5

The test pits were profiled in accordance with the South African Geoterminology Guidelines (Brink and Bruin, 2002). The test pit profiles are provided in Appendix A.

6.2 DCP Testing

A DCP test was carried out in order to determine the consistency of the respective soil horizons (Figure 5). At each test pit a DCP test was conducted in proximity of the pit. In total twenty-two (22) DCP tests were conducted at preselected points (Table 1).

Figure 5: DCP testing conducted on site.

The DCP tests extended to an approximate depth ranging from 2.4 to 3.0m. The DCP test results are provided in Appendix B.

The co-ordinates of the test pits and DCP were recorded using the handheld GPS device "Garmin GPS Map 62". Table 1 above provides a summary of the test pit and DCP positions.

7 TOPOGRAPHY

The elevation of the investigated area (Figure 6) is generally characterised by a gentle slope with a minimum and maximum elevations of 22m and 23m above mean sea level (AMSL) respectively.

Figure 6: A topographical cross section of the site from east to west direction Google Earth Maps.

8 INVESTIGATION RESULTS

8.1 Soil Profiles

The test pit positions investigated (Figure 4 and Table 1) comprised of transported material and alluvium. The material profiled is briefly discussed below and summarised in Table 2.

- a) **Transported Material** Material may be described as Slightly moist, pale red brown, loose, fine grained, silty SAND with fine grass roots, pebbles and sea debris. The transported material was encountered in all test pits and it extended to an approximate depth ranging from 0.3m to 0.4m begl. (Refer to test pit profiles for detailed descriptions in Appendix A).
- b) **Alluvium -** Material may be described as slightly moist to wet, light brown to white, fine grained, silty SAND with minor pebbles and sea debris The sand material was

encountered in all test pits and it extended to an approximate depth ranging from 2.5m to 3.0m begl. (Refer to test pit profiles for detailed descriptions in Appendix A).

Table 2: Summary of the depths of the various layers encountered during profiling.

Test Pit	Latitude (South)	Longitude (East)	Elevation (mamsl)	Transported	Alluvium (dry)	Alluvium (wet)
TP01	34°02'53.97"S	18°42'17.59"E	23	0 - 0.4	0.4 - 1.4	1.4 - 3.0
TP02	34°02'53.44"S	18°42'17.61"E	23	0 - 0.3	0.4 - 1.4	1.4 - 3.0
TP03	34°02'53.05"S	18°42'17.63"E	23	0 - 0.4	0.4 - 1.4	1.4 - 3.0
TP04	34°02'52.63"S	18°42'17.67"E	23	0 - 0.4	0.4 - 1.4	1.4 - 3.0
TP05	34°02'52.23"S	18°42'17.66"E	23	0 - 0.3	0.4 - 1.4	1.4 - 3.0
TP06	34°02'54.01"S	18°42'17.20"E	23	0 - 0.3	0.4 - 1.4	1.4 - 2.5
TP07	34°02'53.52"S	18°42'17.11"E	23	0 - 0.4	0.4 - 1.4	1.4 - 3.0
TP08	34°02'53.06"S	18°42'17.07"E	23	0 - 0.3	0.4 - 1.4	1.4 - 2.5
TP09	34°02'52.61"S	18°42'17.09"E	23	0 - 0.4	0.4 - 1.4	1.4 - 2.5
TP10	34°02'52.15"S	18°42'17.12"E	23	0 - 0.3	0.4 - 1.4	1.4 - 2.5
TP11	34°02'53.89"S	18°42'16.39"E	23	0 - 0.3	0.4 - 1.4	1.4 - 2.5
TP12	34°02'53.45"S	18°42'16.44"E	23	0 - 0.4	0.4 - 1.4	1.4 - 2.5
TP13	34°02'52.89"S	18°42'16.43"E	23	0 - 0.3	0.4 - 1.4	1.4 - 2.5
TP14	34°02'52.52"S	18°42'16.47"E	23	0 - 0.4	0.4 - 1.4	1.4 - 3.0
TP15	34°02'52.07"S	18°42'16.50"E	23	0 - 0.3	0.4 - 1.4	1.4 - 3.0
TP16	34°02'53.84"S	18°42'15.72"E	23	0 - 0.3	0.4 - 1.4	1.4 - 2.5
TP17	34°02'53.37"S	18°42'15.75"E	23	0 - 0.4	0.4 - 1.4	1.4 - 2.5
TP18	34°02'52.88"S	18°42'15.77"E	23	0 - 0.3	0.4 - 1.4	1.4 - 3.0
TP19	34°02'52.46"S	18°42'15.82"E	23	0 - 0.4	0.4 - 1.4	1.4 - 3.0
TP20	34°02'52.01"S	18°42'15.81"E	23	0 - 0.4	0.4 - 1.4	1.4 - 3.0
TP21	34°02'53.44"S	18°42'15.24"E	23	0 - 0.3	0.4 - 1.4	1.4 - 2.5
TP22	34°02'52.84"S	18°42'15.23"E	23	0 - 0.4	0.4 - 1.4	1.4 - 2.5

8.2 DCP Test Results

The results of the DCP tests are displayed graphically in Appendix B. DCP tests were planned but due to the stiffness of the materials, premature refusal was encountered.

The DCP test results have been summarized for the transported material and alluvial soil. There is no undrained strength for sandy material; however, this can be correlated to the friction angle of sand assuming a cohesion of zero (Table 3 and Table 4). The shear strength of the soil based on the results from the DCP are summarized in Table 4.

Table 3: Preliminary Estimate of Bearing Capacity/Presumed Bearing Pressure (kN/m²). reference

Material	Description	Strength	Presumed Bearing \	/alue
Clay	V. Soft Soft Firm Stiff V. Stiff Hard	0-12 kPa 12-25 kPa 25-50 kPa 50-100 kPa 100-200 kPa > 200 kPa	<25 25-50 50-100 100-200 200-400 >400	
Sands*	V. Loose Loose Med dense Dense V. dense	$\begin{array}{l} D_r < 15\% \\ D_r = 1535\% \\ D_r = 3565\% \\ D_r = 6585\% \\ D_r > 85\% \end{array}$	$\begin{array}{lll} \varphi < 0^{\circ} & < 50 \\ \varphi = 30 35^{\circ} & 50 100 \\ \varphi = 35 40^{\circ} & 100 300 \\ \varphi = 40 45^{\circ} & 300 500 \\ \varphi > 45^{\circ} & > 500 \end{array}$	

Table 4: Summary of DCP Results.

DCP	Soil Horizon	Depth of DCP (m begl)	mm per blow (min – max)	Inferred Consistency	Shear Strength Non- Cohesive Material (°)
DCP01	Transported	0 - 0.4	2 - 3	Loose	30°
	Alluvial (Dry)	0.4 - 1.4	2 - 9	Loose to Medium dense	30° - 35°
	Alluvial (Wet)	1.4 - 3.0	11 - 20	Dense	36° - 38°
DCP02	Transported	0 - 0.3	2 - 3	Loose	30°
	Alluvial (Dry)	0.3 - 1.4	2 - 8	Loose to Medium dense	30° - 35°
	Alluvial (Wet)	1.4 - 3.0	8 - 19	Medium dense to Dense	35° - 37°
DCP 03	Transported	0 - 0.4	2 - 3	Loose	30°
	Alluvial (Dry)	0.4 - 1.4	3 - 7	Loose to Medium dense	30° - 34°
	Alluvial (Wet)	1.4 - 3.0	6 - 20	Medium dense to Dense	33° - 38°
DCP04	Transported	0 - 0.4	2 - 3	Loose	30°
	Alluvial (Dry)	0.4 - 1.4	3 - 6	Loose to Medium dense	30° - 36°
	Alluvial (Wet)	1.4 - 3.0	6 - 20	Medium dense to Dense	33° - 38°

DCP	Soil Horizon	Depth of DCP (m begl)	mm per blow (min – max)	Inferred Consistency	Shear Strength Non- Cohesive Material (°)
DCP05	Transported	0 - 0.3	6 - 8	Medium dense	33° - 35°
	Alluvial (Dry)	0.4 - 1.4	7 - 16	Medium dense - Dense	34° - 37°
	Alluvial (Wet)	1.4 - 3.0	19 - 28	Dense to Very dense	37° - 38°
DCP06	Transported	0 - 0.3	2 - 3	Loose	30°
	Alluvial (Dry)	0.3 - 1.4	2 - 6	Loose to Medium dense	30° - 33°
	Alluvial (Wet)	1.4 - 2.5	7 - 13	Medium dense to Dense	33° - 37°
DCP07	Transported	0 - 0.4	2 - 3	Loose	30°
	Alluvial (Dry)	0.4 - 1.4	2 - 6	Loose to Medium dense	30° - 33°
	Alluvial (Wet)	32° - 37°			
DCP08	Transported	0 - 0.3	2 - 3	Loose	30°
	Alluvial (Dry)	0.3 - 1.4	2 - 6	Loose to Medium dense	30° - 33°
	Alluvial (Wet)	1.4 - 2.5	7 - 16	Medium dense - Dense	34° - 37°
DCP09	Transported	0 - 0.4	2 - 5	Loose to Medium dense	30° - 32°
	Alluvial (Dry)	0.4 - 1.4	3 - 6	Loose to Medium dense	30° - 33°
	Alluvial (Wet)	1.4 - 2.5	7 - 16	Medium dense to Dense	34° - 37°
DCP10	Transported	0 - 0.3	2 - 3	Loose	30°
	Alluvial (Dry)	0.3 - 1.4	2 - 6	Loose to Medium dense	30° - 33°
	Alluvial (Wet)	1.4 - 2.5	7 - 14	Medium dense to Dense	34° - 37°
DCP11	Transported	0 - 0.3	2 - 3	Loose	30°
	Alluvial (Dry)	0.3 - 1.4	2 - 9	Loose to Medium dense	30° - 35°
	Alluvial (Wet)	1.4 - 2.5	9 - 17	Medium dense to Dense	35° - 37°

DCP	Soil Horizon	Depth of DCP (m begl)	mm per blow (min – max)	Inferred Consistency	Shear Strength Non- Cohesive Material (°)
DCP12	Transported	0 - 0.4	2 - 3	Loose	30°
	Alluvial (Dry)	0.4 - 1.4	2 - 9	Loose to Medium dense	30° - 35°
	Alluvial (Wet)	1.4 - 2.5	9 - 18	Medium dense to Dense	35° - 37°
DCP13	Transported	0 - 0.3	2 - 3	Loose	30°
	Alluvial (Dry)	0.3 - 1.4	2 - 6	Loose to Medium dense	30° - 33°
	Alluvial (Wet)	1.4 - 2.5	6 - 19	Medium dense to Dense	33° - 37°
DCP14	Transported	0 - 0.4	2 - 3	Loose	30°
	Alluvial (Dry)	0.4 - 1.4	3 - 9	Loose to Medium dense	30° - 35°
	Alluvial (Wet)	1.4 - 3	9 - 20	Medium dense to Dense	35° - 38°
DCP15	Transported	0 - 0.3	3 - 4	Loose	30°
	Alluvial (Dry)	0.3 - 1.4	3 - 9	Loose to Medium dense	30° - 35°
	Alluvial (Wet)	1.4 - 3	9 - 20	Medium dense to Dense	35° - 38°
DCP16	Transported	0 - 0.3	2 - 3	Loose	30°
	Alluvial (Dry)	0.3 - 1.4	2 - 97	Loose to Medium dense	30° - 35°
	Alluvial (Wet)	1.4 - 2.5	9 - 19	Medium dense to Dense	35° - 37°
DCP17	Transported	0 - 0.4	2 - 3	Loose	30°
	Alluvial (Dry)	0.4 - 1.4	3 - 9	Loose to Medium dense	30° - 35°
	Alluvial (Wet)	1.4 - 2.5	9 - 20	Medium dense to Dense	35° - 38°
DCP18	Transported	0 - 0.3	2 - 4	Loose to Medium dense	30°
	Alluvial (Dry)	0.3 - 1.4	4 - 7	Loose to Medium dense	30° - 34°
	Alluvial (Wet)	1.4 - 3	7 - 21	Medium dense to Dense	34° - 38°

DCP	Soil Horizon	Depth of DCP (m begl)	mm per blow (min – max)	Inferred Consistency	Shear Strength Non- Cohesive Material (°)
DCP19	Transported	0 - 0.3	2 - 4	Loose to Medium dense	30°
	Alluvial (Dry)	0.3 - 1.4	2 - 7	Loose to Medium dense	30° - 32°
	Alluvial (Wet)	1.4 - 3	5 - 23	Medium dense to Dense	32° - 38°
DCP20	Transported	0 - 0.4	2 - 5	Loose to Medium dense	30°
	Alluvial (Dry)	0.4 - 1.4	3 - 8	Medium dense	30° - 35°
	Alluvial (Wet)	1.4 - 3	8 - 19	Medium dense to Dense	36° - 37°
DCP21	Transported	0 - 0.3	2 - 3	Loose	30°
	Alluvial (Dry)	0.3 - 1.4	2 - 9	Loose to Medium dense	30° - 35°
	Alluvial (Wet)	1.4 - 2.5	9 - 19	Medium dense to Dense	35° - 37°
DCP22	Transported	0 - 0.4	3 - 5	Loose to Medium dense	30° - 32°
	Alluvial (Dry)	0.4 - 1.4	3 - 8	Medium dense	30° - 35°
	Alluvial (Wet)	1.4 - 3	8 - 19	Medium dense to Dense	36° - 37°

9 GROUNDWATER

During the investigation, groundwater seepage was encountered in all the test pits excavated on site. It must be noted that groundwater activity is generally expected across the entire site. This will need to be considered during construction.

There is a concern of an elevated groundwater condition and considering that the structures will be submerged in water, it is imperative that adequate construction measures are implemented to ensure the safety of site personnel. It is therefore recommended that the Engineer design appropriate measures for implementation to counteract the potential groundwater activity on site, i.e. subsurface drainage.

10 SOIL LABORATORY RESULTS

The following tests were carried out on insitu soil samples to determine the engineering properties:

- a) Foundation Indicator (Grading Analyses, Atterberg Limits Determination)
- b) California Bearing Ratio (CBR)
- c) Ph and Electric Conductivity
- d) Double Oedometer
- e) Moisture
- f) Maximum Dry Density and Optimum Moisture Content (MDD)
- g) Road Indicators

Table 5: Summary of Laboratory Testing Results

				Dartiala	article Size % Atterberg Limits % Compaction			_	CBR					Classification				Consolidation							Electric							
TP No.	No Depth Descr			Particle	SIZE 7	0	Atteri	berg Liii	IIIS 70	GM	Moisture		ompactio	11			CE	nr.			·				NMC		Soaked			Ph-	al Condu	
11 140.	(m)	on	Clay	Silt	Sand	Grave I	LL	PI	LS	O.III	(%)	IMC(OM C) (%)			98	97	95	93	90	Expansi ve	usc	COLT O	H.R.B	DD (kg/m3)	MC (%)	Ratio	DD (kg/m3)	MC (%)	Ratio	Value	ctivity (mS/m)	
	Alluvial Soils																															
TP1A	0.6-1.0	Alluvium	17.0	33.0	50.0	0.0	20.7	0.0	0.0	0.53	5.8	5.3	1503	0.0	4.0	4.0	3.0	2.0	2.0	1.0	LOW	SM	>G10	A-4	1405.0	3.0	0.9	1392.0	33.3	0.9	7.1	13.3
TP2B	2.0-2.4	Alluvium	14.0	30.0	56.0	0.0	23.4	0.0	0.0	0.6	4.5	5.1	1522	0.0	5.0	4.0	4.0	3.0	3.0	2.0	LOW	SM	>G10	A-4	1392.0	5.6	0.9	1386.0	28.8	0.9	7.7	15.1
TP3C	0.6-1.0	Alluvium	17.0	32.0	48.0	3.0	21.9	0.0	0.0	0.6	5.3	5.5	1555	0.0	4.0	3.0	3.0	2.0	1.0	1.0	LOW	SM	>G10	A-4							8.1	19.9
TP7D	2.0-2.4	Alluvium	12.0	28.0	60.0	0.0	20.7	0.0	0.0	0.8	5.6	5.4	1605	0.0	4.0	4.0	3.0	2.0	2.0	1.0	LOW	SM	>G10	A-4							7.3	20.2
TP8E	0.5-0.9	Alluvium	14.0	34.0	50.0	2.0	23.1	0.0	0.0	0.7	6.1	5.6	1586	0.0	4.0	4.0	3.0	2.0	1.0	1.0	LOW	SM	>G10	A-4							6.9	23.3
TP10F	0.5-0.9	Alluvium	19.0	33.0	48.0	0.0	19.9	0.0	0.0	0.5	6.4	6.1	1622	0.0	6.0	5.0	5.0	4.0	3.0	2.0	LOW	SM	G10	A-4							8.3	16.7
TP11G	1.8-2.2	Alluvium	9.0	18.0	72.0	1.0	23.7	0.0	0.0	0.8	5.9	6.1	1537	0.0	4.0	4.0	3.0	2.0	2.0	1.0	LOW	SM	>G10	A-2-7							7.4	15.5
TP12H	0.6-1.0	Alluvium	19.0	34.0	47.0	0.0	22.3	0.0	0.0	0.6	6.4	6.2	1566	0.0	5.0	4.0	3.0	3.0	2.0	1.0	LOW	SM	>G10	A-4							8.2	18.3
TP17I	1.8-2.0	Alluvium	15.0	28.0	56.0	1.0	19.9	0.0	0.0	0.8	4.8	4.9	1487	0.0	4.0	3.0	3.0	2.0	1.0	1.0	LOW	SM	>G10	A-4							7.8	16.2
TP18J	0.6-0.9	Alluvium	16.0	41.0	43.0	0.0	24.1	0.0	0.0	0.5	5.0	5.5	1582	0.0	5.0	4.0	3.0	2.0	2.0	1.0	LOW	SM	>G10	A-4							6.8	14.1
TP19K	1.6-2.0	Alluvium	16.0	28.0	55.0	1.0	20.6	0.0	0.0	0.6	7.1	6.6	1492	0.0	5.0	5.0	4.0	4.0	3.0	2.0	LOW	SM	G10	A-4							7.4	15.5

LL - Liquid Limit GM - Grading Modulus PI - Plasticity Index

>G10 - COLTO Classification LS - Linear Shrinkage A-2-4 - AASHTO Classification

USC - Unified Soil Classification CBR - California Bearing Ratio SM - Silty Sands.

Based on the Table 5 above, the results indicate the following:

For more accurate identification and classification purposes, Particle size distribution and Atterberg Limits tests were carried out. The results indicate that the sand in the area is non-plastic in nature and the potential expansiveness is therefore very low with a low grading modulus. The materials are therefore considered to be slightly to non-heaving in nature.

The compaction test indicates that the material at site has a maximum dry density ranging between 1487 – 1622kg/m3 at an optimum moisture content ranging between 4.9 – 6.6% with no potential of swelling.

The Unified Soil Classification and AASHTO classification systems classified the material as silty sand (SM) (A-4 and A-2-7) which can be classified as fair to good subgrade material.

The material on site indicates a poor CBR with the value of 2 - 4% at 95% and 1- 3% at 93% MOD AASHTO. Hence, the COLTO classification system classified the material as >G10.

The electrical conductivity and the acidity of the soil influences the aggressiveness of the soil towards buried metallic and cementitious objects. Thus, the alluvial sand samples were collected to determine the aggressiveness of the soil which can affect buried services and concrete foundations. Therefore, the alluvial sands have pH values ranging between 6.8 – 8.3 and an electrical conductivity ranging between 13.3 – 23.3 mS m-1. This indicates that the sands in the area are slightly acidic and corrosive. The materials in the area are regarded as aggressive and will corrode the metallic and cementitious objects even though the pH values are high. Guideline values for interpretation of soil conductivity are presented in Table 6 and Table 7.

Table 6: Guideline values for interpretation of soil conductivity (Duligal, E., 1996. Significance of Soil Resistivity on Corrosivity. Unpublished report compiled for African).

Soil Conductivity (mS/m)	Degree of Corrosiveness
More than 50	Extremely corrosive
25 - 50	Very corrosive
20 - 25	Corrosive
10 - 20	Mildly corrosive
Less than 10	Not generally corrosive

Table 7: Interpretation of conductivity tests (Duligal, E., 1996. Significance of Soil Resistivity on Corrosivity. Unpublished report compiled for Africon).

рН	Degree of Acidity			
< 4.0	Extremely acidic			
4.0 - 5.4	Strongly acidic			
5.5 - 6.4	Moderately Acidic			
6.5 - 7.0	Slightly Acidic			
7.1 - 7.4	Slightly Alkaline			
7.5 - 8.5	Moderately Alkaline			
>8.4	Strongly Alkaline			

The laboratory results are included as Appendix C.

11 DISCUSSION

11.1 Proposed Development

Information supplied to Luhlaza indicates that a new Makhaza Police Station is proposed for site.

Detailed designs of the structures are not known at this stage and it is recommended that this be discussed with a geotechnical specialist once finalized.

11.2 Site Stability

During the site geotechnical investigation, the embankments of test pits were all stable until where ground water was encountered. Ground water seepage was observed in all test pits at the depth of 1.4m and any excavation deeper than 1.0m be battered back to a 1:2 grade slope or be shored.

There is a risk for an elevated groundwater condition on site and adequate engineering measures should be implemented to mitigate these hazards. It is strongly advised that subsurface drainage be implemented along weakly drained areas.

To maintain the stability of the site, it is imperative that adequate site drainage measures are implemented.

The soils on site are considered susceptible to erosion/sloughing by uncontrolled stormwater runoff and it is important that adequate erosion prevention controls are implemented at the site.

It is imperative that all excavations are regularly (daily) inspected and approved by a geotechnical practitioner to detect any potentially unstable areas during the construction phase.

The recommendations given in this report should be followed for the stability assessment to be valid.

Precautionary measures are recommended to ensure that sound development practices appropriate to the site conditions anticipated are adhered to. The information available by the client on the proposed development was used at the time of preparation of this report.

11.3 General Earthworks

Earthwork activities will need to be carried out strictly in accordance with the current SANS 1200 guidelines to ensure safe working procedures and maintain stability of the site.

Where possible, the lowering of ground levels is to be avoided to reduce the risk of encountering problematic shallow groundwater seepage. Where this is not feasible, allowance is to be made for suitable subsoil drainage to engineer's detail.

Placement of fill layers should be undertaken in layers not exceeding 150mm thick. When placed loose, it has to be compacted using suitable compaction plant to achieve 93% of Modified AASHTO maximum dry density. (Engineer may opt for 95% or 98% Modified AASHTO, depending on the proposed designs). If natural ground slopes are steeper than 9 degrees, the fill must be benched into the slope.

Terraces should be graded to direct water away from the fill edges, and small earth bands should be constructed along the crests of fills, to prevent overtopping and erosion of fill embankment slopes.

Acceptance and process density control testing of placed fill material should be undertaken at regular intervals during fill construction as part of process and acceptance quality assurance monitoring.

Regardless of the foundation solutions, an open excavation is likely to be formed to construct the proposed structure. Vertical sidewalls of this excavation are likely to be unstable and will need to be battered back to at least 26° or shored.

Steeper batters can be considered but will need to be inspected and approved by the geotechnical professional on site during construction. Alternatively, excavations will require shoring to engineer's detail particularly where there is groundwater seepage.

Cut and fill slopes should not exceed the recommended slope batters given in TRH9 and TRH10 i.e., cut and fill batters of 26° (1 Vertical in 2 horizontal) in soils.

Workers should not enter any excavations deeper than 1.5m that are not shored or battered back as described above, as sidewalls in the low strength soils resembling those encountered on site will be prone to collapse. All excavations must be inspected daily by a competent person and records must be kept. It remains the responsibility of the Contractor/Developer to comply with the current requirements of the Occupational Health and Safety Act.

11.4 The Trenchability/Excavatability on Site

The excavations have been assessed based on SANS 1200D (Refer to Table 10), DA and DB (Latest version). Based on the results of the field investigation, it is inferred that the subsurface material encountered in TP01 – TP22 classifies as soft excavation down to the final depths of the tests pits (Table 5). Machinery such as TLB can be used on soft excavation. (TP and DCP results, and Appendix D).

Table 8: Classification of Material for Machinery Excavation (SANS 1200 D).

CLASSIFICATION	DESCRIPTION				
Soft	Material which can be efficient removed by a back-acting excavator of fly wheel power > 0,10Kw for each mm of tined bucket width.				
Intermediate	Material which can be removed by a back-acting excavator having fly wheel power > 0,10kW for each mm of tined-bucket width or with the use of pneumatic tools before removal by a machine capable of removing material.				
Hard Rock	Material cannot be removed without blasting or wedging and splitting.				

11.5 Classification of Material and Recommended Usage

The subgrade materials underlying the existing site have been classified in terms of their suitability for use in construction based on the field observations and laboratory testing in accordance with the proposed design.

The sand classifies as A-4 (fair) and A-2-7 (good) which can be classified as fair to good to subgrade material and poor subbase material and not suitable for use as base course in roads pavement layers.

CBR testing shows that the materials have poor properties, and the material has a COLTO classification of >G10.

However, it must be noted that limited samples were extracted for laboratory testing, hence it is recommended that additional testing be carried out on site during construction to confirm the material quality and volumes available.

The above should be used as a guideline only and should be confirmed by further testing on site during construction as part of process and acceptance control monitoring, prior to the material being considered for use in construction.

11.6 General Subgrade layer works Guidelines.

The design of the pavement layer works has not been finalised at time of this report and should be discussed with Luhlaza Advisory and Consulting (Pty) Ltd when available.

The following is a general guideline:

- If materials that are considered to be poor in quality are encountered on site, the material will need to be undercut and replaced by suitable granular material meeting the design engineer's requirements.
- Soils that meet the design engineer's requirements maybe ripped to the specified depth and recompacted to 93% Modified AASHTO maximum dry density to ±2% Optimum Moisture Content (OMC).
- Should the subgrade comprise weathered bedrock, it is recommended that the weathered bedrock be ripped to a minimum depth as prescribed by the engineer and recompacted to at least 93 % Modified AASHTO dry density.
- The pavement formation layer for the proposed roads and parking areas should be designed taking into account anticipated traffic loads, volumes and design life of the parking area and roads.

The COLTO and SANRAL documents are good guidelines to assist with the design of pavements.

11.7 Founding Characteristics of the Site

According to the test pit excavations, the founding conditions encountered on site are inferred to comprise the following:

- a) A variable thickness of silty sand overburden material down to approximate depths in the range 2.4m to 3.0m begl.
- b) Soils that are potentially collapsible by nature.
- c) Soils that are capable of compressional/consolidation movements which may result in significant differential settlements.
- d) Groundwater seepage was encountered in all test pits.

11.8 NHBRC Class Designation

The NHBRC classification for materials underlying the existing site could not be classified during the preparation of this preliminary report due to pending lab results.

The following Table extracted from the Home Building Manual (HBM) of the National Home Builders Registration Council (NHBRC) is used to guide the engineer with the soil properties and expected differential movements beneath the site.

According to guidelines provided in Part 1, Section 2, Table 1 of the HBM of the NHBRC, the following site classes are given for the site:

- P (Colluvium/Fill) Areas underlain by colluvium.
- C2- Areas that are underlain by alluvium (silty sands)

Then the area is classified as P/C2.

Accordingly, the parameters as set down by the NHBRC are given in Table 9.

Table 9: Residential Site Class Designations (NHBRC HBM, Part 1, Section 2, Table 1).

TYPICAL FOUNDING MATERIAL	CHARACTER OF FOUNDING MATERIAL	EXPECTED RANGE OF TOTAL SOIL MOVEMENTS (mm)	ASSUMED DIFFERENTIAL MOVEMENT (% OF TOTAL)	SITE CLASS
Rock (excluding mudrocks which may exhibit swelling to some depth	STABLE	NEGLIGIBLE	-	R
Fine grained soils with moderate to very high plasticity (clays, silty clays, clayey silts and sandy clays)		<7,5 7,5-15 15 - 30 >30	50% 50% 50% 50%	H H1 H2 H3
Silty sands, sands, sandy and gravely soils	COMPRESSIBLE AND POTENTIALLY COLLAPSIBLE SOILS	<5 5-10 >10	75% 75% 75%	C C1 C2
Fine grained soils (clayey silts and clayey sands of low plasticity), sands, sandy and gravely soils	COMPRESSIBLE SOILS	<10 10-20 >20	50% 50% 50%	S S1 S2
Contaminated soils, Controlled fill, Dolomitic areas, Landslip, Landfill, Marshy areas Mine waste fill, mining subsidence Reclaimed areas, Uncontrolled fill, very soft silts/silty clays	VARIABLE	VARIABLE		Р

11.9 Foundation Recommendations for Structures

11.9.1 Reinforced Raft Foundation

Based on the results of the field investigation, no rock was encountered on site. The structure is to be placed on the alluvium soil. The DCP tests indicate that the alluvium soils from a depth of between 1.0m and 3.0m begl range from medium dense to dense which is considered as a suitable founding horizon.

The approximate bearing pressures for the site at a depth of between 1.0m and 3.0m begl indicate medium dense to dense soils and based on guidelines by Meyerhof (1956) (Table 6) the following bearing capacities are applicable.

Table 10: Allowable Bearing Capacity (Meyerhof, 1965 in Look, B, (2008))

	Allowable bearing capacity (kPa)						
Foundation width	Very loose	Loose		ledium dens	e	Dense	Very dense
B (m)	N = 5	N =	N = 10		N = 30	N = 40	N = 50
1	E0.	10	100		350	475	600
2	50	10			300	425	525
3			75 175 275	275	375	475	
4	25	75		175	2/5	350	450
5					250	350	450

The above table is to be used as a guideline. Based on experience in the past, medium dense to dense generally have bearing pressures of less than 100 kPa and medium dense soils have bearing pressures of between 50 kPa to 75 kPa, with dense material between 75kPa to 100kPa.

The following comments should be noted for table 6:

- It is assumed that foundations are not affected by water.
- If water is encountered, the bearing capacity should be halved.
- A factor of Safety (FS) of 3 was used to calculated settlements for not greater than 25mm.

A reinforced raft foundation with a safe founding depth of 1 to 1.2m begl as well as compaction of the insitu soils below the individual footings is recommended. Avoid lowering the foundation deeper than 1.2m due to groundwater which was encountered at 1.4m throughout the site.

Also recommended is a well compacted (150mm) G5-G7 layer of engineering fill under any base and compacted 95% MOD AASHTO. This will allow a maximum bearing pressure of 150 to 200KN/m2 with minimum settlement.

Considering all of the above, the engineer will need to design foundations to take into consideration the bearing capacity, the settlements and the effects that the elevated groundwater condition will have on the foundations if it is available.

A provision for possible movements between floors and walls should be allowed for in the design e.g. provision of construction joints and use of appropriate softboard between walls and floors as per structural engineer's detail. All brickwork and foundations will need to be reinforced to resist heave. The use of movement joints should also be considered.

It is a requirement that prior to casting any concrete in the foundation trenches, all loose material needs to be removed.

It is a requirement that all foundations are inspected and approved by a geotechnical specialist such as Luhlaza Advisory and Consulting (Pty) Ltd.

All foundations will need to be designed strictly to engineer's detail and adequately reinforced taking into consideration the founding conditions of the site.

11.10 Drainage and Stormwater Guidelines

To maintain stability of the site, it is important to control the movement of both surface and groundwater. Adequate drainage measures need to be implemented to prevent any ponding occurring within the site during and post construction.

On all road curves, the outer shoulder should be lined with upright kerbs to deflect water runoff back into the road stormwater system. Experience with the erodible soils indicates that

unlined dish (half round) drains adjacent to the roads are virtually ineffective and will soon give way to the formation of large and deep dongas (erosion gulley). Subsequent damage of road prisms may be expected.

The need for subsoil drainage will have to be assessed on site during construction in consultation with the geotechnical professional.

Owing to the highly erodible nature of the in-situ soils on-site if subject to poor stormwater runoff controls, due caution is permanently required to prevent slope damage and property maintenance arising from erosion due to uncontrolled runoff of surface water, particularly during periods of heavy rain.

All stormwater issues arising from the roof and paved areas are to be piped to either discharge off-site into a government stormwater connection facility, if available. If this is not available, the feasibility of piping all stormwater from the completed development into an on-site stormwater subsoil percolation disposal system to engineer's detail is to be confirmed in consultation with the geotechnical professional as part of a supplementary geotechnical investigation.

As good practice, to limit maintenance and to promote foundation stability, the finished ground surfaces should be graded away from the structures to facilitate drainage of surface water runoff rapidly and effectively away from the building perimeter.

12 CONCLUDING COMMENTS

The ground conditions identified within the site are inferred based on actual field test positions and are likely to vary.

The subsurface soil profile comprises of transported material and alluvium soil.

Groundwater seepage was encountered in all the test pits excavated on site. Thus, it must be noted that groundwater activity is generally expected across the entire site. Therefore, it is advised that a contingency plan be developed to manage the groundwater risk at the site.

Earthwork activities will need to be carried out strictly in accordance with the current SANS 1200 guidelines to ensure safe working procedures and maintain stability of the site.

Trenchability and excavatability comments are provided in Section 11.4. In general, soft to intermediate excavations are possible down to final depths of the test pits.

Foundation solutions are discussed in Section 11.7 to 11.9.

13 REFERENCES

Brink, A. B. & Bruin, R. M., 2002. Guidelines for Soil and Rock Logging in South Africa. s.l., Association of Engineering Geologists, South African Institute Civil Engineering - Geotechnical Division, and South Africa Institute for Engineering and Environmental Geologists, p. 47.

Committee of State Road Authorities, 1985. TRH14: Technical Recommendations for Highways - Guidelines for Road Construction Materials. Pretoria: Department of Transport.

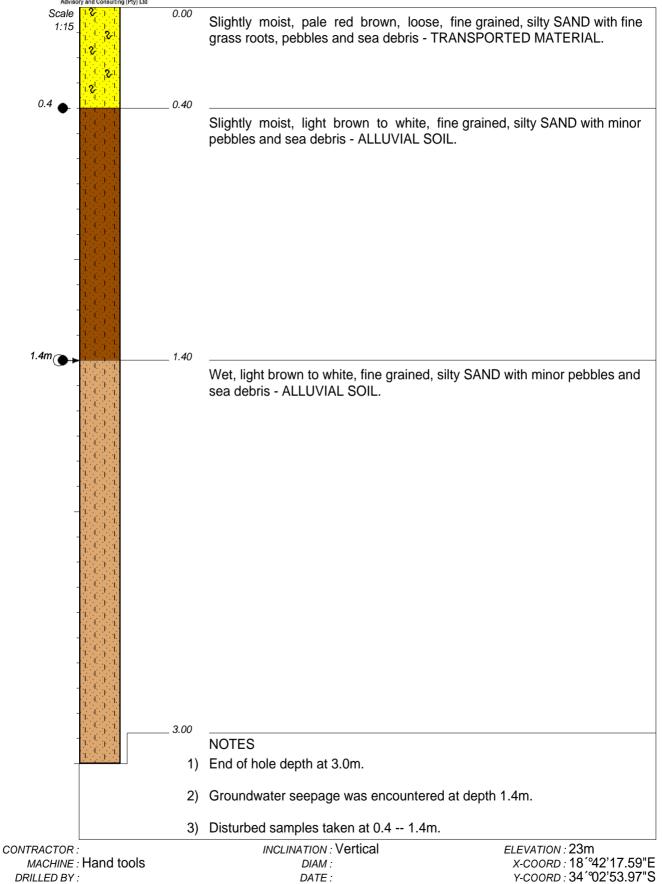
G. Byrne & A.D. Berry, 2008. A Guide to Practical Geotechnical Engineering in South Africa. s.l.: Franki A Keller Company.

Google Earth, 2020. AfriGIS (Pty) Ltd. [Online] Available at: www.googleearth.com.

Look, B. (2007). Handbook of Geotechnical Investigation and Design Tables. (Referenced as Meyer, 1965 in text).

South African Bureau of Standards, 1990. SANS 1200 DA - Standardised Specification for Civil Engineering Construction - Earthworks (Small Works). s.l.: South African Bureau of Standards.

Appendix A: Test Pits



HOLE No: TP01 Sheet 1 of 1

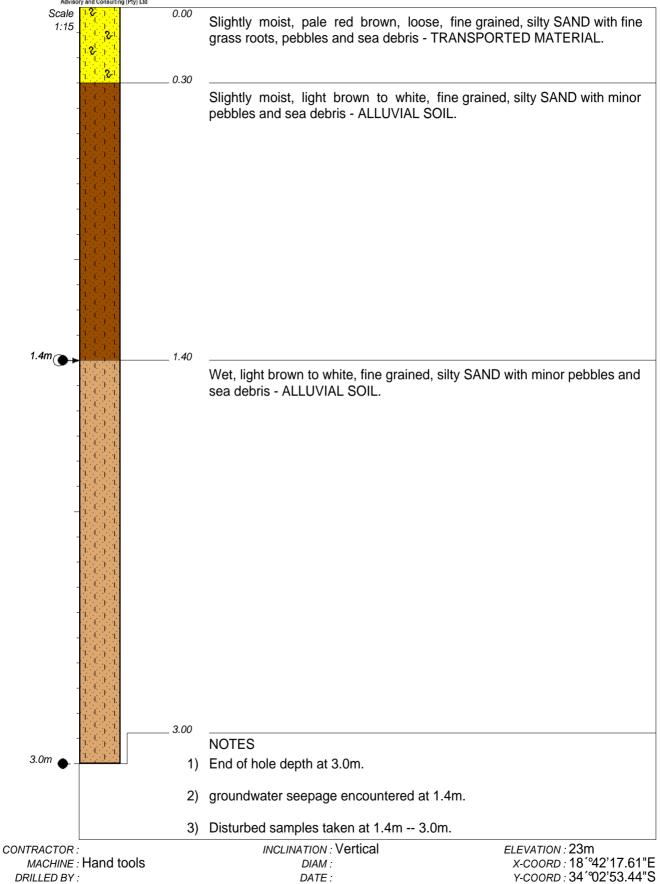
JOB NUMBER: LC020-23

DATE: 22 September 2023

TEXT: ..zaPoliceStationVogs.txt

DATE: 13/10/2023 12:42

PROFILED BY: Zaheer


TYPE SET BY: Tokoloho

SETUP FILE: STANDARD.SET

HOLE No: TP02 Sheet 1 of 1

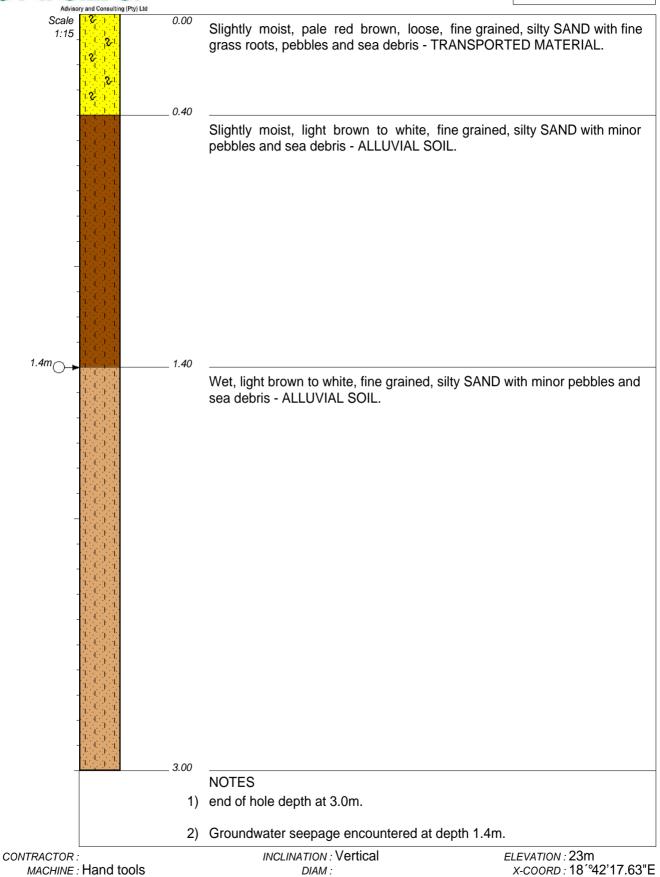
JOB NUMBER: LC020-23

DATE: 22 September 2023

TEXT: ..zaPoliceStationVogs.txt

DATE: 13/10/2023 12:42

PROFILED BY: Zaheer


TYPE SET BY: Tokoloho

SETUP FILE: STANDARD.SET

HOLE No: TP03 Sheet 1 of 1

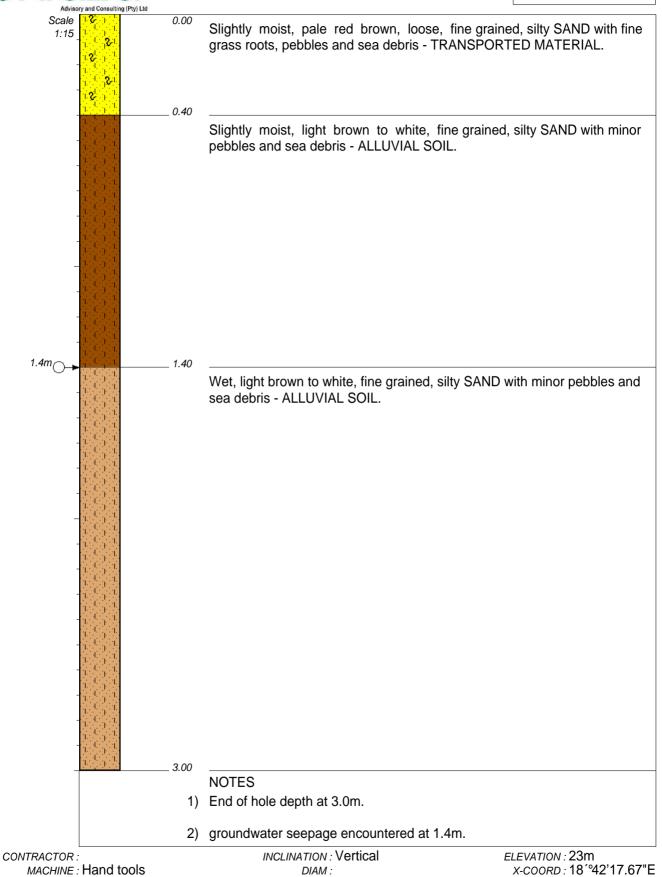
JOB NUMBER: LC020-23

DIAM:

DATE: 22 September 2023

TEXT: ..zaPoliceStationVogs.txt

DATE: 13/10/2023 12:42


DRILLED BY: PROFILED BY: Zaheer

TYPE SET BY: Tokoloho SETUP FILE: STANDARD.SET Y-COORD: 34'02'53.05"S

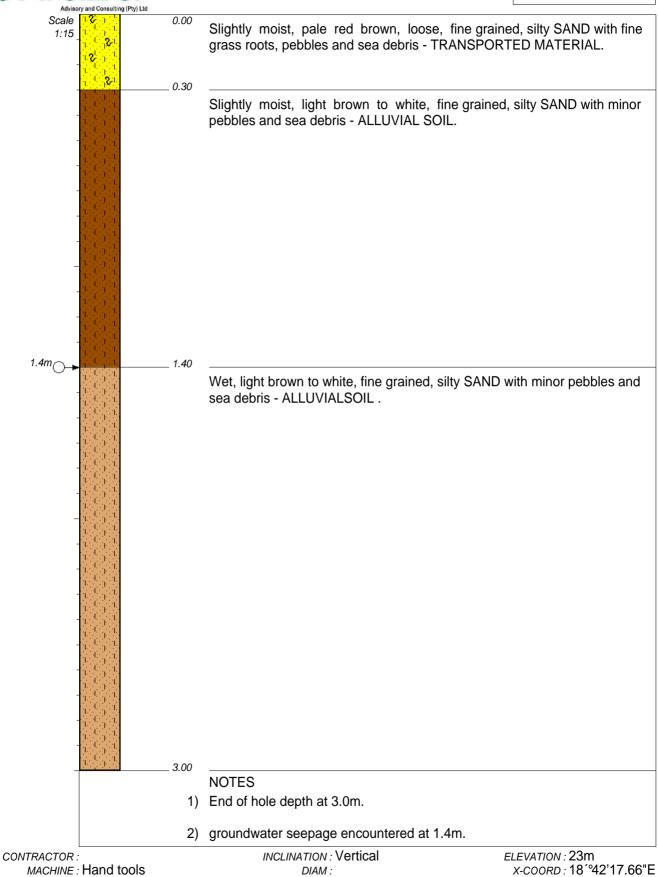
HOLE No: TP04 Sheet 1 of 1

JOB NUMBER: LC020-23

DATE: 22 September 2023

TEXT: ..zaPoliceStationVogs.txt

DATE: 13/10/2023 12:42


DRILLED BY:
PROFILED BY: Zaheer

TYPE SET BY: Tokoloho SETUP FILE: STANDARD.SET Y-COORD: 34'02'52.63"S

HOLE No: TP05 Sheet 1 of 1

JOB NUMBER: LC020-23

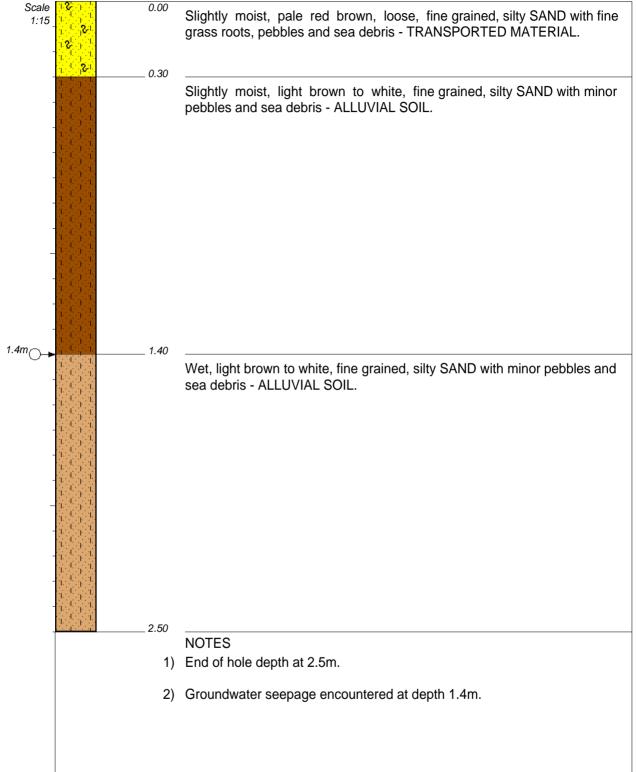
DATE: 22 September 2023

TEXT: ..zaPoliceStationVogs.txt

DATE: 13/10/2023 12:42

DRILLED BY:
PROFILED BY: Zaheer

TYPE SET BY: Tokoloho


SETUP FILE: STANDARD.SET

Y-COORD: 34'02'52.23"S

HOLE No: TP06 Sheet 1 of 1

JOB NUMBER: LC020-23

ELEVATION: 23m CONTRACTOR:

MACHINE: Hand tools

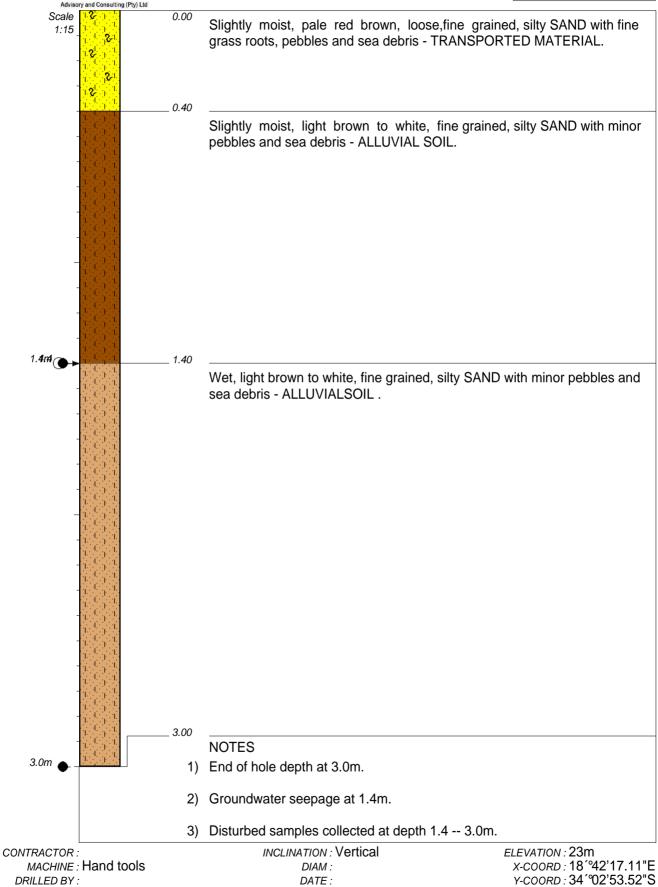
DRILLED BY:

PROFILED BY: Zaheer

TYPE SET BY: Tokoloho SETUP FILE: STANDARD.SET INCLINATION: Vertical

DIAM: DATE:

DATE: 22 September 2023


DATE: 13/10/2023 12:42 TEXT: ..zaPoliceStationVogs.txt

x-coord: 18'°42'17.20"E Y-COORD: 34'02'54.01"S

HOLE No: TP07 Sheet 1 of 1

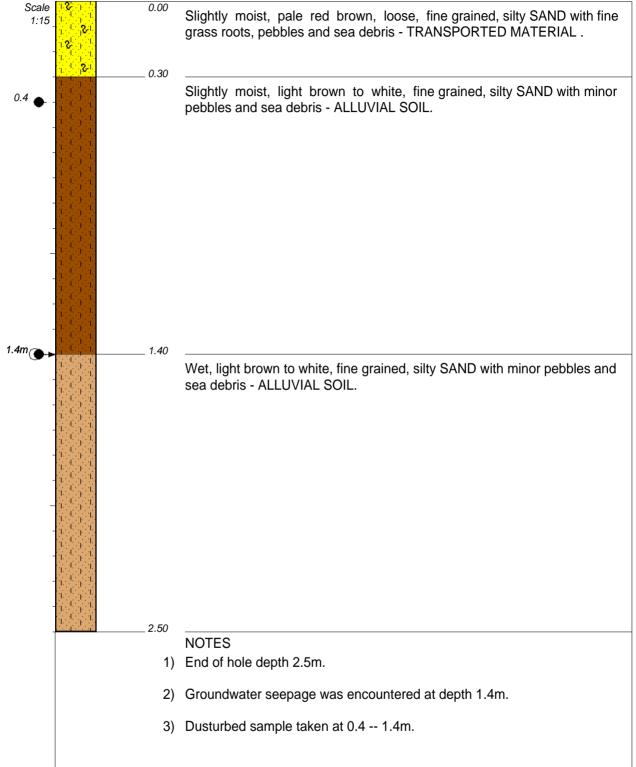
JOB NUMBER: LC020-23

DATE: 22 September 2023

TEXT: ..zaPoliceStationVogs.txt

DATE: 13/10/2023 12:42

PROFILED BY: Zaheer


TYPE SET BY: Tokoloho

SETUP FILE: STANDARD.SET

HOLE No: TP08 Sheet 1 of 1

JOB NUMBER: LC020-23

ELEVATION: 23m CONTRACTOR:

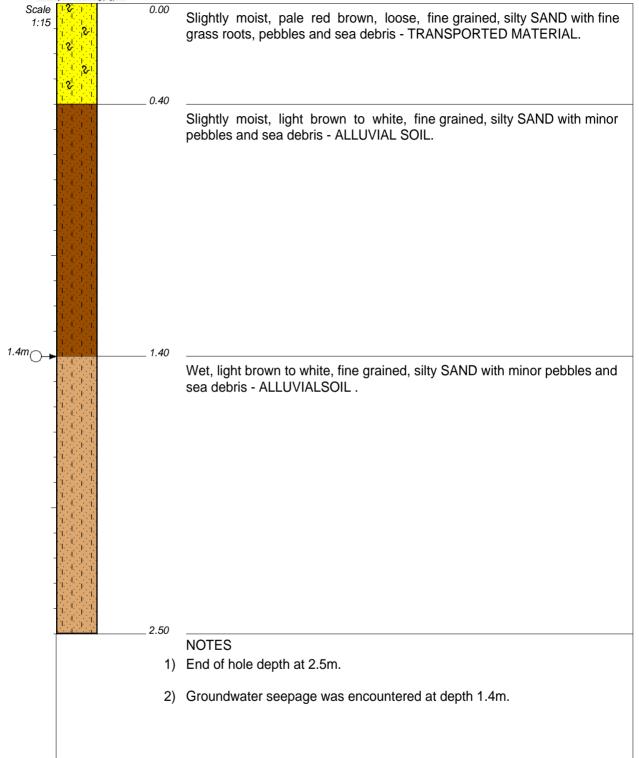
MACHINE: Hand tools

DRILLED BY:

PROFILED BY: Zaheer

TYPE SET BY: Tokoloho SETUP FILE: STANDARD.SET INCLINATION: Vertical DIAM:

DATE: 22 September 2023


DATE: 13/10/2023 12:42 TEXT: ..zaPoliceStationVogs.txt

x-coord: 18'°42'17.07"E Y-COORD: 34'02'53.06"S

HOLE No: TP09 Sheet 1 of 1

JOB NUMBER: LC020-23

INCLINATION: Vertical ELEVATION: 23m CONTRACTOR:

MACHINE: Hand tools

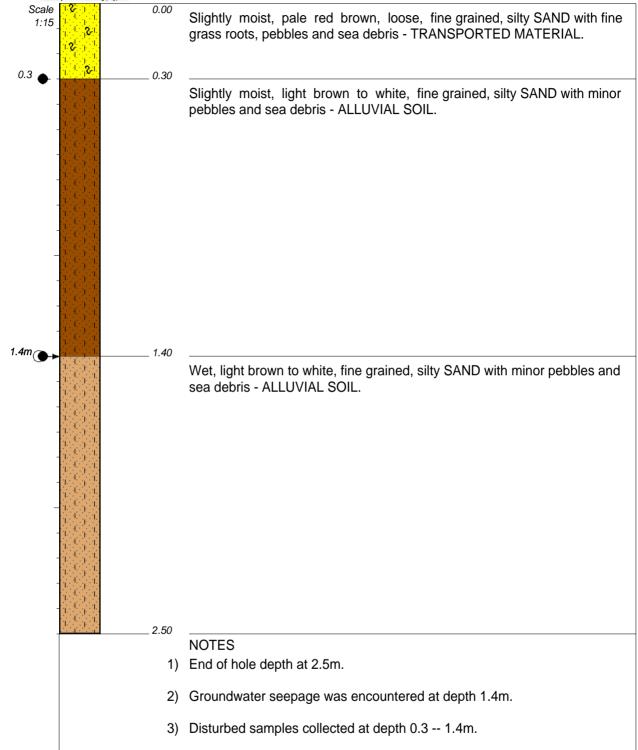
DRILLED BY:

PROFILED BY: Zaheer

TYPE SET BY: Tokoloho SETUP FILE: STANDARD.SET

DIAM:

DATE: 22 September 2023


DATE: 13/10/2023 12:42 TEXT: ..zaPoliceStationVogs.txt

x-coord: 18 °42 '17.09 "E Y-COORD: 34'02'52.61"S

HOLE No: TP10 Sheet 1 of 1

JOB NUMBER: LC020-23

ELEVATION: 23m CONTRACTOR:

MACHINE: Hand tools

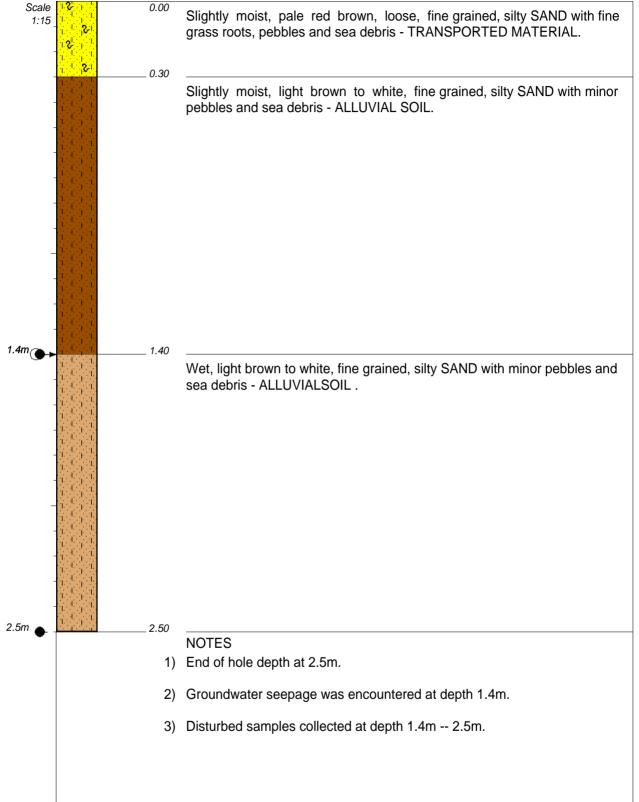
DRILLED BY:

PROFILED BY: Zaheer

TYPE SET BY: Tokoloho SETUP FILE: STANDARD.SET INCLINATION: Vertical

DIAM:

DATE: 22 September 2023


DATE: 13/10/2023 12:42 TEXT: ..zaPoliceStationVogs.txt

x-coord: 18'°42'17.12"E Y-COORD: 34'02'52.15"S

HOLE No: TP11 Sheet 1 of 1

JOB NUMBER: LC020-23

ELEVATION: 23m CONTRACTOR:

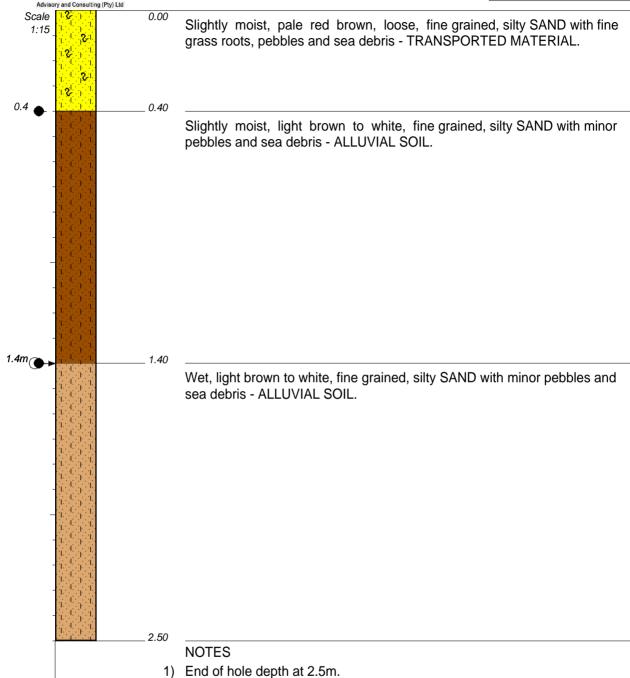
MACHINE: Hand tools

DRILLED BY:

PROFILED BY: Zaheer

TYPE SET BY: Tokoloho SETUP FILE: STANDARD.SET INCLINATION: Vertical DIAM:

DATE: 22 September 2023


DATE: 13/10/2023 12:42 TEXT: ..zaPoliceStationVogs.txt

x-coord: 18'°42'16.39"E Y-COORD: 34'02'53.89"S

HOLE No: TP12 Sheet 1 of 1

JOB NUMBER: LC020-23

ELEVATION: 23m CONTRACTOR:

MACHINE: Hand tools

DRILLED BY:

PROFILED BY: Zaheer

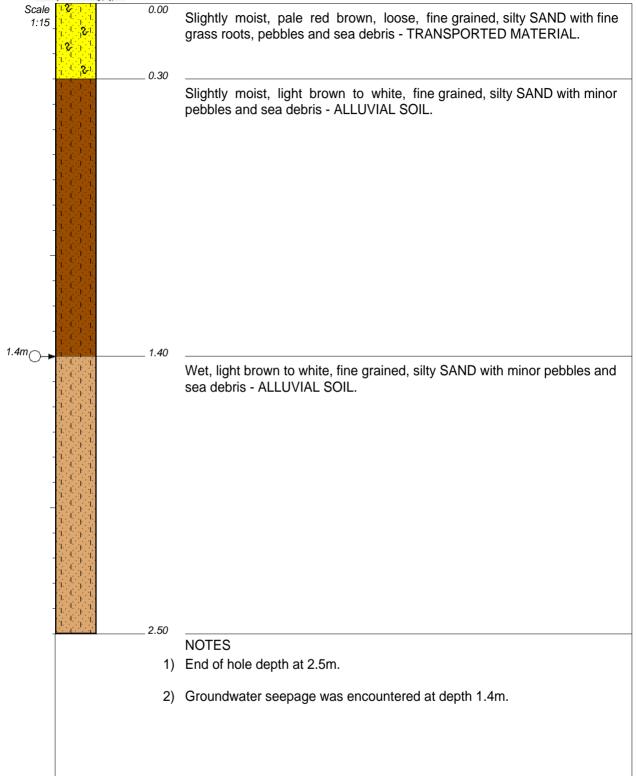
TYPE SET BY: Tokoloho SETUP FILE: STANDARD.SET INCLINATION: Vertical

DIAM:

DATE: 22 September 2023

DATE: 13/10/2023 12:42 TEXT: ..zaPoliceStationVogs.txt

2) Groundwater seepage was encountered at depth 1.4m.


3) Disturbed samples collected at depth 0.4 -- 1.4m.

x-coord: 18'°42'16.44"E Y-COORD: 34'02'53.45"S

HOLE No: TP13 Sheet 1 of 1

JOB NUMBER: LC020-23

ELEVATION: 23m CONTRACTOR:

MACHINE: Hand tools

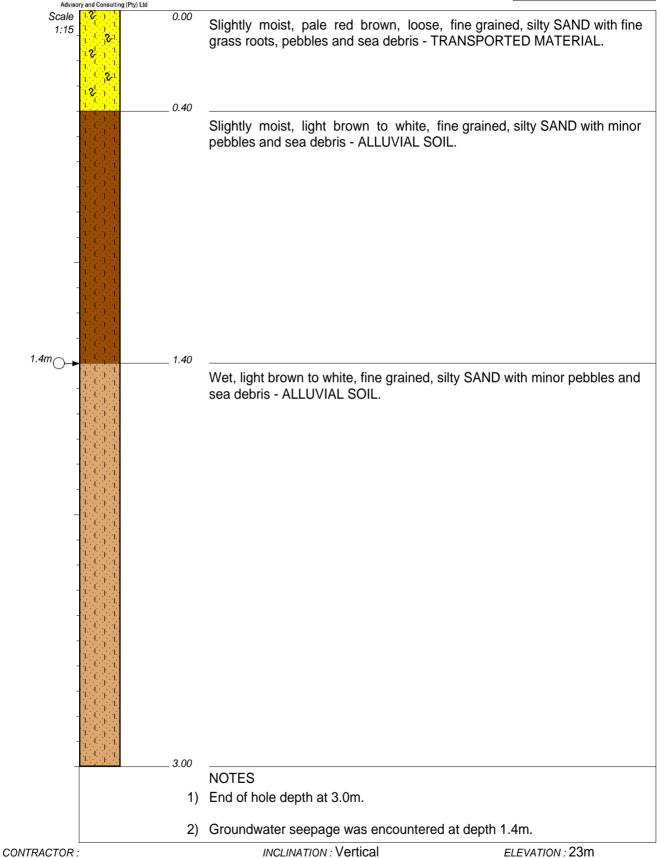
DRILLED BY:

PROFILED BY: Zaheer

TYPE SET BY: Tokoloho SETUP FILE: STANDARD.SET INCLINATION: Vertical

DIAM: DATE:

DATE: 22 September 2023


DATE: 13/10/2023 12:42 TEXT: ..zaPoliceStationVogs.txt

x-coord: 18'°42'16.43"E Y-COORD: 34'02'52.89"S

HOLE No: TP14 Sheet 1 of 1

JOB NUMBER: LC020-23

DIAM:

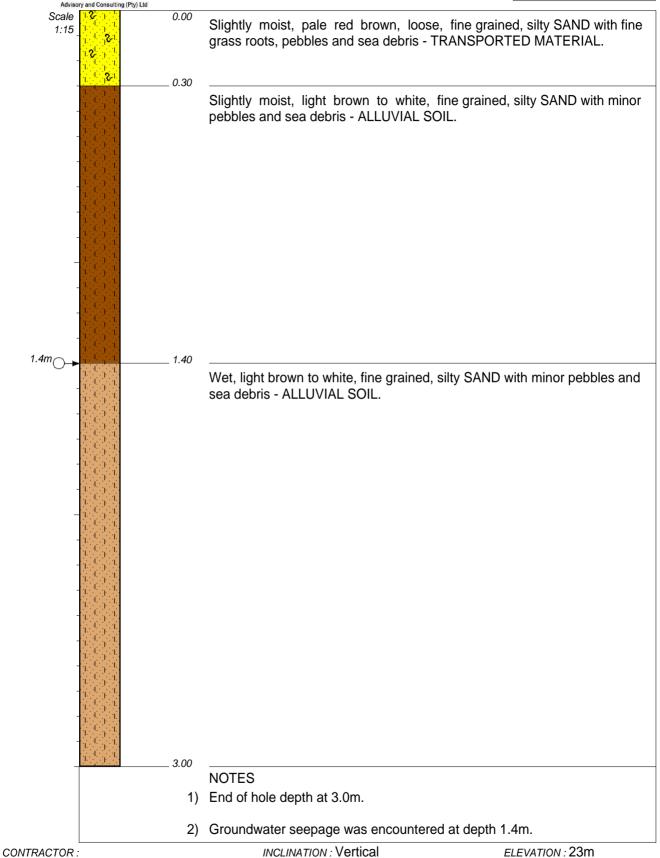
DATE: 22 September 2023

TEXT: ..zaPoliceStationVogs.txt

DATE: 13/10/2023 12:42

MACHINE: Hand tools

DRILLED BY:
PROFILED BY: Zaheer


TYPE SET BY: Tokoloho SETUP FILE: STANDARD.SET x-coord: 18'°42'16.47"E

Y-COORD: 34'02'52.52"S

HOLE No: TP15 Sheet 1 of 1

JOB NUMBER: LC020-23

DIAM:

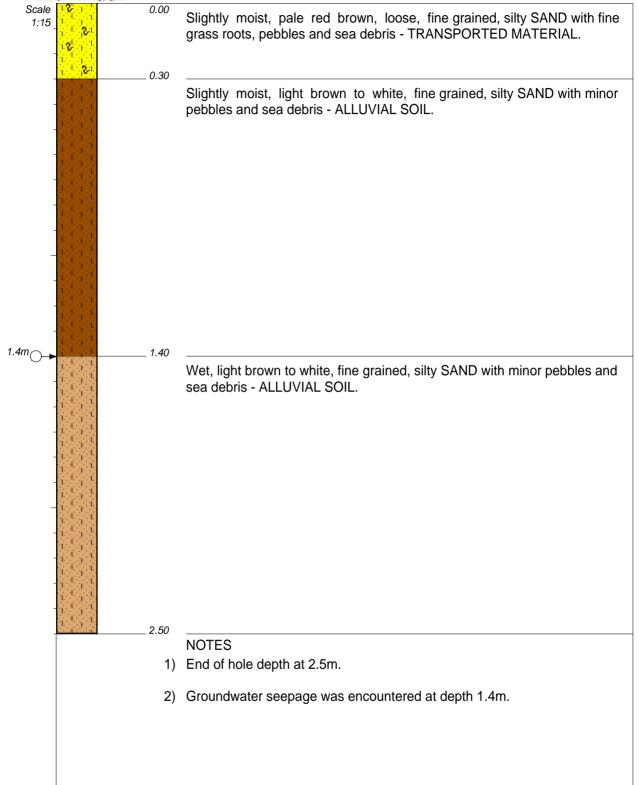
DATE: 22 September 2023

TEXT: ..zaPoliceStationVogs.txt

DATE: 13/10/2023 12:42

MACHINE: Hand tools

DRILLED BY:
PROFILED BY: Zaheer


TYPE SET BY: Tokoloho SETUP FILE: STANDARD.SET x-coord: 18'°42'16.50"E

Y-COORD: 34'02'52.07"S

HOLE No: TP16 Sheet 1 of 1

JOB NUMBER: LC020-23

ELEVATION: 23m CONTRACTOR:

MACHINE: Hand tools

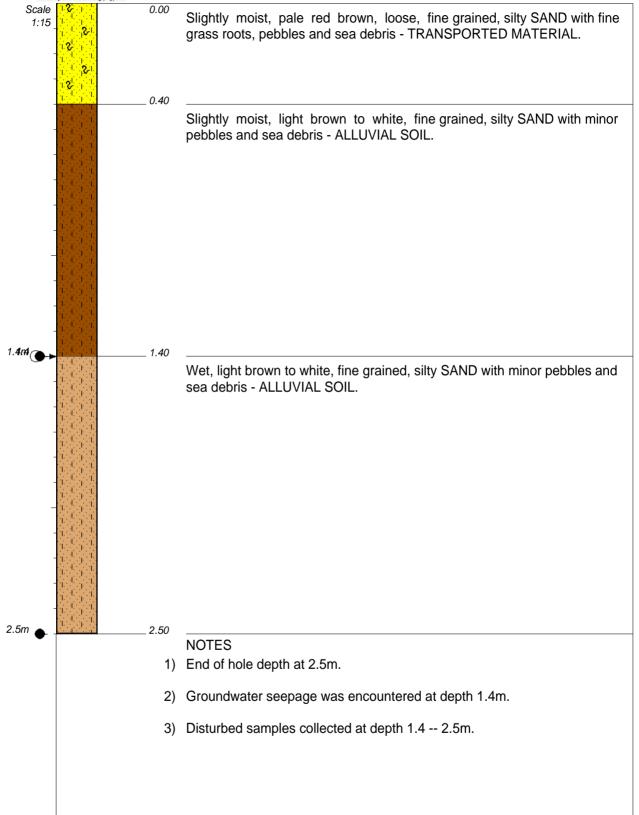
DRILLED BY:

PROFILED BY: Zaheer

TYPE SET BY: Tokoloho SETUP FILE: STANDARD.SET INCLINATION: Vertical

DIAM: DATE:

DATE: 22 September 2023


DATE: 13/10/2023 12:42 TEXT: ..zaPoliceStationVogs.txt

x-coord: 18'°42'15.72"E Y-COORD: 34'02'53.84"S

HOLE No: TP17 Sheet 1 of 1

JOB NUMBER: LC020-23

ELEVATION: 23m CONTRACTOR:

MACHINE: Hand tools

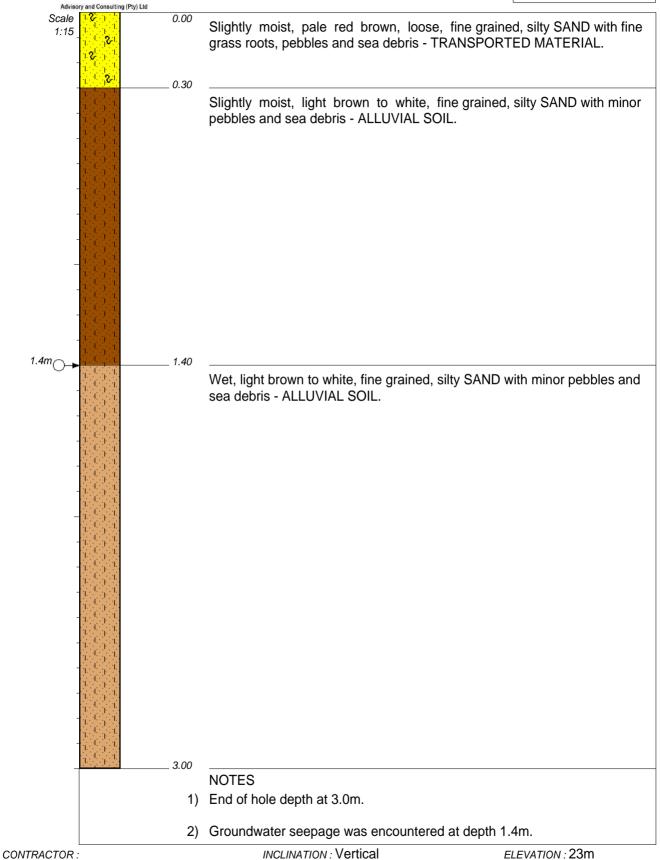
DRILLED BY:

PROFILED BY: Zaheer

TYPE SET BY: Tokoloho SETUP FILE: STANDARD.SET INCLINATION: Vertical

DIAM:

DATE: 22 September 2023


DATE: 13/10/2023 12:42 TEXT: ..zaPoliceStationVogs.txt

x-coord: 18'°42'15.75"E Y-COORD: 34'02'53.37"S

HOLE No: TP18 Sheet 1 of 1

JOB NUMBER: LC020-23

DIAM:

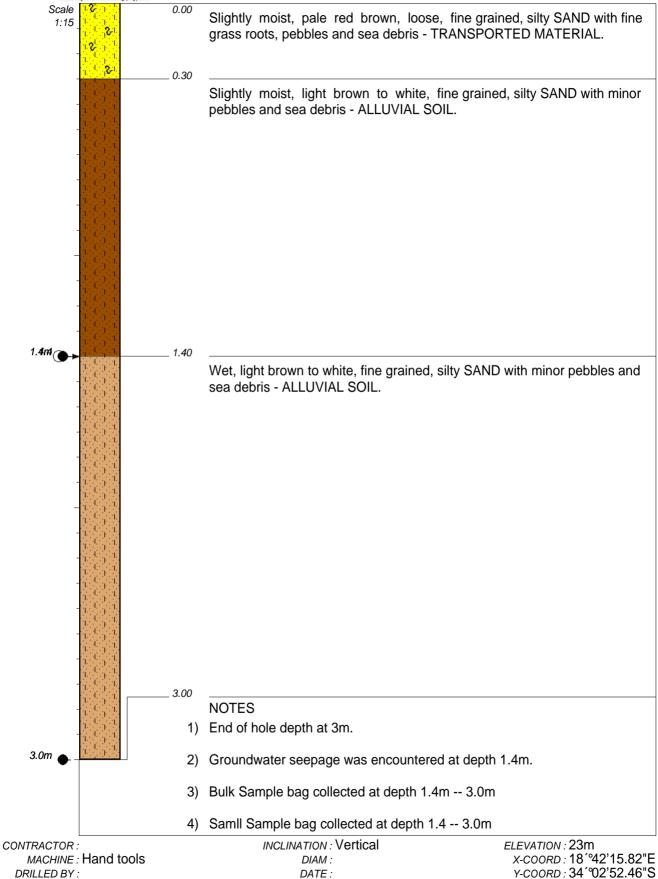
DATE: 22 September 2023

TEXT: ..zaPoliceStationVogs.txt

DATE: 13/10/2023 12:42

MACHINE: Hand tools

DRILLED BY:
PROFILED BY: Zaheer


TYPE SET BY: Tokoloho SETUP FILE: STANDARD.SET x-coord: 18'°42'15.77"E

Y-COORD: 34'02'52.88"S

HOLE No: TP19 Sheet 1 of 1

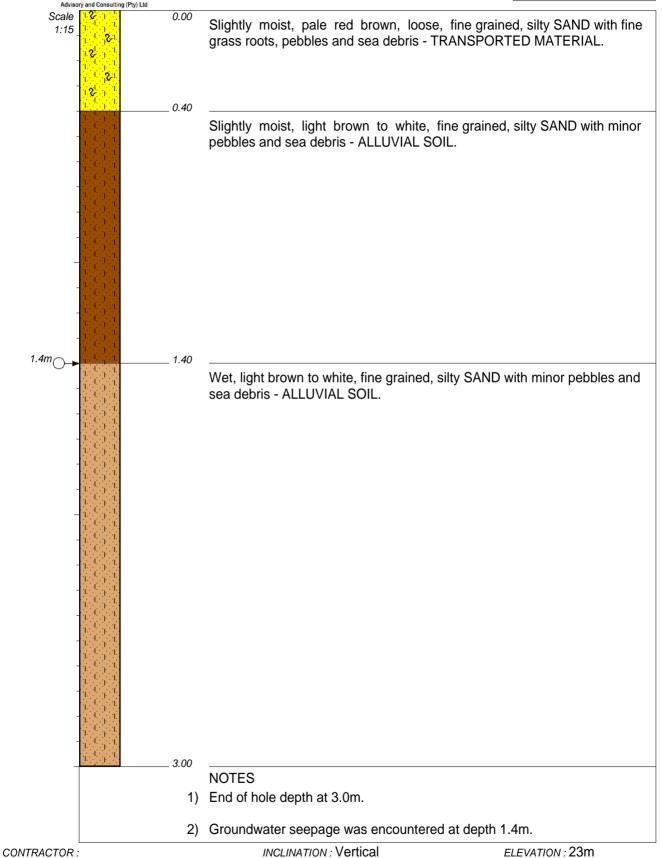
JOB NUMBER: LC020-23

DATE: 22 September 2023

TEXT: ..zaPoliceStationVogs.txt

DATE: 13/10/2023 12:42

PROFILED BY: Zaheer


TYPE SET BY: Tokoloho

SETUP FILE: STANDARD.SET

HOLE No: TP20 Sheet 1 of 1

JOB NUMBER: LC020-23

DIAM:

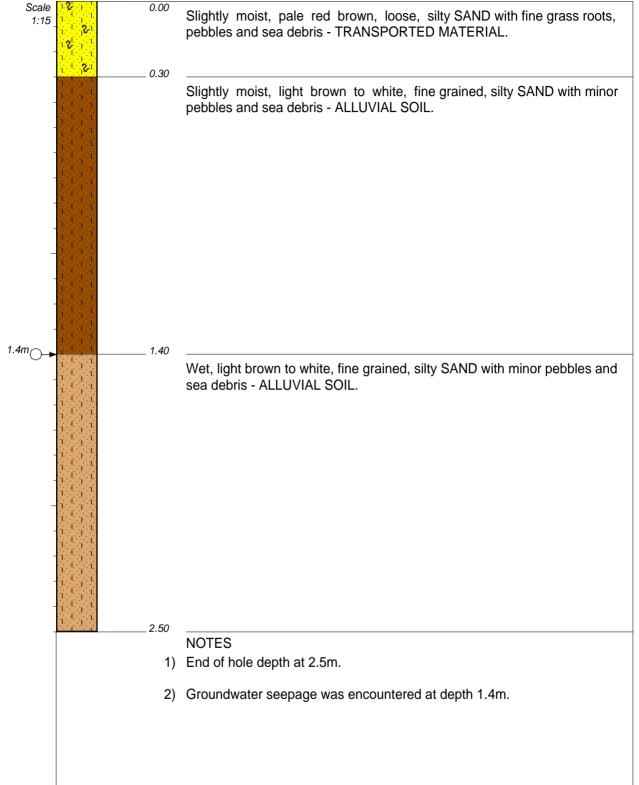
DATE: 22 September 2023

TEXT: ..zaPoliceStationVogs.txt

DATE: 13/10/2023 12:42

MACHINE: Hand tools

DRILLED BY:
PROFILED BY: Zaheer


TYPE SET BY: Tokoloho SETUP FILE: STANDARD.SET x-coord: 18'°42'15.81"E

Y-COORD: 34'02'52.01"S

HOLE No: TP21 Sheet 1 of 1

JOB NUMBER: LC020-23

ELEVATION: 23m CONTRACTOR:

MACHINE: Hand tools

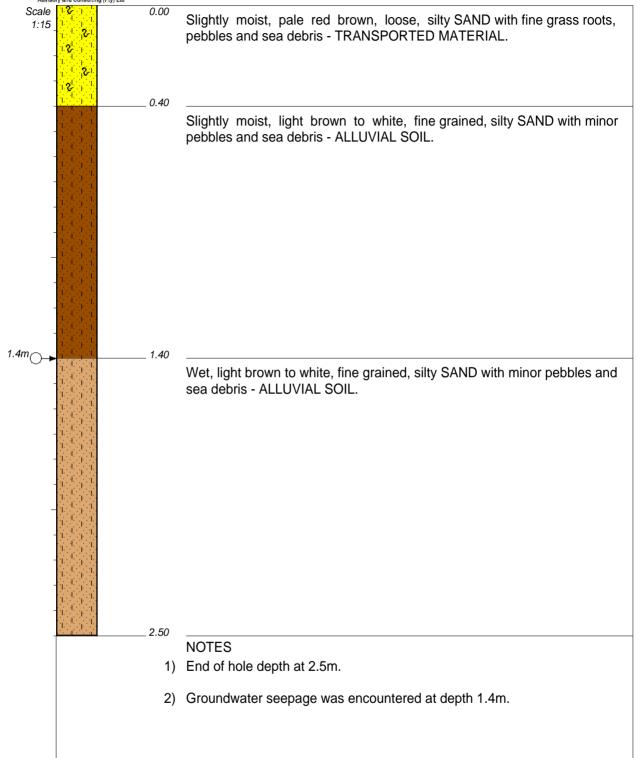
DRILLED BY:

PROFILED BY: Zaheer

TYPE SET BY: Tokoloho SETUP FILE: STANDARD.SET INCLINATION: Vertical

DIAM: DATE:

DATE: 22 September 2023


DATE: 13/10/2023 12:42 TEXT: ..zaPoliceStationVogs.txt

x-coord: 18'°42'15.24"E Y-COORD: 34'02'53.44"S

HOLE No: TP22 Sheet 1 of 1

JOB NUMBER: LC020-23

ELEVATION: 23m CONTRACTOR:

MACHINE: Hand tools

DRILLED BY:

PROFILED BY: Zaheer

TYPE SET BY: Tokoloho SETUP FILE: STANDARD.SET INCLINATION: Vertical

DIAM:

DATE: 22 September 2023

DATE: 13/10/2023 12:42 TEXT: ..zaPoliceStationVogs.txt

x-coord: 18 °42 '15.23 "E Y-COORD: 34'02'52.84"S

LEGEND Sheet 1 of 1

JOB NUMBER: LC020-23

744100	ry and Consultin	SAND	{SA04}
		SILTY	{SA07}
Name 🛖		DISTURBED SAMPLE	{SA38}
	ર ર	ROOTS	{SA40}
<i>4.5</i> ○→		WATER SEEPAGE/water strike	{CH50}

CONTRACTOR:INCLINATION:ELEVATION:MACHINE:DIAM:X-COORD:DRILLED BY:DATE:Y-COORD:

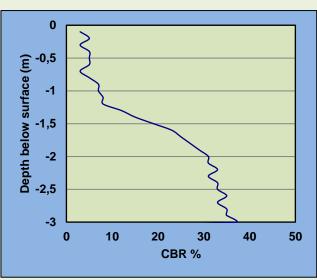
 PROFILED BY :
 DATE :

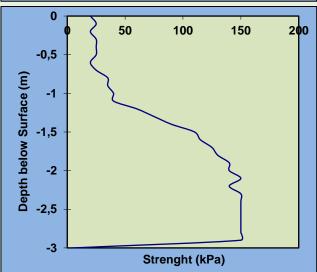
 TYPE SET BY : Tokoloho
 DATE : 13/10/2023 12:42

TYPE SET BY : Tokoloho DATE : 13/10/2023 12:42
SETUP FILE : STANDARD.SET TEXT : ..zaPoliceStationVogs.txt

LEGEND SUMMARY OF SYMBOLS

Appendix B: DCP



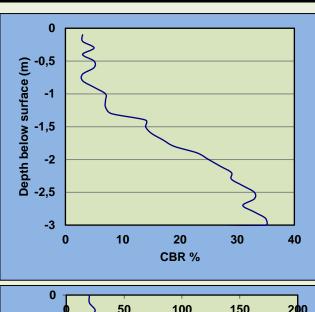

LC020-23 **Makhaza Police Station** 22-09-2023 DCP 1

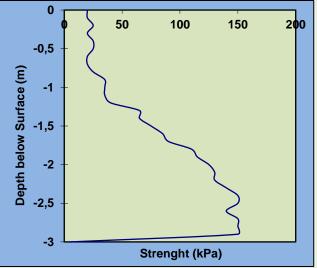
3 m

pirical calculations and should be used as a guide only

The shear strength values are based on em			
Depth	Blows/	Inferred	Shear
(m)	0.1m	Consistency	Strength
0			
0,1	2	Loose	30 deg
0,2	3	Loose	30 deg
0,3	2	Loose	30 deg
0,4	3	Loose	30 deg
0,5	3	Loose	30 deg
0,6	3	Loose	30 deg
0,7	2	Loose	30 deg
0,8	3	Loose	30 deg
0,9	4	Med.Dense	30 deg
1	4	Med.Dense	30 deg
1,1	5	Med.Dense	32 deg
1,2	5	Med.Dense	32 deg
1,3	7	Med.Dense	34 deg
1,4	9	Med.Dense	35 deg
1,5	11	Dense	36 deg
1,6	13	Dense	37 deg
1,7	14	Dense	37 deg
1,8	15	Dense	37 deg
1,9	16	Dense	37 deg
2	17	Dense	37 deg
2,1	17	Dense	37 deg
2,2	18	Dense	37 deg
2,3	17	Dense	37 deg
2,4	18	Dense	37 deg
2,5	18	Dense	37 deg
2,6	19	Dense	37 deg
2,7	18	Dense	37 deg
2,8	19	Dense	37 deg
2,9	19	Dense	37 deg
3	20	Dense	38 deg

The results shown here are based on calculations using the DCP test. These are classified as indicative values and need to be verified by other testing methods.



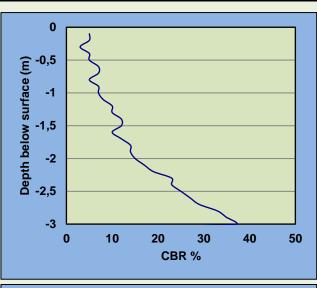

LC020-23 Makhaza Police Station 22-09-2023 DCP 2

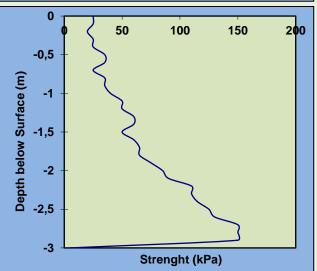
3 m

The shear strength values are based on empirical calculations and should be used as a guide only

The shear strength values are based on em			
Depth	Blows/	Inferred	Shear
(m)	0.1m	Consistency	Strength
0			
0,1	2	Loose	30 deg
0,2	2	Loose	30 deg
0,3	3	Loose	30 deg
0,4	2	Loose	30 deg
0,5	3	Loose	30 deg
0,6	3	Loose	30 deg
0,7	2	Loose	30 deg
0,8	2	Loose	30 deg
0,9	3	Loose	30 deg
1	4	Med.Dense	30 deg
1,1	4	Med.Dense	30 deg
1,2	4	Med.Dense	30 deg
1,3	5	Med.Dense	32 deg
1,4	8	Med.Dense	35 deg
1,5	8	Med.Dense	35 deg
1,6	9	Med.Dense	35 deg
1,7	10	Med.Dense	36 deg
1,8	11	Dense	36 deg
1,9	13	Dense	37 deg
2	14	Dense	37 deg
2,1	15	Dense	37 deg
2,2	16	Dense	37 deg
2,3	16	Dense	37 deg
2,4	17	Dense	37 deg
2,5	18	Dense	37 deg
2,6	18	Dense	37 deg
2,7	17	Dense	37 deg
2,8	18	Dense	37 deg
2,9	19	Dense	37 deg
3	19	Dense	37 deg

The results shown here are based on calculations using the DCP test. These are classified as indicative values and need to be verified by other testing methods.

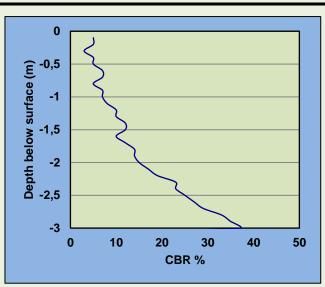


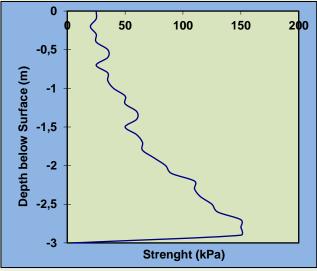

LC020-23 Makhaza Police Station 22-09-2023 DCP 3

3 m

The shear strength values are based on empirical calculations and should be used as a guide only

The shear strength values are based on em			
Depth	Blows/	Inferred	Shear
(m)	0.1m	Consistency	Strength
0			
0,1	3	Loose	30 deg
0,2	3	Loose	30 deg
0,3	2	Loose	30 deg
0,4	3	Loose	30 deg
0,5	3	Loose	30 deg
0,6	4	Med.Dense	30 deg
0,7	4	Med.Dense	30 deg
0,8	3	Loose	30 deg
0,9	4	Med.Dense	30 deg
1	4	Med.Dense	30 deg
1,1	5	Med.Dense	32 deg
1,2	6	Med.Dense	33 deg
1,3	6	Med.Dense	33 deg
1,4	7	Med.Dense	34 deg
1,5	7	Med.Dense	34 deg
1,6	6	Med.Dense	33 deg
1,7	7	Med.Dense	34 deg
1,8	8	Med.Dense	35 deg
1,9	8	Med.Dense	35 deg
2	9	Med.Dense	35 deg
2,1	10	Med.Dense	36 deg
2,2	11	Dense	36 deg
2,3	13	Dense	37 deg
2,4	13	Dense	37 deg
2,5	14	Dense	37 deg
2,6	15	Dense	37 deg
2,7	16	Dense	37 deg
2,8	18	Dense	37 deg
2,9	19	Dense	37 deg
3	20	Dense	38 deg

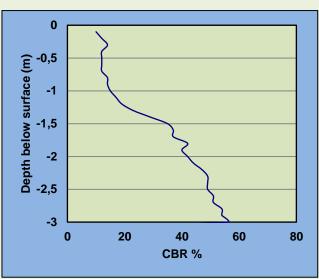

The results shown here are based on calculations using the DCP test. These are classified as indicative values and need to be verified by other testing methods.

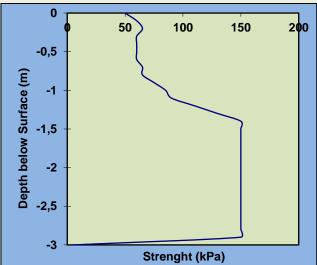


LC020-23 Makhaza Police Station 22-09-2023

> DCP 4 3 m

The shear strength values are based on em			
Depth	Blows/	Inferred	Shear
(m)	0.1m	Consistency	Strength
0			
0,1	3	Loose	30 deg
0,2	3	Loose	30 deg
0,3	2	Loose	30 deg
0,4	3	Loose	30 deg
0,5	3	Loose	30 deg
0,6	4	Med.Dense	30 deg
0,7	4	Med.Dense	30 deg
0,8	3	Loose	30 deg
0,9	4	Med.Dense	30 deg
1	4	Med.Dense	30 deg
1,1	5	Med.Dense	32 deg
1,2	6	Med.Dense	33 deg
1,3	6	Med.Dense	33 deg
1,4	7	Med.Dense	34 deg
1,5	7	Med.Dense	34 deg
1,6	6	Med.Dense	33 deg
1,7	7	Med.Dense	34 deg
1,8	8	Med.Dense	35 deg
1,9	8	Med.Dense	35 deg
2	9	Med.Dense	35 deg
2,1	10	Med.Dense	36 deg
2,2	11	Dense	36 deg
2,3	13	Dense	37 deg
2,4	13	Dense	37 deg
2,5	14	Dense	37 deg
2,6	15	Dense	37 deg
2,7	16	Dense	37 deg
2,8	18	Dense	37 deg
2,9	19	Dense	37 deg
3	20	Dense	38 deg

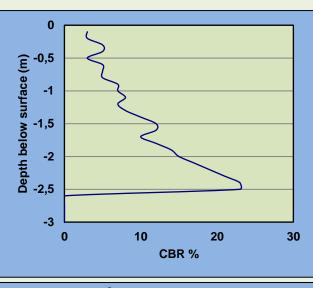


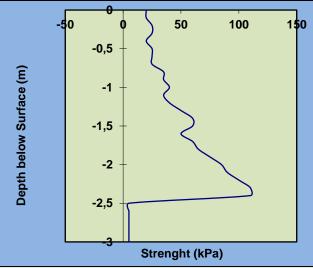


LC020-23 Makhaza Police Station 22-09-2023

DCP 4
3 m

The shear strength values are based on emp			
Blows/	Inferred	Shear	
0.1m	Consistency	Strength	
6	Med.Dense	33 deg	
7	Med.Dense	34 deg	
8	Med.Dense	35 deg	
7	Med.Dense	34 deg	
7	Med.Dense	34 deg	
7	Med.Dense	34 deg	
7	Med.Dense	34 deg	
8	Med.Dense	35 deg	
8	Med.Dense	35 deg	
9	Med.Dense	35 deg	
10	Med.Dense	36 deg	
11	Dense	36 deg	
13	Dense	37 deg	
16	Dense	37 deg	
19	Dense	37 deg	
20	Dense	38 deg	
20	Dense	38 deg	
22	Dense	38 deg	
21	Dense	38 deg	
22	Dense	38 deg	
23	Dense	38 deg	
24	Dense	38 deg	
25	Very Dense	38 deg	
25	Dense	38 deg	
25	Dense	38 deg	
26	Very Dense	38 deg	
26	Very Dense	38 deg	
27	Very Dense	38 deg	
27	Very Dense	38 deg	
28	Very Dense	38 deg	
	Blows/ 0.1m 6 7 8 7 7 7 7 8 8 8 9 10 11 13 16 19 20 20 22 21 22 23 24 25 25 25 26 26 26 27 27	Blows/ Inferred 0.1m Consistency 6 Med.Dense 7 Med.Dense 8 Med.Dense 7 Med.Dense 7 Med.Dense 8 Med.Dense 8 Med.Dense 9 Med.Dense 10 Med.Dense 11 Dense 13 Dense 16 Dense 20 Dense 20 Dense 20 Dense 21 Dense 22 Dense 23 Dense 24 Dense 25 Very Dense 25 Dense 25 Dense 26 Very Dense 27 Very Dense 27 Very Dense	

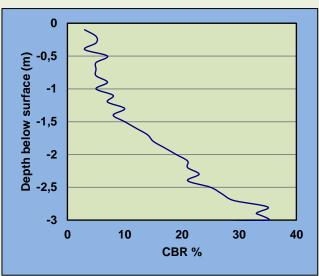


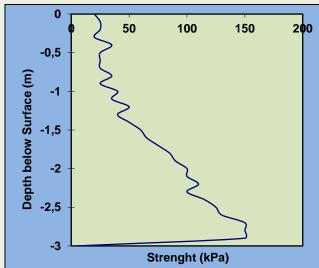


LC020-23 Makhaza Police Station 22-09-2023 DCP 6

2,5 m

The shear strength values are based on em			
Depth	Blows/	Inferred	Shear
(m)	0.1m	Consistency	Strength
0			
0,1	2	Loose	30 deg
0,2	2	Loose	30 deg
0,3	3	Loose	30 deg
0,4	3	Loose	30 deg
0,5	2	Loose	30 deg
0,6	3	Loose	30 deg
0,7	3	Loose	30 deg
0,8	3	Loose	30 deg
0,9	4	Med.Dense	30 deg
1	4	Med.Dense	30 deg
1,1	5	Med.Dense	32 deg
1,2	4	Med.Dense	30 deg
1,3	5	Med.Dense	32 deg
1,4	6	Med.Dense	33 deg
1,5	7	Med.Dense	34 deg
1,6	7	Med.Dense	34 deg
1,7	6	Med.Dense	33 deg
1,8	7	Med.Dense	34 deg
1,9	8	Med.Dense	35 deg
2	9	Med.Dense	35 deg
2,1	10	Med.Dense	36 deg
2,2	11	Dense	36 deg
2,3	12	Dense	36 deg
2,4	13	Dense	37 deg
2,5	13	Dense	37 deg
	REF		

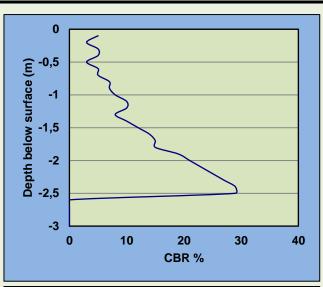


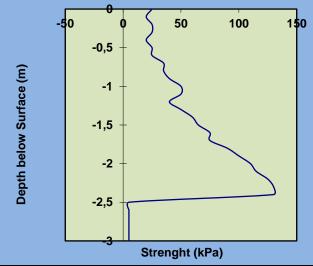


LC020-23 Makhaza Police Station 22-09-2023 DCP 7

2,5 m

The shear strength values are based on em			
Depth	Blows/	Inferred	Shear
(m)	0.1m	Consistency	Strength
0			
0,1	2	Loose	30 deg
0,2	3	Loose	30 deg
0,3	3	Loose	30 deg
0,4	2	Loose	30 deg
0,5	4	Med.Dense	30 deg
0,6	3	Loose	30 deg
0,7	3	Loose	30 deg
0,8	3	Loose	30 deg
0,9	4	Med.Dense	30 deg
1	3	Loose	30 deg
1,1	5	Med.Dense	32 deg
1,2	4	Med.Dense	30 deg
1,3	6	Med.Dense	33 deg
1,4	5	Med.Dense	32 deg
1,5	6	Med.Dense	33 deg
1,6	7	Med.Dense	34 deg
1,7	8	Med.Dense	35 deg
1,8	9	Med.Dense	35 deg
1,9	10	Med.Dense	36 deg
2	11	Dense	36 deg
2,1	12	Dense	36 deg
2,2	12	Dense	36 deg
2,3	13	Dense	37 deg
2,4	12	Dense	36 deg
2,5	14	Dense	37 deg
2,6	15	Dense	37 deg
2,7	16	Dense	37 deg
2,8	19	Dense	37 deg
2,9	18	Dense	37 deg
3	19	Dense	37 deg

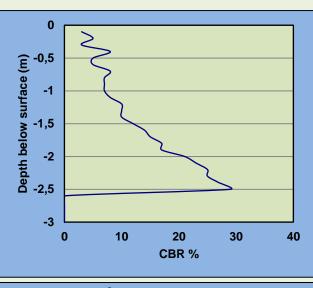


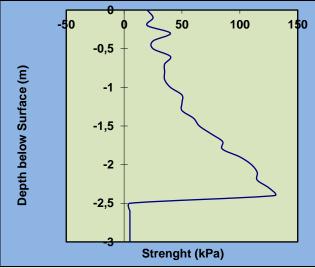


LC020-23 Makhaza Police Station 22-09-2023 DCP 8

2,5 m

The shear strength values are based on em			
Depth	Blows/	Inferred	Shear
(m)	0.1m	Consistency	Strength
0			
0,1	3	Loose	30 deg
0,2	2	Loose	30 deg
0,3	3	Loose	30 deg
0,4	3	Loose	30 deg
0,5	2	Loose	30 deg
0,6	3	Loose	30 deg
0,7	3	Loose	30 deg
0,8	4	Med.Dense	30 deg
0,9	4	Med.Dense	30 deg
1	5	Med.Dense	32 deg
1,1	6	Med.Dense	33 deg
1,2	6	Med.Dense	33 deg
1,3	5	Med.Dense	32 deg
1,4	6	Med.Dense	33 deg
1,5	7	Med.Dense	34 deg
1,6	8	Med.Dense	35 deg
1,7	9	Med.Dense	35 deg
1,8	9	Med.Dense	35 deg
1,9	11	Dense	36 deg
2	12	Dense	36 deg
2,1	13	Dense	37 deg
2,2	14	Dense	37 deg
2,3	15	Dense	37 deg
2,4	16	Dense	37 deg
2,5	16	Dense	37 deg
	REF		

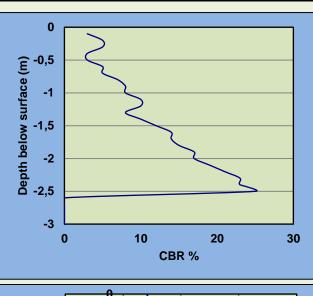


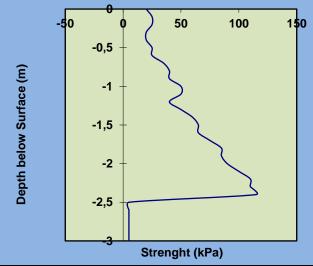


LC020-23 Makhaza Police Station 22-09-2023 DCP 9

2,5 m

The shear strength values are based on em			
Depth	Blows/	Inferred	Shear
(m)	0.1m	Consistency	Strength
0			
0,1	2	Loose	30 deg
0,2	3	Loose	30 deg
0,3	2	Loose	30 deg
0,4	5	Med.Dense	32 deg
0,5	3	Loose	30 deg
0,6	3	Loose	30 deg
0,7	5	Med.Dense	32 deg
0,8	4	Med.Dense	30 deg
0,9	4	Med.Dense	30 deg
1	4	Med.Dense	30 deg
1,1	5	Med.Dense	32 deg
1,2	6	Med.Dense	33 deg
1,3	6	Med.Dense	33 deg
1,4	6	Med.Dense	33 deg
1,5	7	Med.Dense	34 deg
1,6	8	Med.Dense	35 deg
1,7	9	Med.Dense	35 deg
1,8	10	Med.Dense	36 deg
1,9	10	Med.Dense	36 deg
2	12	Dense	36 deg
2,1	13	Dense	37 deg
2,2	14	Dense	37 deg
2,3	14	Dense	37 deg
2,4	15	Dense	37 deg
2,5	16	Dense	37 deg
	REF		

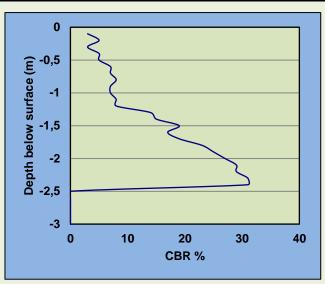


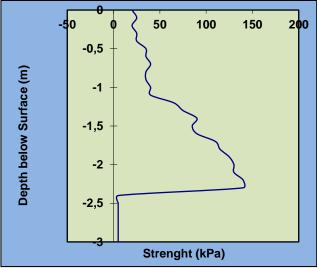


LC020-23 Makhaza Police Station 22-09-2023 DCP 10

2,5 m

The shear strength values are based on em			
Depth	Blows/	Inferred	Shear
(m)	0.1m	Consistency	Strength
0			
0,1	2	Loose	30 deg
0,2	3	Loose	30 deg
0,3	3	Loose	30 deg
0,4	2	Loose	30 deg
0,5	2	Loose	30 deg
0,6	3	Loose	30 deg
0,7	3	Loose	30 deg
0,8	4	Med.Dense	30 deg
0,9	5	Med.Dense	32 deg
1	5	Med.Dense	32 deg
1,1	6	Med.Dense	33 deg
1,2	6	Med.Dense	33 deg
1,3	5	Med.Dense	32 deg
1,4	6	Med.Dense	33 deg
1,5	7	Med.Dense	34 deg
1,6	8	Med.Dense	35 deg
1,7	8	Med.Dense	35 deg
1,8	9	Med.Dense	35 deg
1,9	10	Med.Dense	36 deg
2	10	Med.Dense	36 deg
2,1	11	Dense	36 deg
2,2	12	Dense	36 deg
2,3	13	Dense	37 deg
2,4	13	Dense	37 deg
2,5	14	Dense	37 deg
	REF		

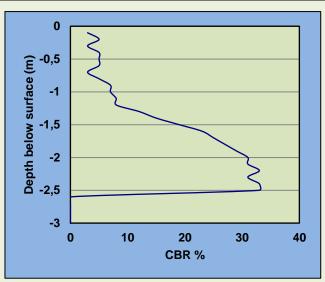


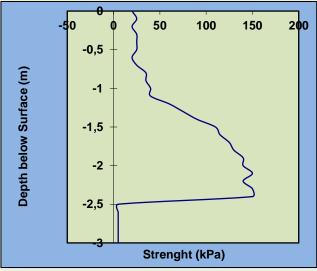


LC020-23 Makhaza Police Station 22-09-2023

DCP 11 2,4 m

The shear strength values are based on em			
Depth	Blows/	Inferred	Shear
(m)	0.1m	Consistency	Strength
0			
0,1	2	Loose	30 deg
0,2	3	Loose	30 deg
0,3	2	Loose	30 deg
0,4	3	Loose	30 deg
0,5	3	Loose	30 deg
0,6	4	Med.Dense	30 deg
0,7	4	Med.Dense	30 deg
0,8	5	Med.Dense	32 deg
0,9	4	Med.Dense	30 deg
1	4	Med.Dense	30 deg
1,1	5	Med.Dense	32 deg
1,2	5	Med.Dense	32 deg
1,3	8	Med.Dense	35 deg
1,4	9	Med.Dense	35 deg
1,5	11	Dense	36 deg
1,6	10	Med.Dense	36 deg
1,7	11	Dense	36 deg
1,8	13	Dense	37 deg
1,9	14	Dense	37 deg
2	15	Dense	37 deg
2,1	16	Dense	37 deg
2,2	16	Dense	37 deg
2,3	17	Dense	37 deg
2,4	17	Dense	37 deg
	REF		

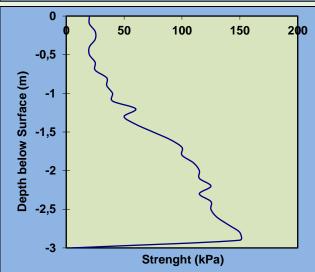




LC020-23 Makhaza Police Station 22-09-2023 DCP 12

2,5 m

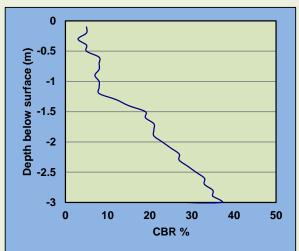
The shear strength values are based on em			
Depth	Blows/	Inferred	Shear
(m)	0.1m	Consistency	Strength
0			
0,1	2	Loose	30 deg
0,2	3	Loose	30 deg
0,3	2	Loose	30 deg
0,4	3	Loose	30 deg
0,5	3	Loose	30 deg
0,6	3	Loose	30 deg
0,7	2	Loose	30 deg
0,8	3	Loose	30 deg
0,9	4	Med.Dense	30 deg
1	4	Med.Dense	30 deg
1,1	5	Med.Dense	32 deg
1,2	5	Med.Dense	32 deg
1,3	7	Med.Dense	34 deg
1,4	9	Med.Dense	35 deg
1,5	11	Dense	36 deg
1,6	13	Dense	37 deg
1,7	14	Dense	37 deg
1,8	15	Dense	37 deg
1,9	16	Dense	37 deg
2	17	Dense	37 deg
2,1	17	Dense	37 deg
2,2	18	Dense	37 deg
2,3	17	Dense	37 deg
2,4	18	Dense	37 deg
2,5	18	Dense	37 deg
	REF		

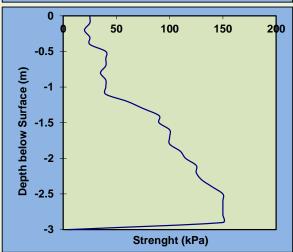


LC020-23 Makhaza Police Station 22-09-2023 DCP 13

3 m

The shear strength values are based on em			
Depth	Blows/	Inferred	Shear
(m)	0.1m	Consistency	Strength
0			
0,1	2	Loose	30 deg
0,2	2	Loose	30 deg
0,3	3	Loose	30 deg
0,4	3	Loose	30 deg
0,5	2	Loose	30 deg
0,6	2	Loose	30 deg
0,7	3	Loose	30 deg
0,8	3	Loose	30 deg
0,9	4	Med.Dense	30 deg
1	4	Med.Dense	30 deg
1,1	5	Med.Dense	32 deg
1,2	5	Med.Dense	32 deg
1,3	7	Med.Dense	34 deg
1,4	6	Med.Dense	33 deg
1,5	7	Med.Dense	34 deg
1,6	9	Med.Dense	35 deg
1,7	11	Dense	36 deg
1,8	12	Dense	36 deg
1,9	12	Dense	36 deg
2	13	Dense	37 deg
2,1	14	Dense	37 deg
2,2	14	Dense	37 deg
2,3	15	Dense	37 deg
2,4	14	Dense	37 deg
2,5	15	Dense	37 deg
2,6	15	Dense	37 deg
2,7	16	Dense	37 deg
2,8	17	Dense	37 deg
2,9	18	Dense	37 deg
3	19	Dense	37 deg

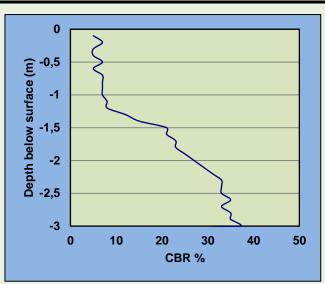


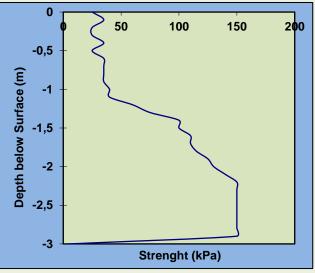


LC020-23 Makhaza Police Station 22-09-2023 DCP 14

3 m

The shear strength values are based on em			
Depth	Blows/	Inferred	Shear
(m)	0.1m	Consistency	Strength
0			
0.1	3	Loose	30 deg
0.2	3	Loose	30 deg
0.3	2	Loose	30 deg
0.4	3	Loose	30 deg
0.5	3	Loose	30 deg
0.6	5	Med.Dense	32 deg
0.7	5	Med.Dense	32 deg
0.8	5	Med.Dense	32 deg
0.9	4	Med.Dense	30 deg
1	5	Med.Dense	32 deg
1.1	5	Med.Dense	32 deg
1.2	5	Med.Dense	32 deg
1.3	7	Med.Dense	34 deg
1.4	9	Med.Dense	35 deg
1.5	11	Dense	36 deg
1.6	11	Dense	36 deg
1.7	12	Dense	36 deg
1.8	12	Dense	36 deg
1.9	12	Dense	36 deg
2	13	Dense	37 deg
2.1	14	Dense	37 deg
2.2	15	Dense	37 deg
2.3	15	Dense	37 deg
2.4	16	Dense	37 deg
2.5	17	Dense	37 deg
2.6	18	Dense	37 deg
2.7	18	Dense	37 deg
2.8	19	Dense	37 deg
2.9	19	Dense	37 deg
3	20	Dense	38 deg

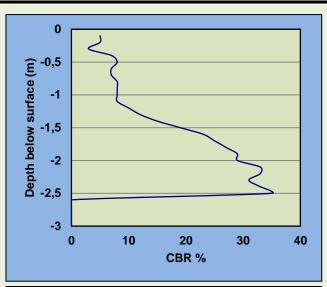


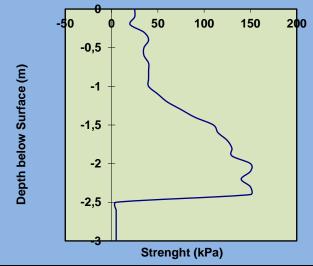


LC020-23 Makhaza Police Station 22-09-2023 DCP 15

3 m

The shear strength values are based on em			
Depth	Blows/	Inferred	Shear
(m)	0.1m	Consistency	Strength
0			
0,1	3	Loose	30 deg
0,2	4	Med.Dense	30 deg
0,3	3	Loose	30 deg
0,4	3	Loose	30 deg
0,5	4	Med.Dense	30 deg
0,6	3	Loose	30 deg
0,7	4	Med.Dense	30 deg
0,8	4	Med.Dense	30 deg
0,9	4	Med.Dense	30 deg
1	4	Med.Dense	30 deg
1,1	5	Med.Dense	32 deg
1,2	5	Med.Dense	32 deg
1,3	7	Med.Dense	34 deg
1,4	9	Med.Dense	35 deg
1,5	12	Dense	36 deg
1,6	12	Dense	36 deg
1,7	13	Dense	37 deg
1,8	13	Dense	37 deg
1,9	14	Dense	37 deg
2	15	Dense	37 deg
2,1	16	Dense	37 deg
2,2	17	Dense	37 deg
2,3	18	Dense	37 deg
2,4	18	Dense	37 deg
2,5	18	Dense	37 deg
2,6	19	Dense	37 deg
2,7	18	Dense	37 deg
2,8	19	Dense	37 deg
2,9	19	Dense	37 deg
3	20	Dense	38 deg

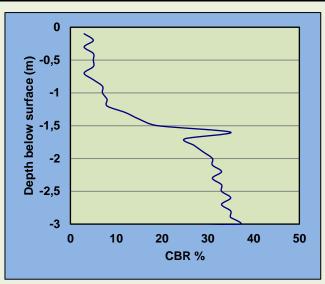


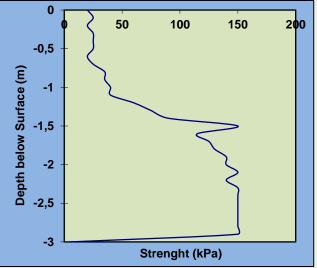


LC020-23 Makhaza Police Station 22-09-2023 DCP 16

2,5 m

The shear strength values are based on em			
Depth	Blows/	Inferred	Shear
(m)	0.1m	Consistency	Strength
0			
0,1	3	Loose	30 deg
0,2	3	Loose	30 deg
0,3	2	Loose	30 deg
0,4	4	Med.Dense	30 deg
0,5	5	Med.Dense	32 deg
0,6	4	Med.Dense	30 deg
0,7	4	Med.Dense	30 deg
0,8	5	Med.Dense	32 deg
0,9	5	Med.Dense	32 deg
1	5	Med.Dense	32 deg
1,1	5	Med.Dense	32 deg
1,2	6	Med.Dense	33 deg
1,3	7	Med.Dense	34 deg
1,4	9	Med.Dense	35 deg
1,5	11	Dense	36 deg
1,6	13	Dense	37 deg
1,7	14	Dense	37 deg
1,8	15	Dense	37 deg
1,9	16	Dense	37 deg
2	16	Dense	37 deg
2,1	18	Dense	37 deg
2,2	18	Dense	37 deg
2,3	17	Dense	37 deg
2,4	18	Dense	37 deg
2,5	19	Dense	37 deg
	REF		

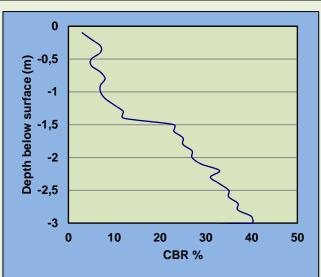


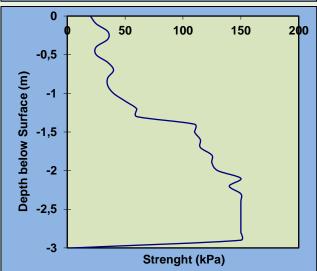


LC020-23 Makhaza Police Station 22-09-2023 DCP 17

3 m

The shear strength values are based on em			
Depth	Blows/	Inferred	Shear
(m)	0.1m	Consistency	Strength
0			
0,1	2	Loose	30 deg
0,2	3	Loose	30 deg
0,3	2	Loose	30 deg
0,4	3	Loose	30 deg
0,5	3	Loose	30 deg
0,6	3	Loose	30 deg
0,7	2	Loose	30 deg
0,8	3	Loose	30 deg
0,9	4	Med.Dense	30 deg
1	4	Med.Dense	30 deg
1,1	5	Med.Dense	32 deg
1,2	5	Med.Dense	32 deg
1,3	7	Med.Dense	34 deg
1,4	9	Med.Dense	35 deg
1,5	11	Dense	36 deg
1,6	19	Dense	37 deg
1,7	14	Dense	37 deg
1,8	15	Dense	37 deg
1,9	16	Dense	37 deg
2	17	Dense	37 deg
2,1	17	Dense	37 deg
2,2	18	Dense	37 deg
2,3	17	Dense	37 deg
2,4	18	Dense	37 deg
2,5	18	Dense	37 deg
2,6	19	Dense	37 deg
2,7	18	Dense	37 deg
2,8	19	Dense	37 deg
2,9	19	Dense	37 deg
3	20	Dense	38 deg



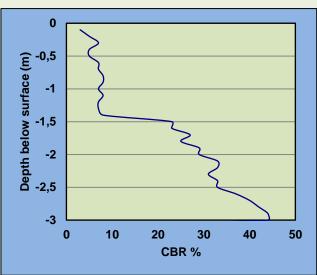


LC020-23 Makhaza Police Station 22-09-2023 DCP 18

3 m

i ne sr	near strengt	n values are ba	isea on em
Depth	Blows/	Inferred	Shear
(m)	0.1m	Consistency	Strength
0			
0,1	2	Loose	30 deg
0,2	3	Loose	30 deg
0,3	4	Med.Dense	30 deg
0,4	4	Med.Dense	30 deg
0,5	3	Loose	30 deg
0,6	3	Loose	30 deg
0,7	4	Med.Dense	30 deg
0,8	5	Med.Dense	32 deg
0,9	4	Med.Dense	30 deg
1	4	Med.Dense	30 deg
1,1	5	Med.Dense	32 deg
1,2	6	Med.Dense	33 deg
1,3	7	Med.Dense	34 deg
1,4	7	Med.Dense	34 deg
1,5	13	Dense	37 deg
1,6	13	Dense	37 deg
1,7	14	Dense	37 deg
1,8	14	Dense	37 deg
1,9	15	Dense	37 deg
2	15	Dense	37 deg
2,1	16	Dense	37 deg
2,2	18	Dense	37 deg
2,3	17	Dense	37 deg
2,4	18	Dense	37 deg
2,5	19	Dense	37 deg
2,6	19	Dense	37 deg
2,7	20	Dense	38 deg
2,8	20	Dense	38 deg
2,9	21	Dense	38 deg
3	21	Dense	38 deg

LC020-23 Makhaza Police Station 22-09-2023 DCP 19

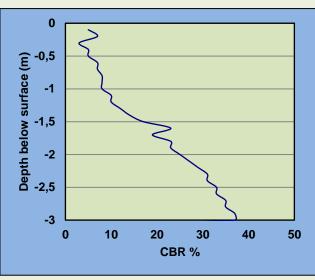

3 m

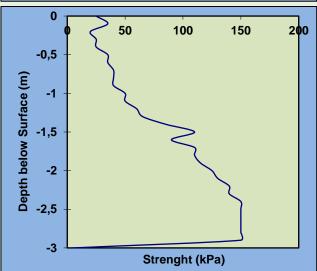

The shear strength values are based on empirical calculations and should be used as a guide only

The shear strength values are based on em			
Depth	Blows/	Inferred	Shear
(m)	0.1m	Consistency	Strength
0			
0,1	2	Loose	30 deg
0,2	3	Loose	30 deg
0,3	4	Med.Dense	30 deg
0,4	3	Loose	30 deg
0,5	3	Loose	30 deg
0,6	4	Med.Dense	30 deg
0,7	4	Med.Dense	30 deg
0,8	5	Med.Dense	32 deg
0,9	5	Med.Dense	32 deg
1	4	Med.Dense	30 deg
1,1	5	Med.Dense	32 deg
1,2	4	Med.Dense	30 deg
1,3	4	Med.Dense	30 deg
1,4	5	Med.Dense	32 deg
1,5	13	Dense	37 deg
1,6	13	Dense	37 deg
1,7	15	Dense	37 deg
1,8	14	Dense	37 deg
1,9	16	Dense	37 deg
2	16	Dense	37 deg
2,1	18	Dense	37 deg
2,2	18	Dense	37 deg
2,3	17	Dense	37 deg
2,4	18	Dense	37 deg
2,5	18	Dense	37 deg
2,6	20	Dense	38 deg
2,7	21	Dense	38 deg
2,8	22	Dense	38 deg
2,9	23	Dense	38 deg

23

Dense

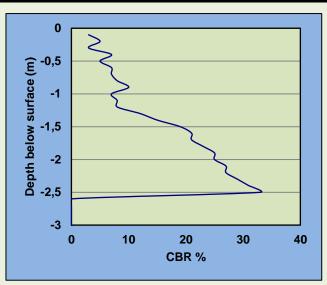

38 deg

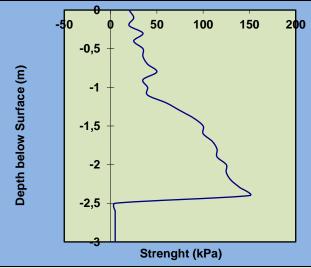


LC020-23 Makhaza Police Station 22-09-2023 DCP 20

3 m

The shear strength values are based on em			
Depth	Blows/	Inferred	Shear
(m)	0.1m	Consistency	Strength
0			
0,1	3	Loose	30 deg
0,2	4	Med.Dense	30 deg
0,3	2	Loose	30 deg
0,4	3	Loose	30 deg
0,5	3	Loose	30 deg
0,6	4	Med.Dense	30 deg
0,7	4	Med.Dense	30 deg
0,8	5	Med.Dense	32 deg
0,9	5	Med.Dense	32 deg
1	5	Med.Dense	32 deg
1,1	6	Med.Dense	33 deg
1,2	6	Med.Dense	33 deg
1,3	7	Med.Dense	34 deg
1,4	8	Med.Dense	35 deg
1,5	10	Med.Dense	36 deg
1,6	13	Dense	37 deg
1,7	11	Dense	36 deg
1,8	13	Dense	37 deg
1,9	13	Dense	37 deg
2	14	Dense	37 deg
2,1	15	Dense	37 deg
2,2	16	Dense	37 deg
2,3	17	Dense	37 deg
2,4	17	Dense	37 deg
2,5	18	Dense	37 deg
2,6	18	Dense	37 deg
2,7	19	Dense	37 deg
2,8	19	Dense	37 deg
2,9	20	Dense	38 deg
3	20	Dense	38 deg

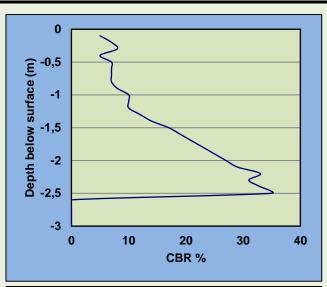


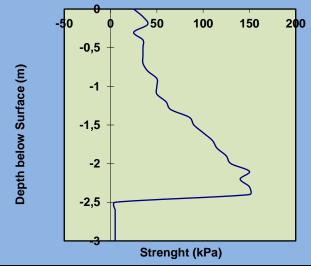


LC020-23 Makhaza Police Station 22-09-2023 DCP 21

2,5 m

ine sr	iear strengi	in values are ba	sea on em
Depth	Blows/	Inferred	Shear
(m)	0.1m	Consistency	Strength
0			
0,1	2	Loose	30 deg
0,2	3	Loose	30 deg
0,3	2	Loose	30 deg
0,4	4	Med.Dense	30 deg
0,5	3	Loose	30 deg
0,6	4	Med.Dense	30 deg
0,7	4	Med.Dense	30 deg
0,8	5	Med.Dense	32 deg
0,9	6	Med.Dense	33 deg
1	4	Med.Dense	30 deg
1,1	5	Med.Dense	32 deg
1,2	5	Med.Dense	32 deg
1,3	7	Med.Dense	34 deg
1,4	9	Med.Dense	35 deg
1,5	11	Dense	36 deg
1,6	12	Dense	36 deg
1,7	12	Dense	36 deg
1,8	13	Dense	37 deg
1,9	14	Dense	37 deg
2	14	Dense	37 deg
2,1	15	Dense	37 deg
2,2	15	Dense	37 deg
2,3	16	Dense	37 deg
2,4	17	Dense	37 deg
2,5	18	Dense	37 deg
	REF		





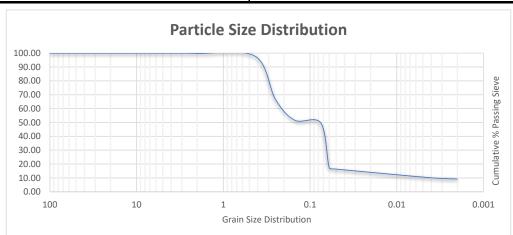
LC020-23 Makhaza Police Station 22-09-2023 DCP 22

2,5 m

The shear strength values are based on em			
Depth	Blows/	Inferred	Shear
(m)	0.1m	Consistency	Strength
0			
0,1	3	Loose	30 deg
0,2	4	Med.Dense	30 deg
0,3	5	Med.Dense	32 deg
0,4	3	Loose	30 deg
0,5	4	Med.Dense	30 deg
0,6	4	Med.Dense	30 deg
0,7	4	Med.Dense	30 deg
0,8	4	Med.Dense	30 deg
0,9	5	Med.Dense	32 deg
1	6	Med.Dense	33 deg
1,1	6	Med.Dense	33 deg
1,2	6	Med.Dense	33 deg
1,3	7	Med.Dense	34 deg
1,4	8	Med.Dense	35 deg
1,5	10	Med.Dense	36 deg
1,6	11	Dense	36 deg
1,7	12	Dense	36 deg
1,8	13	Dense	37 deg
1,9	14	Dense	37 deg
2	15	Dense	37 deg
2,1	16	Dense	37 deg
2,2	18	Dense	37 deg
2,3	17	Dense	37 deg
2,4	18	Dense	37 deg
2,5	19	Dense	37 deg
	REF		

Appendix C: Laboratory Results

TEST REPORT: SANS 3001- GR1 - GR12				
Client Name:		Luhlaza Ref:		
	W Pr. L. WO		40/44/2022	
Area:	Khayelitsha, WC	Date Analysed:	19/11/2023	
Project Name:	Makhaza Police Station	Technical Signatory	Richard Malungani	
Attention:		rechnical Signatory	TR.	
			CHI)	
Sample No:			TP1A	
Depth of Sample Taken (m):		0,6-1,0		
Material Class:		Soils and Gravels		
Date Received.			22/09/2023	
Description of Sample		Light Bro	wn to White Silty Sand	
	100.00		100.00	
	75.00		100.00	
	37.50		100.00	
	26.50		100.00	
	19.00		100.00	
	13.20		100.00	
Sieve Analysis (mm)	4.75	100.00		
, , ,	2.00	99.80		
	0.43	97.80		
	0.25	66.60		
	0.15		51.60	
	0.075		49.60	
	0.060		17.26	
	0.050		16.36	
Hydrometer Analysis (mm)	0.004		10.08	
	0.002		9.20	
Classific	cation	RAW	%	
CLA		16.362	17	
SIL	Т	33.238	32	
SAN	ID	50.200	50	
GRAVEL		0.200	0	
	LL%		22.1	
Atterberg Limit	P.I.		0.0	
LS%			0.0	
GM			0.53	
Classification	AASHTO	A-4 - Silty Soils	TRH14	
	USCS	SM - Silty Sand	>G10	


TEST REPORT: SANS 3001- GR1 - GR12

Client Name: 0 Luhlaza Ref: 0

Client Address: Khayelitsha, WC Date Analysed: 19/11/2023

Project Name: Makhaza Police Station Richard Malungani Technical Signatory

Excavation No.	TP1A
Depth of Sample Taken:	0,6-1,0
Material Class:	Soils and Gravels
Date Received.	22/09/2023
Description of Sample	Light Brown to White Silty Sand

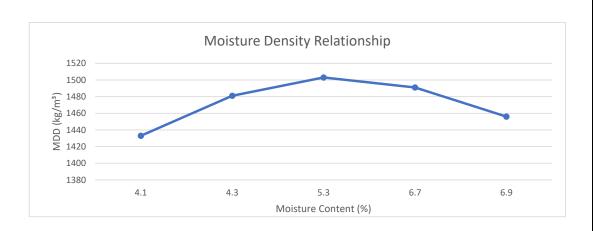
Clay Activi	ty Index (AI)		
AI = <u>LL-PL</u>			
Clay (%)	0.00		
	Natural I	Moisture Content	
		Container + Sample (Wet)	660
Ory Sample: 500g		Container + Sample (Dry)	622
		Moisture %	5.8
DIL EG TD	2. T (9a)		5.8
PH - EC - TD:	S - Temp (°C)	Moisture % Potential Expansivity	5.8
PH - EC - TD:	6 - Temp (°C) 7.1		5.8 X
	1 ()	Potential Expansivity	
рН	7.1	Potential Expansivity Low	

TEST REPORT: MOD AASHTO - SANS 3001 - GR31

Client Name: 0 Luhlaza Ref: Jan-00

Client Address: Khayelitsha, WC Date Analysed: 19/11/2023

Project Name: Makhaza Police Station Richard Malungani Technical Signatory


Attention:

Excavation No.	TP1A
Depth of Sample Taken:	0,6-1,0
Material Class:	Soils and Gravels
Date Received.	22/09/2023

Light Brown to White Silty Sand **Description of Sample**

	TEST METHOD	MOD AASHTO
Mould No.	Moisture (%)	Dry Density (kg/m³)
1	4.1	1433
2	4.3	1481
3	5.3	1503
4	6.7	1491
5	6.9	1456

Optimum Moisture Content (%) (OMC)	Maximum Dry density (kg/m³) (MDD)
5.3	1503

TFST	RFPORT.	CRR.	- SANS 3001	- GR40

Client Name: 0 Luhlaza Ref: 0

Client Address: Khayelitsha, WC Date Analysed: 8/5/2023

Project Name: Makhaza Police Station Richard Malungani

Technical Signatory Attention:

Excavation No. TP1A Depth of Sample Taken: 0,6-1,0 **Material Class:** Soils and Gravels Date Received. 22/09/2023

Description of Sample Light Brown to White Silty Sand

Material Utilization - Earthworks Classification				
Group A - Granular Soils		Х		
Group B - Low Plasticity Soils				
Group C - High Plasticity Soils				
Group D - Durable Rock				
Group E - Degradable Rock				
Group F - Topsoil				
Group G - Organic Soils				
CBR Final Results		CBR %		
CBR @ 100% Compaction		4		
CBR @ 98% Compaction		4		
CBR @ 97% Compaction		3		
CBR @ 95% Compaction		2		
CBR @ 93% Compaction		2		
CBR @ 90% Compaction		1		
Swell @ 100% Compaction		0		
Classification	TRH14	>G10		

$$S = \frac{(k-l)}{127} \times 100$$

Where:

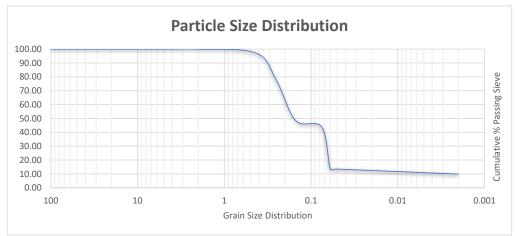
S = swell expressed as a percentage of the height of the moulded material before soaking i.e. 127mm

K = dial gauge reading after four days of soaking

L = dial gauge reading before soaking

NB: The swell is reported to the nearest first decimal point.

TEST REPORT: SANS 3001- GR1 - GR12				
Client Name:		Luhlaza Ref:		
Area:	Khayelitsha, WC	Date Analysed:	19/11/2023	
Project Name: Attention:	Makhaza Police Station	Technical Signatory	Richard Malungani	
Sample No:			TP2B	
Depth of Sample Taken (m):			2,0-2,4	
Material Class:		Sc	Soils and Gravels	
Date Received.			22/09/2023	
Description of Sample		Light Bro	wn to White Silty Sand	
	100.00		100.00	
	75.00		100.00	
	37.50		100.00	
	26.50		100.00	
	19.00		100.00	
	13.20		100.00	
Sieve Analysis (mm)	4.75	100.00		
	2.00	100.00		
	0.43	97.20		
	0.25	77.40		
	0.15		48.40	
	0.075		43.80	
	0.060		13.49	
	0.050		13.49	
Hydrometer Analysis (mm)	0.004		10.67	
	0.002	9.88		
Classific		RAW	%	
CLA		13.490	13	
SIL		30.310	30	
SAN		56.200	56	
GRA		0.000	0	
	LL%		23.4	
Atterberg Limit	P.I.		0.0	
	LS%		0.0	
	GM		0.59	
Classification	AASHTO	A-4 - Silty Soils	TRH14	
	USCS	SM - Silty Sand	>G10	


TEST REPORT: SANS 3001- GR1 - GR12

Client Name: 0 Luhlaza Ref:

Client Address: Khayelitsha, WC Date Analysed: 19/11/2023

Project Name: Makhaza Police Station Richard Malungani Technical Signatory

Excavation No.	TP2B
Depth of Sample Taken:	2,0-2,4
Material Class:	Soils and Gravels
Date Received.	22/09/2023
Description of Sample	Light Brown to White Silty Sand

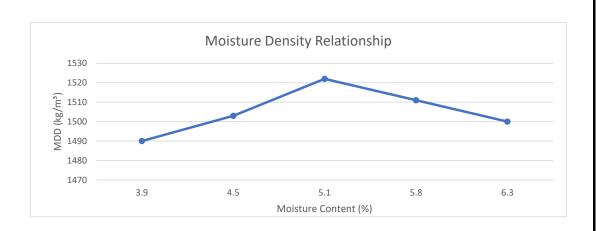
Clay Activ	ity Index (AI)		
AI = <u>LL-PL</u>			
Clay (%)	0.00		
	Natural Mo	pisture Content	
		Container + Sample (Wet)	660
Dry Sample: 500g		Container + Sample (Dry)	630
		Moisture %	4.5
		Moisture %	4.5
PH - EC - TD	S - Temp (°C)	Potential Expansivity	4.5
PH - EC - TD	S - Temp (°C) 7.7		4.5 X
		Potential Expansivity	
рН	7.7	Potential Expansivity Low	

TEST REPORT: MOD AASHTO - SANS 3001 - GR31

Client Name: 0 Luhlaza Ref: Jan-00

Client Address: Khayelitsha, WC Date Analysed: 19/11/2023

Project Name: Makhaza Police Station Richard Malungani Technical Signatory


Attention:

Excavation No.	TP2B
Depth of Sample Taken:	2,0-2,4
Material Class:	Soils and Gravels
Date Received.	22/09/2023

Light Brown to White Silty Sand **Description of Sample**

	TEST METHOD	MOD AASHTO
Mould No.	Moisture (%)	Dry Density (kg/m³)
1	3.9	1490
2	4.5	1503
3	5.1	1522
4	5.8	1511
5	6.3	1500

Optimum Moisture Content (%) (OMC)	Maximum Dry density (kg/m³) (MDD)
5.1	1522

TEST REPORT: CBR - SANS 3001 - GR40

Client Name: 0 Luhlaza Ref: 0

Client Address: Khayelitsha, WC Date Analysed: 8/5/2023

Project Name: Makhaza Police Station Richard Malungani Technical Signatory

Attention:

Excavation No. TP2B Depth of Sample Taken: 2,0-2,4 Soils and Gravels **Material Class:** Date Received. 22/09/2023

Description of Sample Light Brown to White Silty Sand

Material Utilization - Earthworks Classification				
Group A - Granular Soils		Х		
Group B - Low Plasticity Soils				
Group C - High Plasticity Soils				
Group D - Durable Rock				
Group E - Degradable Rock				
Group F - Topsoil				
Group G - Organic Soils				
CBR Final Results		CBR %		
CBR @ 100% Compaction		5		
		J		
CBR @ 98% Compaction		4		
CBR @ 98% Compaction CBR @ 97% Compaction				
·		4		
CBR @ 97% Compaction		4 4		
CBR @ 97% Compaction CBR @ 95% Compaction		4 4 3		
CBR @ 97% Compaction CBR @ 95% Compaction CBR @ 93% Compaction		4 4 3 2		

$$S = \frac{(k-l)}{127} \times 100$$

Where:

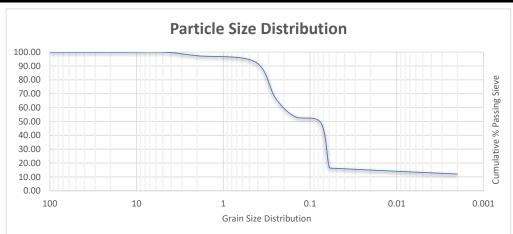
S = swell expressed as a percentage of the height of the moulded material before soaking i.e. 127mm

K = dial gauge reading after four days of soaking

L = dial gauge reading before soaking

NB: The swell is reported to the nearest first decimal point.

TEST REPORT: SANS 3001- GR1 - GR12				
Client Name:		Luhlaza Ref:		
Area:	Khayelitsha, WC	Date Analysed:	19/11/2023	
Project Name:	Makhaza Police Station	Technical Signatory	Richard Malungani	
Attention:			Br.	
Sample No:			TP3C	
Depth of Sample Taken (m):			0,6-1,0	
Material Class:		Sc	Soils and Gravels	
Date Received.			22/09/2023	
Description of Sample		Light Brov	wn to White Silty Sand	
	100.00		100.00	
	75.00		100.00	
	37.50		100.00	
	26.50		100.00	
	19.00		100.00	
	13.20		100.00	
Sieve Analysis (mm)	4.75	100.00		
	2.00	97.40		
	0.43	93.00		
	0.25	66.80		
	0.15		53.60	
	0.075		49.00	
			4-0-	
	0.060		17.05	
Hydrometer Analysis (mm)	0.050		16.16	
0.004		12.92		
Ola a diffe	0.002	5444	12.04	
Classific		RAW	%	
CLA		16.164	17	
SIL* SAN		32.836	32	
SAN GRA\		48.400	48	
GRA	LL%	2.600	21.9	
Atterberg Limit	P.I.		0.0	
ALLEI DEI G LIIIIIL	LS%		0.0	
	GM		0.61	
Classification	AASHTO	A-4 - Silty Soils	TRH14	
Ciassification	USCS	SM - Silty Soils	>G10	
	Notes: Data Reported above			


TEST REPORT: SANS 3001- GR1 - GR12

Client Name: 0 Luhlaza Ref: 0

Client Address: Khayelitsha, WC Date Analysed: 19/11/2023

Project Name: Makhaza Police Station Richard Malungani Technical Signatory

Excavation No.	TP3C
Depth of Sample Taken:	0,6-1,0
Material Class:	Soils and Gravels
Date Received.	22/09/2023
Description of Sample	Light Brown to White Silty Sand

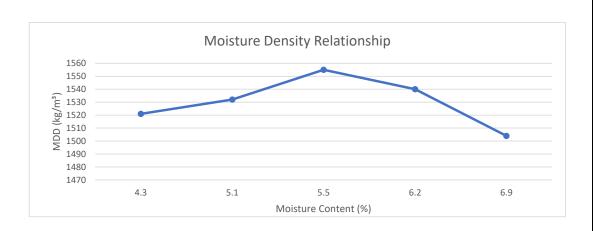
660
625
5.3
Χ
_

TEST REPORT: MOD AASHTO - SANS 3001 - GR31

Client Name: 0 Luhlaza Ref: Jan-00

Client Address: Khayelitsha, WC Date Analysed: 19/11/2023

Project Name: Makhaza Police Station Richard Malungani Technical Signatory


Attention:

Excavation No.	TP3C
Depth of Sample Taken:	0,6-1,0
Material Class:	Soils and Gravels
Date Received.	22/09/2023

Description of Sample Light Brown to White Silty Sand

TEST METHOD		MOD AASHTO
Mould No.	Moisture (%)	Dry Density (kg/m³)
1	4.3	1521
2	5.1	1532
3	5.5	1555
4	6.2	1540
5	6.9	1504

Optimum Moisture Content (%) (OMC)	Maximum Dry density (kg/m³) (MDD)
5 5	1555

TFST	REPORT:	CBR -	SANS 3001	- GR40

0 Luhlaza Ref: Client Name: 0

Client Address: Khayelitsha, WC Date Analysed: 8/5/2023

Richard Malungani Project Name: Makhaza Police Station

Technical Signatory Attention:

Excavation No. TP3C Depth of Sample Taken: 0,6-1,0 **Material Class:** Soils and Gravels Date Received. 22/09/2023

Description of Sample Light Brown to White Silty Sand

Material Utilization - Earthworks Classification					
Group A - Granular Soils	X				
Group B - Low Plasticity Soils					
Group C - High Plasticity Soils					
Group D - Durable Rock					
Group E - Degradable Rock					
Group F - Topsoil					
Group G - Organic Soils					
CBR Final Results	CBR %				
CBR @ 100% Compaction	4				
CBR @ 98% Compaction	3				
CBR @ 97% Compaction	3				
CBR @ 95% Compaction	2				
CBR @ 93% Compaction	1				
CBR @ 90% Compaction		1			
Swell @ 100% Compaction		0			
Classification	TRH14	>G10			

$$S = \frac{(k-l)}{127} \times 100$$

Where:

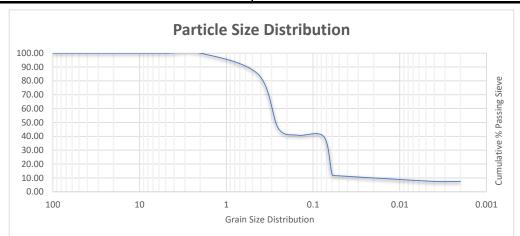
S = swell expressed as a percentage of the height of the moulded material before soaking i.e. 127mm

K = dial gauge reading after four days of soaking

L = dial gauge reading before soaking

NB: The swell is reported to the nearest first decimal point.

	TEST REPORT: SANS 3001- GR1 - GR12					
Client Name:		Luhlaza Ref:				
Area:	Khayelitsha, WC	Date Analysed:	19/11/2023			
Project Name: Attention:	Makhaza Police Station	Technical Signatory Richard Malungani				
Sample No:		TP7D				
Depth of Sample Taken (m):			2,0-2,4			
Material Class:		Sc	oils and Gravels			
Date Received.			22/09/2023			
Description of Sample		Light Bro	wn to White Silty Sand			
	100.00		100.00			
	75.00		100.00			
	37.50		100.00			
Sieve Analysis (mm)	26.50		100.00			
	19.00		100.00			
	13.20		100.00			
	4.75		100.00			
	2.00		100.00			
	0.43	84.80				
	0.25	45.60				
	0.15		40.80			
	0.075		39.80			
	0.060		12.26			
	0.050		11.51			
Hydrometer Analysis (mm)	0.004		7.48			
	0.002		7.48			
Classific		RAW	%			
CLA		11.513	12			
SIL		28.287	28			
SAN		60.200 60				
	GRAVEL 0.000		0			
	LL%		20.7			
Atterberg Limit	P.I.		0.0			
		0.0				
	GM		0.75			
Classification	AASHTO	A-4 - Silty Soils	TRH14			
	USCS	SM - Silty Sand	>G10			


TEST REPORT: SANS 3001- GR1 - GR12

Client Name: 0 Luhlaza Ref: 0

Client Address: Khayelitsha, WC Date Analysed: 19/11/2023

Project Name: Makhaza Police Station Richard Malungani Technical Signatory

Excavation No.	TP7D	
Depth of Sample Taken:	2,0-2,4	
Material Class:	Soils and Gravels	
Date Received.	22/09/2023	
Description of Sample	Light Brown to White Silty Sand	

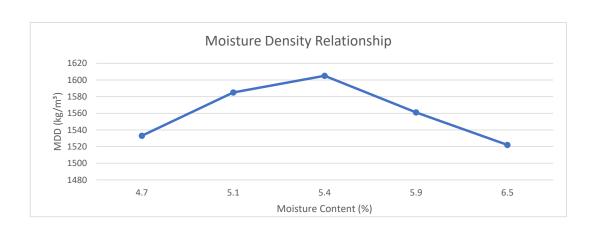
Clay	Activity Index (AI)			
AI = <u>LL-PL</u>				
Clay (%)	0.00			
	Natural Mois	ture Content		
		Container + Sample (Wet)	660	
Dry Sample: 500g		Container + Sample (Dry)	623	
		Moisture %	5.6	
PH - EC - TDS - Temp (°C) Potential Expansivity				
рН	7.3	Low	Х	
EC (μS/cm)	202	Medium		
TDS (ppm)	101	High		
Temp (°C)	21.8	Organic or Waste		
Notes: Data Reported above relates to sample tested.				

TEST REPORT: MOD AASHTO - SANS 3001 - GR31

Client Name: 0 Luhlaza Ref: Jan-00

Client Address: Khayelitsha, WC Date Analysed: 19/11/2023

Project Name: Makhaza Police Station Richard Malungani Technical Signatory


Attention:

Excavation No.	TP7D
Depth of Sample Taken:	2,0-2,4
Material Class:	Soils and Gravels
Date Received.	22/09/2023

Light Brown to White Silty Sand **Description of Sample**

TEST METHOD		MOD AASHTO
Mould No. Moisture (%)		Dry Density (kg/m³)
1	4.7	1533
2	5.1	1585
3	5.4	1605
4	5.9	1561
5	6.5	1522

Optimum Moisture Content (%) (OMC)	Maximum Dry density (kg/m³) (MDD)
5.4	1605

TFST I	REDORT.	CRR	- SANS 2001	- GR40

Client Name: 0 Luhlaza Ref:

Client Address: Khayelitsha, WC Date Analysed: 8/5/2023

Project Name: Makhaza Police Station Richard Malungani

Technical Signatory Attention:

Excavation No. TP7D Depth of Sample Taken: 2,0-2,4 Soils and Gravels **Material Class:** Date Received. 22/09/2023

Description of Sample Light Brown to White Silty Sand

Material Utilization - Earthworks Classification			
Group A - Granular Soils		Х	
Group B - Low Plasticity Soils			
Group C - High Plasticity Soils			
Group D - Durable Rock			
Group E - Degradable Rock			
Group F - Topsoil			
Group G - Organic Soils			
CBR Final Results	CBR %		
CBR @ 100% Compaction		4	
CBR @ 98% Compaction	4		
CBR @ 97% Compaction	3		
CBR @ 95% Compaction		2	
CBR @ 93% Compaction		2	
CBR @ 90% Compaction		1	
Swell @ 100% Compaction		0	
Classification	TRH14	>G10	

$$S = \frac{(k-l)}{127} \times 100$$

Where:

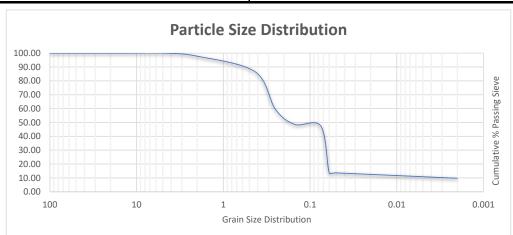
S = swell expressed as a percentage of the height of the moulded material before soaking i.e. 127mm

K = dial gauge reading after four days of soaking

L = dial gauge reading before soaking

NB: The swell is reported to the nearest first decimal point.

TEST REPORT: SANS 3001- GR1 - GR12				
Client Name:		Luhlaza Ref:		
Area:	Khayelitsha, WC	Date Analysed:	19/11/2023	
Project Name: Attention:	Makhaza Police Station	Technical Signatory	Richard Malungani	
Sample No:			TP8E	
Depth of Sample Taken (m):			0,5-0,9	
Material Class:		Sc	oils and Gravels	
Date Received.			22/09/2023	
Description of Sample		Light Bro	wn to White Silty Sand	
	100.00		100.00	
	75.00		100.00	
	37.50		100.00	
	26.50		100.00	
	19.00		100.00	
	13.20		100.00	
Sieve Analysis (mm)	4.75	100.00		
	2.00	97.80		
	0.43	86.60		
	0.25	59.40		
	0.15	48.60		
	0.075	47.40		
	0.000		42.65	
	0.060		13.65	
Hydrometer Analysis (mm)	0.050 0.004		13.65	
	0.002		10.59 9.74	
Classific		RAW	%	
		13.651	14	
CLAY SILT		33.749	34	
SAND		50.400	50	
GRA		2.200	2	
	LL%	2.200	23.1	
Atterberg Limit	P.I.		0.0	
LS%		0.0		
	GM		0.68	
Classification	AASHTO	A-4 - Silty Soils	TRH14	
	USCS	SM - Silty Sand	>G10	


TEST REPORT: SANS 3001- GR1 - GR12

Client Name: 0 Luhlaza Ref: 0

Client Address: Khayelitsha, WC Date Analysed: 19/11/2023

Project Name: Makhaza Police Station Richard Malungani Technical Signatory

Excavation No.	TP8E
Depth of Sample Taken:	0,5-0,9
Material Class:	Soils and Gravels
Date Received.	22/09/2023
Description of Sample	Light Brown to White Silty Sand

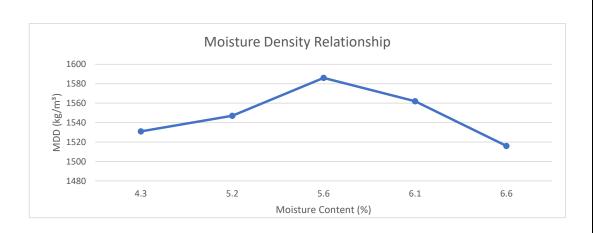
Clay Acti	vity Index (AI)		
AI = <u>LL-PL</u>			
Clay (%)	0.00		
	Natural	Moisture Content	
		Container + Sample (Wet)	660
- · · - · -		Containor I Commis (Dm.)	620
Dry Sample: 500g		Container + Sample (Dry)	620
Dry Sample: 500g		Moisture %	6.1
Dry Sample: 500g			
	DS - Temp (°C)		
	DS - Temp (°C) 6.9	Moisture %	
PH - EC - T		Moisture % Potential Expansivity	6.1
PH - EC - T	6.9	Potential Expansivity Low	6.1

TEST REPORT: MOD AASHTO - SANS 3001 - GR31

Client Name: 0 Luhlaza Ref: Jan-00

Client Address: Khayelitsha, WC Date Analysed: 19/11/2023

Project Name: Makhaza Police Station Richard Malungani Technical Signatory


Attention:

Excavation No.	TP8E
Depth of Sample Taken:	0,5-0,9
Material Class:	Soils and Gravels
Date Received	22/00/2023

Description of Sample Light Brown to White Silty Sand

	TEST METHOD	MOD AASHTO
Mould No.	Moisture (%)	Dry Density (kg/m³)
1	4.3	1531
2	5.2	1547
3	5.6	1586
4	6.1	1562
5	6.6	1516

Optimum Moisture Content (%) (OMC)	Maximum Dry density (kg/m³) (MDD)
5.6	1586

TEST REPORT:	CRR	- SANS 3001	- GR40

Client Name: 0 Luhlaza Ref: 0

Client Address: Khayelitsha, WC Date Analysed: 8/5/2023

Project Name: Makhaza Police Station Richard Malungani Technical Signatory

Attention:

Excavation No.	TP8E
Depth of Sample Taken:	0,5-0,9
Material Class:	Soils and Gravels
Date Received.	22/09/2023

Description of Sample Light Brown to White Silty Sand

Material Utilization - Earthworks Classification			
Group A - Granular Soils		Х	
Group B - Low Plasticity Soils			
Group C - High Plasticity Soils			
Group D - Durable Rock			
Group E - Degradable Rock			
Group F - Topsoil			
Group G - Organic Soils			
CBR Final Results		CBR %	
CBR @ 100% Compaction		4	
CBR @ 98% Compaction		4	
CBR @ 97% Compaction	3		
CBR @ 95% Compaction	2		
CBR @ 93% Compaction		1	
CBR @ 90% Compaction		1	
Swell @ 100% Compaction		0	
Classification	TRH14	>G10	

$$S = \frac{(k-l)}{127} \times 100$$

Where:

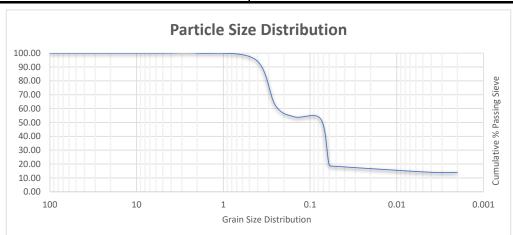
S = swell expressed as a percentage of the height of the moulded material before soaking i.e. 127mm

K = dial gauge reading after four days of soaking

L = dial gauge reading before soaking

NB: The swell is reported to the nearest first decimal point.

TEST REPORT: SANS 3001- GR1 - GR12				
Client Name:		Luhlaza Ref:		
Area:	Khayelitsha, WC	Date Analysed:	19/11/2023	
Project Name: Attention:	Makhaza Police Station	Technical Signatory	Richard Malungani	
			CH32	
Sample No:			TP10F	
Depth of Sample Taken (m):			0,5-0,9	
Material Class:		Sc	Soils and Gravels	
Date Received.			22/09/2023	
Description of Sample		Light Bro	wn to White Silty Sand	
	100.00		100.00	
	75.00		100.00	
	37.50		100.00	
	26.50		100.00	
	19.00		100.00	
	13.20		100.00	
Sieve Analysis (mm)	4.75	100.00		
	2.00	100.00		
	0.43	95.60		
	0.25	62.20		
	0.15	54.00		
	0.075	52.40		
			40.00	
	0.060		19.28	
Hydrometer Analysis (mm)	0.050		18.35	
	0.004		14.04	
	0.002	=	14.04	
Classific		RAW	%	
CLA		18.350	19	
SIL		34.050	33	
SAN		47.600	48	
GRAV		0.000	0	
Attouboug Lineit	LL%		19.9	
Atterberg Limit	P.I.		0.0	
	LS%		0.0	
Classification	GM	A 4 C11 C-11	0.52	
Classification	AASHTO	A-4 - Silty Soils	TRH14	
	USCS	SM - Silty Sand	G10	


TEST REPORT: SANS 3001- GR1 - GR12

Client Name: 0 Luhlaza Ref: 0

Client Address: Khayelitsha, WC Date Analysed: 19/11/2023

Project Name: Makhaza Police Station Richard Malungani Technical Signatory

Excavation No.	TP10F
Depth of Sample Taken:	0,5-0,9
Material Class:	Soils and Gravels
Date Received.	22/09/2023
Description of Sample	Light Brown to White Silty Sand

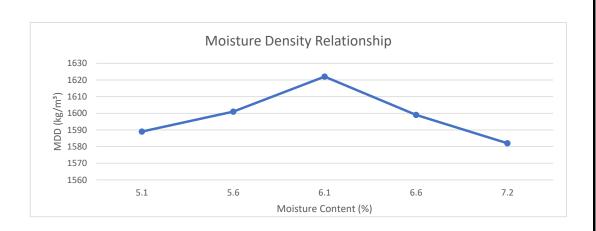
	OI	ani size distribution		
Clay A	ctivity Index (AI)			
AI = <u>LL-PL</u>				
Clay (%)	0.00	555		
	Natural M	loisture Content		
		Container + Sample (Wet)	660	
Dry Sample: 500g		Container + Sample (Dry)	618	
		Moisture %	6.4	
PH - EC -	· TDS - Temp (°C)	Potential Expansivity		
рН	8.3	Low	X	
EC (µS/cm)	167	Medium		
TDS (ppm)	92	High		
Temp (°C)	22.5	Organic or Waste		
	Notes: Data Reported a	bove relates to sample tested.		

TEST REPORT: MOD AASHTO - SANS 3001 - GR31

Client Name: 0 Luhlaza Ref: Jan-00

Client Address: Khayelitsha, WC Date Analysed: 19/11/2023

Project Name: Makhaza Police Station Richard Malungani Technical Signatory


Attention:

Excavation No.	TP10F
Depth of Sample Taken:	0,5-0,9
Material Class:	Soils and Gravels
Date Received.	22/09/2023

Light Brown to White Silty Sand **Description of Sample**

TEST METHOD		MOD AASHTO
Mould No.	Moisture (%)	Dry Density (kg/m³)
1	5.1	1589
2	5.6	1601
3	6.1	1622
4	6.6	1599
5	7.2	1582

Optimum Moisture Content (%) (OMC)	Maximum Dry density (kg/m³) (MDD)
6.1	1622

TFST	REPORT:	CBR	- SANS 3001	- GR40

0 Luhlaza Ref: Client Name: 0

Client Address: Khayelitsha, WC Date Analysed: 8/5/2023

Richard Malungani Project Name: Makhaza Police Station

Technical Signatory Attention:

Excavation No. TP10F Depth of Sample Taken: 0,5-0,9 **Material Class:** Soils and Gravels Date Received. 22/09/2023

Description of Sample Light Brown to White Silty Sand

Material Utilization - Earthworks Classification				
Group A - Granular Soils		Х		
Group B - Low Plasticity Soils				
Group C - High Plasticity Soils				
Group D - Durable Rock				
Group E - Degradable Rock				
Group F - Topsoil				
Group G - Organic Soils				
CBR Final Results		CBR %		
CBR @ 100% Compaction		6		
CBR @ 98% Compaction		5		
CBR @ 97% Compaction	5			
CBR @ 95% Compaction		4		
CBR @ 93% Compaction		3		
CBR @ 90% Compaction		2		
	0			
Swell @ 100% Compaction		0		

$$S = \frac{(k-l)}{127} \times 100$$
Where:
$$S = \text{swell expressed as a period}$$

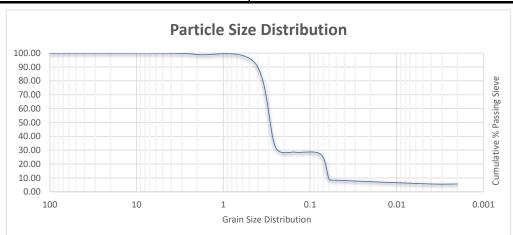
S = swell expressed as a percentage of the height of the moulded material before soaking i.e. 127mm

K = dial gauge reading after four days of soaking

L = dial gauge reading before soaking

NB: The swell is reported to the nearest first decimal point.

TEST REPORT: SANS 3001- GR1 - GR12				
Client Name:		Luhlaza Ref:		
Area:	Khayelitsha, WC	Date Analysed:	19/11/2023	
Project Name:	Makhaza Police Station	Technical Signatory	Richard Malungani	
Attention:		By.		
Sample No:			TP11G	
Depth of Sample Taken (m):			1,8-2,2	
Material Class:		Soils and Gravels		
Date Received.			22/09/2023	
Description of Sample		Light Brov	wn to White Silty Sand	
	100.00		100.00	
	75.00		100.00	
	37.50		100.00	
	26.50		100.00	
	19.00		100.00	
	13.20	100.00		
Sieve Analysis (mm)	4.75	100.00		
	2.00	99.00		
	0.43	92.80		
	0.25	32.20		
	0.15		28.60	
	0.075		27.00	
	0.050		0.00	
	0.060		8.86 8.36	
Hydrometer Analysis (mm)	0.050 0.004		5.62	
Classific	0.002	DAW	5.62	
		RAW 8.359	% 9	
CLAY		18.641	18	
SILT SAND		72.000	72	
GRAVEL		1.000	1	
diav	LL%	1.000	23.7	
Atterberg Limit	P.I.		0.0	
	LS%		0.0	
GM			0.81	
Classification	AASHTO	A-4 - Silty Soils	TRH14	
	USCS	SM - Silty Sand	>G10	
1	Notes: Data Reported above			


TEST REPORT: SANS 3001- GR1 - GR12

Client Name: 0 Luhlaza Ref: 0

Client Address: Khayelitsha, WC Date Analysed: 19/11/2023

Project Name: Makhaza Police Station Richard Malungani Technical Signatory

Excavation No.	TP11G
Depth of Sample Taken:	1,8-2,2
Material Class:	Soils and Gravels
Date Received.	22/09/2023
Description of Sample	Light Brown to White Silty Sand

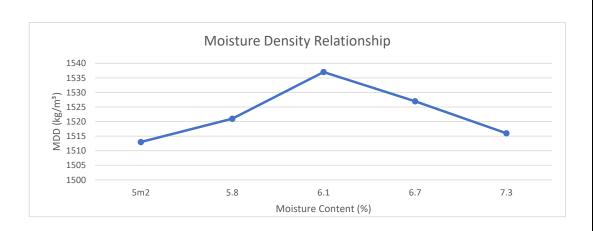
Clay Activit	y Index (AI)		
AI = <u>LL-PL</u>			
Clay (%)	0.00		
	Natural	Moisture Content	
		Container + Sample (Wet)	660
Ory Sample: 500g		Container + Sample (Dry)	621
		Moisture %	5.9
DIL EG TRE	T (9a)		5.9
PH - EC - TDS	- Temp (°C)	Moisture % Potential Expansivity	5.9
PH - EC - TDS	- Temp (°C) 7.4		5.9 X
· · · · · · · · · · · · · · · · · · ·		Potential Expansivity	
рН	7.4	Potential Expansivity Low	

TEST REPORT: MOD AASHTO - SANS 3001 - GR31

Client Name: 0 Luhlaza Ref: Jan-00

Client Address: Khayelitsha, WC Date Analysed: 19/11/2023

Project Name: Makhaza Police Station Richard Malungani


Technical Signatory Attention:

Excavation No.	TP11G
Depth of Sample Taken:	1,8-2,2
Material Class:	Soils and Gravels
Date Received.	22/09/2023

Light Brown to White Silty Sand **Description of Sample**

TEST METHOD		MOD AASHTO
Mould No.	Moisture (%)	Dry Density (kg/m³)
1	5m2	1513
2	5.8	1521
3	6.1	1537
4	6.7	1527
5	7.3	1516

Optimum Moisture Content (%) (OMC)	Maximum Dry density (kg/m³) (MDD)
6.1	1537

TEST	REPORT:	CBR - SA	ANS 3001	- GR40

0 Luhlaza Ref: Client Name: 0

Client Address: Khayelitsha, WC Date Analysed: 8/5/2023

Project Name: Makhaza Police Station Richard Malungani

Technical Signatory Attention:

Excavation No. TP11G Depth of Sample Taken: 1,8-2,2 Soils and Gravels **Material Class:** Date Received. 22/09/2023

Description of Sample Light Brown to White Silty Sand

		G 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Material Utilization - Earthworks Classification					
Group A - Granular Soils		Х			
Group B - Low Plasticity Soils					
Group C - High Plasticity Soils					
Group D - Durable Rock					
Group E - Degradable Rock					
Group F - Topsoil					
Group G - Organic Soils					
CBR Final Results		CBR %			
CBR @ 100% Compaction	CBR @ 100% Compaction 4				
CBR @ 98% Compaction		4			
CBR @ 97% Compaction		3			
CBR @ 95% Compaction		2			
CBR @ 93% Compaction		2			
CBR @ 90% Compaction		1			
Swell @ 100% Compaction		0			
Classification	TRH14	>G10			

$$S = \frac{(k-l)}{127} \times 100$$

Where:

S = swell expressed as a percentage of the height of the moulded material before soaking i.e. 127mm

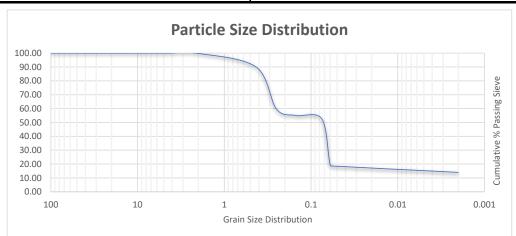
K = dial gauge reading after four days of soaking

L = dial gauge reading before soaking

NB: The swell is reported to the nearest first decimal point.

	TEST REPORT: SANS 3	001- GR1 - GR12			
Client Name:		Luhlaza Ref:	Luhlaza Ref:		
_					
Area:	Khayelitsha, WC	Date Analysed:	19/11/2023		
Project Name:	Makhaza Police Station		Richard Malungani		
Attention:	Makilaza i olice Station	Technical Signatory	Menara Walangani		
Acceleration			An .		
Sample No:		TP12H			
Depth of Sample Taken (m):		0,6-1,0			
Material Class:		Sc	Soils and Gravels		
Date Received.			22/09/2023		
Description of Sample		Light Brown to White Silty Sand			
	100.00		100.00		
	75.00		100.00		
	37.50		100.00		
	26.50		100.00		
	19.00		100.00		
	13.20		100.00		
Sieve Analysis (mm)	4.75		100.00		
	2.00		99.80		
	0.43		90.00		
	0.25		59.60		
	0.15		55.00		
	0.075		52.60		
	0.060		19.36		
Hydrometer Analysis (mm)	0.050		18.42		
, , , ,	0.004		14.94		
21 10	0.002		13.98		
Classifi		RAW	%		
CLA		18.420	19		
SIL		34.180	33		
SAN		47.200	47		
GRA		0.200	0		
A.A	LL%		22.3		
Atterberg Limit	P.I.		0.0		
	LS%		0.0		
Classification	GM	A 4 C'' C ''	0.58		
Classification	AASHTO	A-4 - Silty Soils	TRH14		
	USCS	SM - Silty Sand	>G10		

TEST REPORT: SANS 3001- GR1 - GR12


Client Name: 0 Luhlaza Ref: 0

Client Address: Khayelitsha, WC Date Analysed: 19/11/2023

Project Name: Makhaza Police Station Richard Malungani Technical Signatory

Attention:

Excavation No.	TP12H
Depth of Sample Taken:	0,6-1,0
Material Class:	Soils and Gravels
Date Received.	22/09/2023
Description of Sample	Light Brown to White Silty Sand

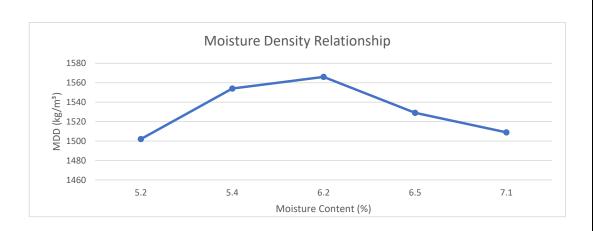
Clay Acti	vity Index (AI)		
AI = <u>LL-PL</u>			
Clay (%)	0.00		
	Natural Moi	sture Content	
		Container + Sample (Wet)	660
Dry Sample: 500g		Container + Sample (Dry)	618
		B.4 - ! - t	C 1
		Moisture %	6.4
		Moisture %	6.4
PH - EC - T	DS - Temp (°C)	Potential Expansivity	6.4
рН	DS - Temp (°C) 8.2		X X
	1 ()	Potential Expansivity	
рН	8.2	Potential Expansivity Low	

TEST REPORT: MOD AASHTO - SANS 3001 - GR31

Client Name: 0 Luhlaza Ref: Jan-00

Client Address: Khayelitsha, WC Date Analysed: 19/11/2023

Project Name: Makhaza Police Station Richard Malungani Technical Signatory


Attention:

Excavation No.	TP12H
Depth of Sample Taken:	0,6-1,0
Material Class:	Soils and Gravels
Date Received.	22/09/2023

Light Brown to White Silty Sand **Description of Sample**

	TEST METHOD	MOD AASHTO
Mould No.	Moisture (%)	Dry Density (kg/m³)
1	5.2	1502
2	5.4	1554
3	6.2	1566
4	6.5	1529
5	7.1	1509

Optimum Moisture Content (%) (OMC)	Maximum Dry density (kg/m³) (MDD)
6.2	1566

Notes: Data Reported above relates to sample tested.

TEST REPORT:	CRR	- SANS 3001	- GR40

Client Name: 0 Luhlaza Ref: 0

Client Address: Khayelitsha, WC Date Analysed: 8/5/2023

Richard Malungani Project Name: Makhaza Police Station

Technical Signatory Attention:

Excavation No. TP12H Depth of Sample Taken: 0,6-1,0 **Material Class:** Soils and Gravels Date Received. 22/09/2023

Description of Sample Light Brown to White Silty Sand

Material Utilization -	Earthworks Classification	
Group A - Granular Soils		Х
Group B - Low Plasticity Soils		
Group C - High Plasticity Soils		
Group D - Durable Rock		
Group E - Degradable Rock		
Group F - Topsoil		
Group G - Organic Soils		
CBR Final Results		CBR %
CBR @ 100% Compaction		5
CBR @ 98% Compaction		4
CBR @ 97% Compaction		3
CBR @ 95% Compaction		3
CBR @ 93% Compaction		2
CBR @ 90% Compaction		1
Swell @ 100% Compaction		0
Swell & 100% compaction		· ·

$$S = \frac{(k-l)}{127} \times 100$$

Where:

S = swell expressed as a percentage of the height of the moulded material before soaking i.e. 127mm

K = dial gauge reading after four days of soaking

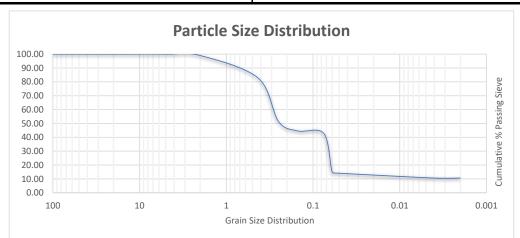
L = dial gauge reading before soaking

NB: The swell is reported to the nearest first decimal point.

Notes: Data Reported above relates to sample tested.

	TEST REPORT: SANS 3		
Client Name:		Luhlaza Ref:	
Area:	Khayelitsha, WC	Date Analysed:	19/11/2023
Project Name:	Makhaza Police Station	Technical Signatory	Richard Malungani
Attention:		recimical signatory	B.
Sample No:			TP17I
Depth of Sample Taken (m):		1,8-2,0	
Material Class:		Soi	ils and Gravels
Date Received.			22/09/2023
Description of Sample		Light Brow	n to White Silty Sand
	100.00		100.00
	75.00		100.00
	37.50		100.00
	26.50		100.00
	19.00		100.00
	13.20		100.00
Sieve Analysis (mm)	4.75		100.00
• • •	2.00	99.00	
	0.43	82.80	
	0.25	51.40	
	0.15		44.60
	0.075		42.80
	0.000		44.00
	0.060		14.89
Hydrometer Analysis (mm)	0.050		14.12
	0.004	10.61	
Ole 'f'	0.002	D 4144	10.61
Classific		RAW	%
CLA		14.119	15
SIL		28.681	28
SAN		56.200	56
GRAY		1.000	1 1
	LL%		19.9
Atterberg Limit	P.I.		0.0
	LS%		0.0
	GM		0.75
Classification	AASHTO	A-4 - Silty Soils	TRH14
	USCS	SM - Silty Sand	>G10

TEST REPORT: SANS 3001- GR1 - GR12


Client Name: 0 Luhlaza Ref: 0

Client Address: Khayelitsha, WC Date Analysed: 19/11/2023

Project Name: Makhaza Police Station Richard Malungani Technical Signatory

Attention:

Excavation No.	TP17I
Depth of Sample Taken:	1,8-2,0
Material Class:	Soils and Gravels
Date Received.	22/09/2023
Description of Sample	Light Brown to White Silty Sand

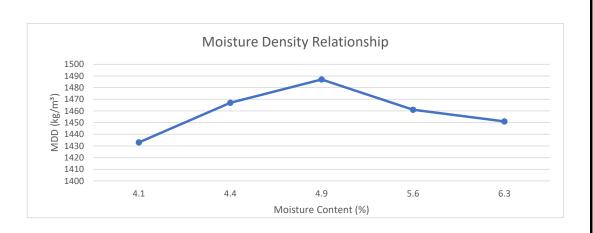
Clay Act	tivity Index (AI)		
AI = <u>LL-PL</u>			
Clay (%)	0.00		
	Natural M	oisture Content	
		Container + Sample (Wet)	660
Ory Sample: 500g		Container + Sample (Dry)	628
·		Moisture %	4.8
		Moisture %	4.8
PH - EC - 1	TDS - Temp (°C)	Moisture % Potential Expansivity	4.8
PH - EC - 1	TDS - Temp (°C) 7.8		4.8 X
		Potential Expansivity	
pH	7.8	Potential Expansivity Low	

TEST REPORT: MOD AASHTO - SANS 3001 - GR31

Client Name: 0 Luhlaza Ref: Jan-00

Client Address: Khayelitsha, WC Date Analysed: 19/11/2023

Project Name: Makhaza Police Station Richard Malungani Technical Signatory


Attention:

Excavation No.	TP17I
Depth of Sample Taken:	1,8-2,0
Material Class:	Soils and Gravels
Date Received.	22/09/2023

Light Brown to White Silty Sand **Description of Sample**

	TEST METHOD	MOD AASHTO
Mould No.	Moisture (%)	Dry Density (kg/m³)
1	4.1	1433
2	4.4	1467
3	4.9	1487
4	5.6	1461
5	6.3	1451

Optimum Moisture Content (%) (OMC)	Maximum Dry density (kg/m³) (MDD)
4.9	1487

Notes: Data Reported above relates to sample tested.

TEST REPORT:	CRR	- SANS 3001	- GR40

Client Name: 0 Luhlaza Ref: 0

Client Address: Khayelitsha, WC Date Analysed: 8/5/2023

Project Name: Makhaza Police Station Richard Malungani Technical Signatory

Attention:

Excavation No.	TP17I
Depth of Sample Taken:	1,8-2,0
Material Class:	Soils and Gravels
Date Received.	22/09/2023

Description of Sample Light Brown to White Silty Sand

Material Utilization - Earthworks Classification				
Group A - Granular Soils		Х		
Group B - Low Plasticity Soils				
Group C - High Plasticity Soils				
Group D - Durable Rock				
Group E - Degradable Rock				
Group F - Topsoil				
Group G - Organic Soils				
CBR Final Results		CBR %		
CBR @ 100% Compaction		4		
CBR @ 98% Compaction		3		
CBR @ 97% Compaction		3		
CBR @ 95% Compaction		2		
CBR @ 93% Compaction		1		
CBR @ 90% Compaction		1		
Swell @ 100% Compaction		0		
Classification	TRH14	>G10		

$$S = \frac{(k-l)}{127} \times 100$$

Where:

S = swell expressed as a percentage of the height of the moulded material before soaking i.e. 127mm

K = dial gauge reading after four days of soaking

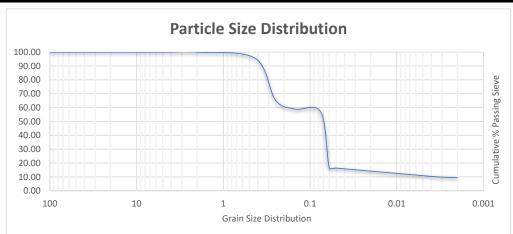
L = dial gauge reading before soaking

NB: The swell is reported to the nearest first decimal point.

Notes: Data Reported above relates to sample tested.

	TEST REPORT: SANS 3	001- GR1 - GR12		
Client Name:		Luhlaza Ref:	Luhlaza Ref:	
Area:	Khayelitsha, WC	Date Analysed:	19/11/2023	
Project Name:	Makhaza Police Station	Technical Signatory	Richard Malungani	
Attention:		, and the second	Br.	
Sample No:		TP18J		
Depth of Sample Taken (m):		0,6-0,9		
Material Class:		Sc	Soils and Gravels	
Date Received.			22/09/2023	
Description of Sample		Light Brov	wn to White Silty Sand	
	100.00		100.00	
	75.00		100.00	
	37.50		100.00	
	26.50		100.00	
	19.00		100.00	
	13.20		100.00	
Sieve Analysis (mm)	4.75		100.00	
• • •	2.00		100.00	
	0.43	95.60		
	0.25	65.40		
	0.15	59.00		
	0.075	56.80		
			10.00	
	0.060		16.36	
Hydrometer Analysis (mm)	0.050		16.36	
, , , ,	0.004	10.39		
	0.002		9.39	
Classific		RAW	%	
CLA		16.358	16	
SIL		40.442	40	
SAN		43.200	43	
GRAV	_	0.000	0	
	LL%		24.1	
Atterberg Limit	P.I.		0.0	
	LS%	0.0		
	GM		0.48	
Classification	AASHTO	A-4 - Silty Soils	TRH14	
	USCS	SM - Silty Sand	>G10	

TEST REPORT: SANS 3001- GR1 - GR12


Client Name: 0 Luhlaza Ref: 0

Client Address: Khayelitsha, WC Date Analysed: 19/11/2023

Project Name: Makhaza Police Station Richard Malungani Technical Signatory

Attention:

Excavation No.	TP18J	
Depth of Sample Taken:	0,6-0,9	
Material Class:	Soils and Gravels	
Date Received.	22/09/2023	
Description of Sample	Light Brown to White Silty Sand	

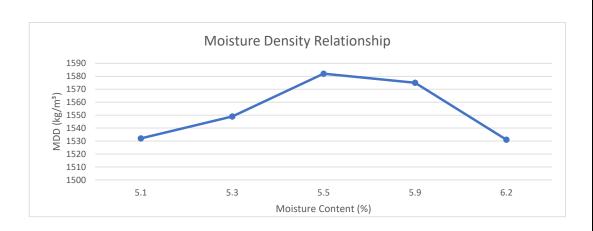
Clay Activit	ty Index (AI)		
AI = <u>LL-PL</u>			
Clay (%)	0.00		
	Natural I	Moisture Content	
		Container + Sample (Wet)	660
Ory Sample: 500g		Container + Sample (Dry)	627
		NA - ! - t 0/	г 0
		Moisture %	5.0
DU 50 TD	7. 7 (9.2)		5.0
PH - EC - TDS	G - Temp (°C)	Potential Expansivity	5.0
рН	6 - Temp (° C)		X X
		Potential Expansivity	
рН	6.8	Potential Expansivity Low	

TEST REPORT: MOD AASHTO - SANS 3001 - GR31

Client Name: 0 Luhlaza Ref: Jan-00

Client Address: Khayelitsha, WC Date Analysed: 19/11/2023

Project Name: Makhaza Police Station Richard Malungani Technical Signatory


Attention:

Excavation No.	TP18J
Depth of Sample Taken:	0,6-0,9
Material Class:	Soils and Gravels
Date Received.	22/09/2023

Light Brown to White Silty Sand **Description of Sample**

	TEST METHOD	MOD AASHTO
Mould No.	Moisture (%)	Dry Density (kg/m³)
1	5.1	1532
2	5.3	1549
3	5.5	1582
4	5.9	1575
5	6.2	1531

Optimum Moisture Content (%) (OMC)	Maximum Dry density (kg/m³) (MDD)
5 5	1582

Notes: Data Reported above relates to sample tested.

TFST	REPORT:	CBR -	- SANS 3001	- GR40

0 Luhlaza Ref: Client Name: 0

Client Address: Khayelitsha, WC Date Analysed: 8/5/2023

Project Name: Makhaza Police Station Richard Malungani

Technical Signatory Attention:

Excavation No. TP18J Depth of Sample Taken: 0,6-0,9 Soils and Gravels **Material Class:** Date Received. 22/09/2023

Description of Sample Light Brown to White Silty Sand

Material Utilization - Earthworks Classification				
Group A - Granular Soils		Х		
Group B - Low Plasticity Soils				
Group C - High Plasticity Soils				
Group D - Durable Rock				
Group E - Degradable Rock				
Group F - Topsoil				
Group G - Organic Soils				
CBR Final Results		CBR %		
CBR @ 100% Compaction		5		
CBR @ 98% Compaction		4		
CBR @ 97% Compaction	3			
CBR @ 95% Compaction		2		
CBR @ 93% Compaction		2		
CBR @ 90% Compaction		1		
Swell @ 100% Compaction		0		
Classification	TRH14	>G10		

$$S = \frac{(k-l)}{127} \times 100$$
Where:
$$S = \text{swell expressed as a pe}$$

S = swell expressed as a percentage of the height of the moulded material before soaking i.e. 127mm

K = dial gauge reading after four days of soaking

L = dial gauge reading before soaking

NB: The swell is reported to the nearest first decimal point.

Notes: Data Reported above relates to sample tested.

TEST REPORT: SANS 3001- GR1 - GR12						
Client Name:		Luhlaza Ref:				
Area:	Khayelitsha, WC	Date Analysed: 19/11/2023				
Draiget Name	Makhaza Police Station		Dichard Malungani			
Project Name: Attention:	Makriaza Police Station	Technical Signatory Richard Malungani				
Attention.			Br.			
Sample No:			TP19K			
Depth of Sample Taken (m):			1,6-2,0			
Material Class:		Sc	oils and Gravels			
Date Received.			22/09/2023			
Description of Sample		Light Brow	wn to White Silty Sand			
	100.00		100.00			
	75.00		100.00			
	37.50		100.00			
	26.50		100.00			
	19.00		100.00			
Sieve Analysis (mm)	13.20		100.00			
	4.75		100.00			
	2.00		99.40			
	0.43		95.80			
	0.25		63.00			
	0.15		47.80			
	0.075		44.00			
	0.060		16.19			
Hydrometer Analysis (mm)	0.050		15.41			
nyurometer Analysis (mm)	0.004		9.83			
	0.002		9.04			
Classific	cation	RAW	%			
CLA	ΛΥ	15.408	16			
SIL	Т	28.592	28			
SAN	ID	55.400	55			
GRA	VEL	0.600	1			
	LL%		20.6			
Atterberg Limit	P.I.		0.0			
LS%			0.0			
	GM		0.61			
Classification	AASHTO	A-4 - Silty Soils	TRH14			
	USCS	SM - Silty Sand	G10			

TEST REPORT: SANS 3001- GR1 - GR12

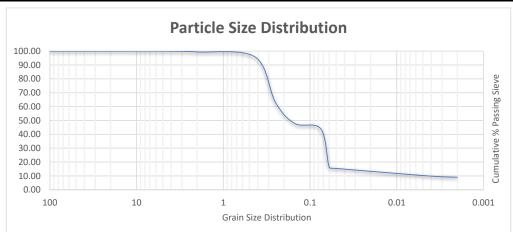
Client Name: 0 Luhlaza Ref: 0

Client Address: Khayelitsha, WC

Date Analysed: 19/11/2023

Project Name:

Makhaza Police Station


Attention:

Technical Signatory

Richard Malungani

Excavation No.	TP19K		
Depth of Sample Taken:	1,6-2,0		
Material Class:	Soils and Gravels		
Date Received.	22/09/2023		

Light Brown to White Silty Sand Description of Sample

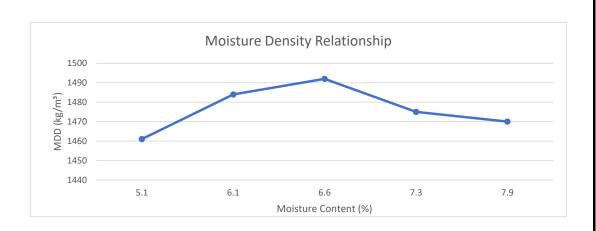
Clay Ac	ctivity Index (AI)				
AI = <u>LL-PL</u>					
Clay (%)	0.00				
	Natural Mo	isture Content			
		Container + Sample (Wet)	660		
	Container + Sample (Dry) 613				
Dry Sample: 500g		Container + Sample (Dry)	613		
Dry Sample: 500g		Moisture %	7.1		
, , ,		Moisture %			
, , ,	· TDS - Temp (°C)				
, , ,	- TDS - Temp (°C) 7.4	Moisture %			
PH - EC -	• • • •	Moisture % Potential Expansivity	7.1		
PH - EC -	7.4	Potential Expansivity Low	7.1		

TEST REPORT: MOD AASHTO - SANS 3001 - GR31

Client Name: 0 Luhlaza Ref: Jan-00

Client Address: Khayelitsha, WC Date Analysed: 19/11/2023

Project Name: Makhaza Police Station Richard Malungani


Technical Signatory Attention:

Excavation No.	TP19K 1,6-2,0		
Depth of Sample Taken:			
Material Class:	Soils and Gravels		
Date Received.	22/09/2023		

Light Brown to White Silty Sand **Description of Sample**

TEST METHOD		MOD AASHTO
Mould No.	Moisture (%)	Dry Density (kg/m³)
1	5.1	1461
2	6.1	1484
3	6.6	1492
4	7.3	1475
5	7.9	1470

Optimum Moisture Content (%) (OMC)	Maximum Dry density (kg/m³) (MDD)
6.6	1492

Notes: Data Reported above relates to sample tested.

TEST REPORT:	CRR.	. SANS 3001 .	- GR40

Client Name: 0 Luhlaza Ref: 0

Client Address: Khayelitsha, WC Date Analysed: 8/5/2023

Project Name: Makhaza Police Station Richard Malungani

Technical Signatory Attention:

Excavation No. TP19K Depth of Sample Taken: 1,6-2,0 Soils and Gravels **Material Class:** Date Received. 22/09/2023

Description of Sample Light Brown to White Silty Sand

		,				
Material Utilization - Earthworks Classification						
Group A - Granular Soils		Х				
Group B - Low Plasticity Soils						
Group C - High Plasticity Soils						
Group D - Durable Rock						
Group E - Degradable Rock						
Group F - Topsoil						
Group G - Organic Soils						
CBR Final Results		CBR %				
CBR @ 100% Compaction		5				
CBR @ 98% Compaction		5				
CBR @ 97% Compaction		4				
CBR @ 95% Compaction		4				
CBR @ 93% Compaction	3					
CBR @ 90% Compaction	2					
Swell @ 100% Compaction		0				
Classification						

$$S = \frac{(k-l)}{127} \times 100$$

Where:

S = swell expressed as a percentage of the height of the moulded material before soaking i.e. 127mm

K = dial gauge reading after four days of soaking

L = dial gauge reading before soaking

NB: The swell is reported to the nearest first decimal point.

Notes: Data Reported above relates to sample tested.

MATROLAB

SGS MATROLAB (PTY) LTD - CIVIL ENGINEERING SERVICES -Reg.No.: 2003/021980/07 - VAT. Reg.No.: 4040210587

a SANAS Accredited Testing Laboratory, No. T0025

256 Brander Street, Jan Niemand Park, Pretoria. P.O Box 912387, Silverton, 0127 Tel. : (012) 800 1299

Fax

Email: stephan.husselman@sgs.com

TEST RESULTS

LUHLAZA ADVISORY & CONSULTING (PTY)LTD

41 VREDE AVENUE RISIDALE, RANDBURG **JOHANNESBURG 2194** Attention: Atish Keerath

Project

: Makhaza

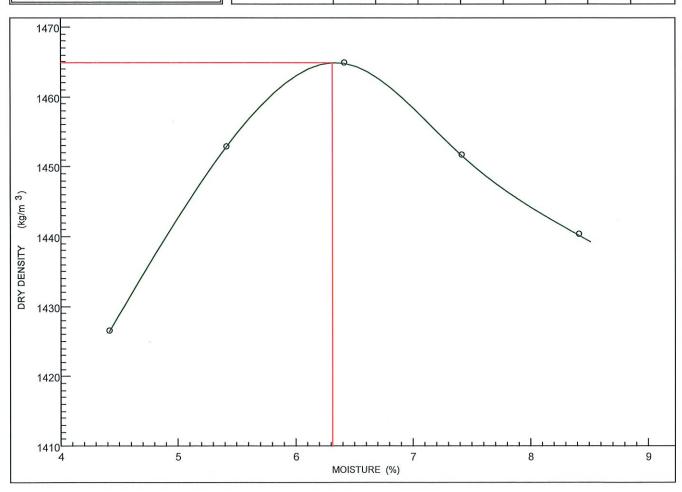
Your Ref

: G23-0750

Our Ref

: PL/63932

Date Reported


: 10.11.2023

MOISTURE / DENSITY RELATIONSHIP(SANS 3001: GR30)

Sample No.: A23/2525	Hole No. : TP02	Depth (mm) : 1.0-1.3
Origin :	Stabilized With : Natural	Compaction Energy: PROCTOR
Material Description:		

Maximum Dry Density (kg/m³): 1465 Optimum Moisture Content (%): 6.3

Point No.	1	2	3	4	5		
Moisture (%)	4.4	5.4	6.4	7.4	8.4		
Density (kg/m ³)	1426	1453	1465	1452	1440		

MATROLAB IS NOW PART OF SGS, THE WORLDS'S LEADING INSPECTION, VERFICATION, TESTING AND CERTIFICATION COMPANY. This document is issued by the Company under its General Condition of Service accessible at http://www.sqs.com/en/Terms and Conditions.asox Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

MATROLAB

SGS MATROLAB (PTY) LTD - CIVIL ENGINEERING SERVICES -Reg.No.: 2003/021980/07 - VAT. Reg.No.: 4040210587

a SANAS Accredited Testing Laboratory, No. T0025

256 Brander Street, Jan Niemand Park, Pretoria. P.O Box 912387, Silverton, 0127

: (012) 800 1299

Email: stephan.husselman@sgs.com

TEST RESULTS

LUHLAZA ADVISORY & CONSULTING (PTY)LTD

41 VREDE AVENUE RISIDALE, RANDBURG **JOHANNESBURG 2194** Attention: Atish Keerath

Project

: Makhaza

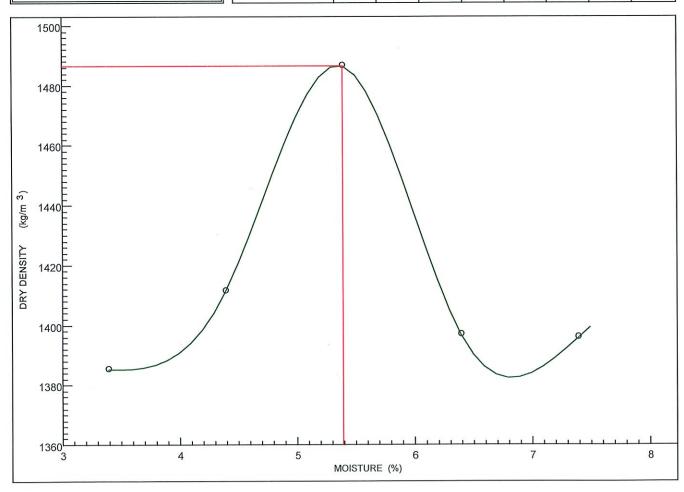
Your Ref

Our Ref

: G23-0749 : PL/63932

Date Reported

: 10.11.2023


MOISTURE / DENSITY RELATIONSHIP(SANS 3001: GR30)

Sample No.: A23/2524	Hole No. : TP01	Depth (mm) : 1.0-1.3
Origin :	Stabilized With : Natural	Compaction Energy: PROCTOR
Material Description:		

Maximum Dry Density (kg/m³): 1487

Optimum Moisture Content (%): 5.4

Point No.	1	2	3	4	5		
Moisture (%)	3.4	4.4	5.4	6.4	7.4		
Density (kg/m ³)	1385	1411	1487	1397	1396		

Remarks :			
FORM: GR30		J	
4.4.1(SGS)(2019.12.04)	Technical Signatory	Stephan Husselman	- 2

MATROLAB IS NOW PART OF SGS, THE WORLDS'S LEADING INSPECTION, VERFICATION, TESTING AND CERTIFICATION COMPANY. This document is issued by the Company under its General Condition of Service accessible at http://www.sas.com/en/Terms and Conditions.aspx Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

BS 1377 Part 5

Client: LUHLAZA ADVISORY AND CONSULTING Project: MAKHAZA Job no: 63775

Sample no: TP01 Depth (m): 1.0-1.3 Date: 27/11/2023

Lab no: G23-0749

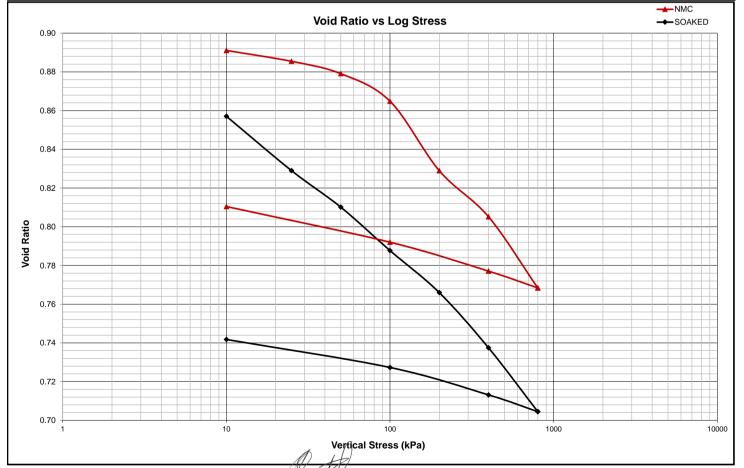
Page 1 of 2

Sample Par	ameters	Unit	NMC	Soaked	Remarks
Moisture Content	Before Test	%	5.8	6.8	REMOULDED SAMPLE
Wioistare Content	After Test	%	3.0	33.3	Complete test specimen
Dry Der	nsity	kg/m³	1405	1392	
Void Ra	atio	-	0.877	0.894	
Degree of Sa	aturation	%	17.5	20.1	
Initial Specimen Height		mm	24.9	25.0	
Relative Density (SG)		-	2.6	637	Determined

	Test Parameters													
Vertical	Stress	kPa	10	25	50	100	200	400	800	400	100	10		
Time Elaps	ed NMC	hr	20	24	24	24	22	8	24	3	3	3		
Time Elapse	d Soaked	hr	20	24	24	24	24	24	8	3	3	3		
H ₁₀₀	NMC	mm	25.053	24.978	24.894	24.705	24.230	23.914	23.427	23.542	23.740	23.985		
1100	Soaked	mm	24.555	24.184	23.935	23.638	23.351	22.974	22.538	22.652	22.840	23.031		
Strain	NMC	%	-0.735	-0.435	-0.095	0.663	2.575	3.843	5.801	5.339	4.542	3.561		
Strain	Soaked	%	1.937	3.419	4.415	5.600	6.746	8.252	9.994	9.537	8.788	8.024		
Void Ratio	NMC	-	0.891	0.885	0.879	0.865	0.829	0.805	0.768	0.777	0.792	0.810		
void Italio	Soaked	-	0.857	0.829	0.810	0.788	0.766	0.737	0.704	0.713	0.727	0.742		
Mv (1/Mpa)	NMC	-	-	0.198	0.135	0.151	0.192	0.065	0.051	0.012	0.028	0.114		
	Soaked	-	-	1.008	0.413	0.248	0.121	0.081	0.047	0.013	0.028	0.093		

TECHNICAL SIGNATORY : SUNIL DEWNATH

BS 1377 Part 5


Client: LUHLAZA ADVISORY AND CONSULTING Project: MAKHAZA Job no: 63775

Sample no: TP01 Depth (m): 1.0-1.3 Date: 27/11/2023

Lab no: G23-0749 Page 2 of 2

Sample Par	ameters	Unit	NMC	Soaked	Remarks
Moisture Content	Before Test	%	5.8	6.8	REMOULDED SAMPLE
Wioistare Content	After Test	%	3.0	33.3	Complete test specimen
Dry Der	nsity	kg/m³	1405	1392	
Void Ra	atio	-	0.877	0.894	
Degree of Sa	aturation	%	17.5	20.1	
Initial Specimen Height		mm	24.9	25.0	
Relative Density (SG)		-	2.637		Determined

	Test Parameters													
Vertical	Stress	kPa	10	25	50	100	200	400	800	400	100	10		
Time Elap	sed NMC	hr	20	24	24	24	22	8	24	3	3	3		
Time Elaps	ed Soaked	hr	20	24	24	24	24	24	8	3	3	3		
H ₁₀₀	NMC	mm	25.053	24.978	24.894	24.705	24.230	23.914	23.427	23.542	23.740	23.985		
1100	Soaked	mm	24.555	24.184	23.935	23.638	23.351	22.974	22.538	22.652	22.840	23.031		
Strain	NMC	%	-0.735	-0.435	-0.095	0.663	2.575	3.843	5.801	5.339	4.542	3.561		
Strain	Soaked	%	1.937	3.419	4.415	5.600	6.746	8.252	9.994	9.537	8.788	8.024		
Void Ratio	NMC	-	0.891	0.885	0.879	0.865	0.829	0.805	0.768	0.777	0.792	0.810		
Void Italio	Soaked	-	0.857	0.829	0.810	0.788	0.766	0.737	0.704	0.713	0.727	0.742		
Mv	NMC	1/MPa	-	0.198	0.135	0.151	0.192	0.065	0.051	0.012	0.028	0.114		
IVIV	Soaked	1/MPa	-	1.008	0.413	0.248	0.121	0.081	0.047	0.013	0.028	0.093		

TECHNICAL SIGNATORY SUNIL DEWNATH

BS 1377 Part 5

Client: LUHLAZA ADVISORY AND CONSULTING Project: MAKHAZA Job no: 63775

Sample no: TP2 Depth (m): 1.0-1.3 Date: 23/11/2023

Lab no: G23-0750

Page 1 of 2

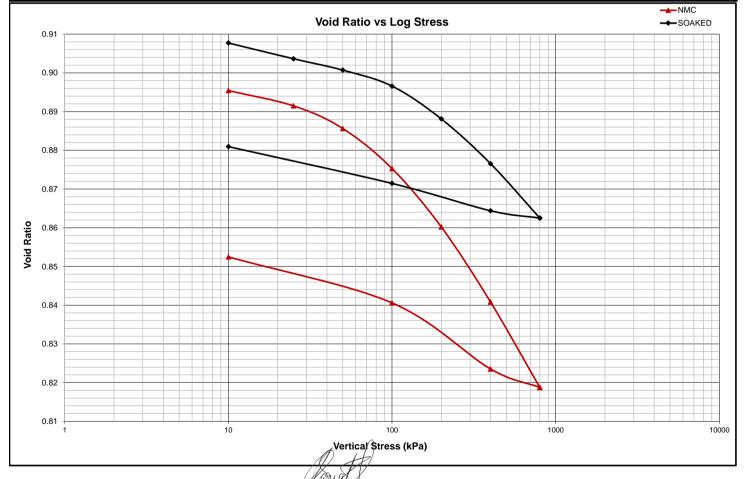
Sample Par	ameters	Unit	NMC	Soaked	Remarks
Moisture Content	Disture Content Before Test		5.9	6.0	REMOULDED SAMPLE
Wioistare Content	After Test	%	5.6	28.8	Complete test specimen
Dry Der	nsity	kg/m³	1392	1386	
Void Ra	atio	-	0.903	0.913	
Degree of S	aturation	%	17.4	17.3	
Initial Specimen Height		mm	19.2	19.7	
Relative Density (SG) - 2.650		650	Determined		

	Test Parameters													
Vertical	Stress	kPa	10	25	50	100	200	400	800	400	100	10		
Time Elaps	sed NMC	hr	2	2	2	3	3	3	2	2	2	3		
Time Elapse	ed Soaked	hr	2	2	2	2	2	2	2	2	2	3		
H ₁₀₀	NMC	mm	19.070	19.030	18.972	18.867	18.716	18.521	18.299	18.347	18.518	18.638		
1100	Soaked	mm	19.651	19.609	19.578	19.536	19.449	19.330	19.185	19.204	19.277	19.375		
Strain	NMC	%	0.417	0.625	0.932	1.475	2.268	3.286	4.445	4.195	3.298	2.673		
Strain	Soaked	%	0.251	0.464	0.618	0.833	1.276	1.880	2.615	2.517	2.147	1.650		
Void Ratio	NMC	-	0.895	0.891	0.886	0.875	0.860	0.841	0.819	0.824	0.841	0.852		
Void Italio	Soaked	-	0.908	0.904	0.901	0.897	0.888	0.877	0.863	0.864	0.871	0.881		
Mv (1/Mpa)	NMC	-	-	0.139	0.124	0.110	0.080	0.052	0.030	0.007	0.031	0.072		
	Soaked	-	-	0.142	0.062	0.043	0.045	0.031	0.019	0.003	0.013	0.056		

TECHNICAL SIGNATORY : SUNIL DEWNATH

BS 1377 Part 5

Page 2 of 2


Client: LUHLAZA ADVISORY AND CONSULTING Project: MAKHAZA Job no: 63775

Sample no: TP2 Depth (m): 1.0-1.3 Date: 23/11/2023

Lab no: G23-0750

Sample Par	ameters	Unit	NMC	Soaked	Remarks
Moisture Content	Before Test	%	5.9	6.0	REMOULDED SAMPLE
Woisture Content	After Test	%	5.6	28.8	Complete test specimen
Dry Der	nsity	kg/m³	1392	1386	
Void Ra	atio	-	0.903	0.913	
Degree of Sa	aturation	%	17.4	17.3	
Initial Specimen Height		mm	19.2	19.7	
Relative Density (SG) -		-	2.6	650	Determined

	Test Parameters													
Vertical	Stress	kPa	10	25	50	100	200	400	800	400	100	10		
Time Elaps	ed NMC	hr	2	2	2	3	3	3	2	2	2	3		
Time Elapse	d Soaked	hr	2	2	2	2	2	2	2	2	2	3		
H ₁₀₀	NMC	mm	19.070	19.030	18.972	18.867	18.716	18.521	18.299	18.347	18.518	18.638		
11100	Soaked	mm	19.651	19.609	19.578	19.536	19.449	19.330	19.185	19.204	19.277	19.375		
Strain	NMC	%	0.417	0.625	0.932	1.475	2.268	3.286	4.445	4.195	3.298	2.673		
Strain	Soaked	%	0.251	0.464	0.618	0.833	1.276	1.880	2.615	2.517	2.147	1.650		
Void Ratio	NMC	-	0.895	0.891	0.886	0.875	0.860	0.841	0.819	0.824	0.841	0.852		
Void Natio	Soaked	-	0.908	0.904	0.901	0.897	0.888	0.877	0.863	0.864	0.871	0.881		
Mv	NMC	1/MPa	-	0.139	0.124	0.110	0.080	0.052	0.030	0.007	0.031	0.072		
	Soaked	1/MPa	-	0.142	0.062	0.043	0.045	0.031	0.019	0.003	0.013	0.056		

TECHNICAL SIGNATORY : SUNIL DEWNATH

Appendix D: Field Test Pit Photographs

TP07

(6) +27 63 769 4305

(a) +27 63 769 4305 (b) +27 63 769 4305

<u>TP09</u>

<u>TP11</u>

TP17

(a) +27 63 769 4305

<u>TP19</u>

Appendix E: Summary of Standard Soil and Rock Profile Description Terminology

SUMMARY OF SOIL STANDARD AND ROCK PROFILE DESCRIPTION TERMINOLOGY

STANDARD DESCRIPTIONS USED IN SOIL PROFILING

	1. MOISTURE CONDITION		2. COLOUR					
Term	Description							
Dry			The Predominant colours or colour					
Slightly moist	Requires addition of water to reach optimum moisture content for compaction	combinations are described including secondary coloration described as banded						
Moist	Near optimum content	S	treaked, blotched, mottled, speckled or					
Very Moist	Requires drying to attain optimum content		stained.					
Wet	Fully saturated and generally below water table							
3. CONSISTENCY								
_	3.1 Non-Cohesive Soils		3.2 Cohesive Soils					
Term	Description	Term	Description					
Very Loose	Crumbles very easily when scraped with geological pick	Very soft	Easily penetrated by thumb. Sharp end of pick can be pushed in 30 - 40mm. Easily moulded by fingers.					
Loose	Small resistance to penetration by sharp end of geological pick	Soft	Pick head can easily be pushed into the shaft of handle. Moulded by fingers with some pressure.					
Medium Dense	Considerable resistance to penetration by sharp end of geological pick	Firm Indented by thumb with effort. Sharp pick can be pushed in up to 10mm. C be penetrated with an ordinary spade						
Dense	Very high resistance to penetration to sharp end of geological pick. Requires many blows of hand pick for excavation.	Stiff	Penetrated by thumbnail. Slight indentation produced by pushing pick point into soil. Cannot be moulded by fingers. Requires hand pick for excavation.					
Very Dense	High resistance to repeated blows of geological pick. Requires power tools for excavation	Very Stiff	Indented by thumbnail. Slight indentation produced by blow of pick point. Requires power tools for excavation.					
	4. STRUCTURE		5. SOIL TYPE					
			5.1 Particle Size					
Term	Description	Term	Size (mm)					
Intact	Absence of fissures or joints	Boulder	>200					
Fissured	Presence of closed joints	Pebbles	60 - 200					
Shattered	Presence of closely spaced air filled joints giving cubical fragments	Gravel 60 - 2						
Micro shattered	Small scale shattering with shattered fragments the size of sand grains	Sand 2 - 0,06						
Slickensided	Polished planar surfaces representing shear movement in soil	Silt	0,06 - 0,002					
Bedded Foliated	Many residual soils show structures of parent rock.	Clay	<0,002					

www.luhlazaconsulting.co.za

6	5. ORIGIN	5.2 Soil Classification
6.1 T	ransported Soils	
Term	Agency of Transportation	
Colluvium	Gravity deposits	
Talus	Scree or coarse colluvium	
Hillwash	Fine colluvium	
Alluvial	River deposits	
Aeolian	Wind deposits	100
Littoral	Beach deposits	<i>y</i>
Estuarine	Tidal – river deposits	
Lacustrine	Lake deposits	SAND 40 SCLAY TO
6.2	Residual soils	SLIGHTLY SLIGHTLY
	n situ weathering of rocks and are as e.g. Residual Shale	60 SANDY SLIGHTLY CLAY 70 SANDY SLIGHTLY SLIGHTLY 30 SILTY CLAY
6.3	3 Pedocretes	SANDY SILTY 20 CLAYEY SAND CLAYEY SANDY CLAYEY SANDY
-	orted and residual soils etc. manganocrete and ferricrete.	100 SULT SULT SULT 0 100 0 100 20 Y SAMDYSILT SILT 90 100 0 SLT

SUMMARY OF DESCRIPTIONS USED IN ROCK CORE LOGGING

		1.	. WEATHERING					
Term	Symbol	1,		nostic Features				
Residual Soil			and completely cha d. There is a large	nged to a soil in which or change in volume.	riginal rock fabric is			
Completely Weathered		ock is discoloured a ay be occasional sr		oil but original fabric is ma	ainly preserved. There			
Highly Weathered	0	riginal fabric of the		be open and have discontinuities may be altered present.				
Moderately Weathered	a	Rock is discoloured, discontinuities may be open and will have discoloured surfaces with alteration starting to penetrate inwards, intact rock is noticeably weaker than the fresh rock.						
Slightly Weathered	0			cularly adjacent to discont surfaces, the intact rock i				
Unweathered	W1 <u>P</u>	arent rock showing	no discolouration,	loss of strength or any oth	ner weathering effects.			
	2. HA	RDNESS		3. C	OLOUR			
Classification	Field	Test	Compressive Strength Range MPa					
Extremely Soft Rock	Easily peeled with	a knife	<1					
Very Soft Rock	Can be peeled wi Material crumbles with the sharp en pick.	under firm blows	1 to 3	The predominant combination are secondary colourabanded, streaked, b	described including ation described as			
Soft Rock	Can be scraped wi indentation of 2 to blows of the pick p	4 mm with firm	3 to 10					
edium Hard Rock	Cannot be scraped a knife. Hand held breaks with firm b	specimen	10 to 25					
Hard Rock	Point load tests mout in order to dist between	inguish	25 - 70					
	these classification	S						
ery Hard Rock	These results may uniaxial compressi tests		70 - 200					
	on selected sample	es.						
Extremel y Hard Rock			>200					
			4. FABRIC					
4.1	Grain Size		4.2 [Discontinuity Spacing				
Term	Size (mm)		for: Bedding, laminations	Spacing (mm)	Descriptions for joints, faults, etc.			
Very Coarse	>2,0	Very Thic	ckly Bedded	> 2000	Very Widely			

Coarse	0,6 - 2,0	Thickly Bedded	600 - 2000	Widely
Medium	0,2 - 0,6	Medium Bedded	200 - 600	Medium
Fine	0,06 - 0,2	Thinly Bedded	60 - 200	Closely
Very Fine	< 0,06	Laminated	3 - 60	Very closely
		Thinly Laminated	<3	
5. ROCK NAME			6. STRATIGRAPHIC LAYER	
Classified in terms of origin:				
IGNEOUS	Granite, Diorite, Gabbro, Syenite, , Dolerite, Trachyte, Andesite, Basalt.		Identification of rock type in terms of stratigraphic layers.	
METAMORPHIC	Slate, Felsite, Gneiss, Schist, Quartzite			
SEDIMENTARY	· ·	e, Siltstone, Sandstone, Dolomite, nerate, Tillite, Limestone.		

