

⊗ Eskom HOLDINGS LIMITED

PANEL B CONSULTANTS JOINT VENTURE

KUSILE POWER STATION

ASH DUMP TERRACE LAYER WORKS DESIGN

DETAIL DESIGN REPORT 5452-90-011 REV 5

Task Order Number: PBC JV TO#31

DECEMBER 2010

ESKOM HOLDINGS LIMITED

KUSILE POWER STATION

ASH DUMP TERRACE LAYER WORKS DESIGN

DETAIL DESIGN REPORT 5452-90-011 REV 5

DECEMBER 2010

CONTENTS

Chapter	Desci	ription	Page		
1	INTRODUCTION				
	1.1	Background	2		
	1.2	General	2		
	1.3	Scope	2		
2	DESIG	GN PARAMETERS	3		
	2.1	General	3		
	2.2	Ash and Gypsum Production	6		
3	ASH/GYPSUM CLASSIFICATION				
		Classification of Ash and Gypsum Ash Gypsum Ash/FGD Gypsum (6:1) Mixture	6 6 6 7		
	3.2.3	DWAF Minimum Requirements for Waste Disposal by Landfill Classification System Climatic Water Balance (CWB) Hazard Ratings Kusile Classification	7 7 7 8 8		
4	ASH I	DUMP NO.1 DESIGN	8		
	4.1	Design Parameters	8		
	4.2	Ash Dump Deposition Modelling	8		
	4.3 4.3.1 4.3.2	Ash Dump Terrace Layer Works Description Topography Basic Terrace Layer Works	9 9 9		
	4.4.	Ash Dump Liner Details	10		

PANEL B CONSULTANTS JOINT VENTURE

	4.5	Dirty Water Drainage System: General	11		
	4.6	Clean Water Drainage System: General	12		
		Ash Dump Dirty Water Dam (ADDD) General Ash Dump Dirty Dam (ADDD) Philosophy Ash Dump Flood Hydrology Water Mass Balance	13 13 14 14 20		
		Site Geotechnical Investigation Introduction Groundwater Conditions	21 21 22		
	4.9	Ash Dump Stability	22		
	4.10	Seepage Analysis	23		
5 CONSTRUCTION					
	5.1	Method	24		
	5.2	Specifications	24		
6	OPERATION 24				
7	REFERENCES 26				
APPENDIC	ES:				
Appendix 1	– Drawi	ings			
Appendix 1a	a- Ash D	Dump Geology and Sub-Surface Water Depth Profile			
Appendix 2-	Ash pr	oduction Schedule			
Appendix 3-	Liner C	Correspondence (DWA)			
Appendix 4-	Stormy	water Hydrology and Hydraulic Calculation Record			
Appendix 5	– Speci	alist Reports			
Appendix 6	– Kusile	e Climatic Water Balance Assessment			
Appendix 7	– Wate	r Mass Balance			

ESKOM HOLDINGS LIMITED

KUSILE POWER STATION

ASH DUMP No.1

DETAIL DESIGN REPORT 5452-90-011 REV 5

DECEMBER 2010

1 INTRODUCTION

The Panel B Consultants Joint Venture (PBCJV) has been appointed by ESKOM Enterprises under PO 4500 243 653 (TO # 31) to carry out civil design for the water licensing aspects of the Kusile coal-fired power station located near Witbank in the Mpumalanga province. PBCJV is working in close liaison with ESKOM and their appointed design partners, Black and Veatch (B&V)

This report details the detail design of the No.1 Ash Dump terrace layer works and associated facilities (foundation drainage, lining system, clean and dirty stormwater facilities, dirty water storage dams, access roads, and general terraces). It is currently decided that ash will be disposed for 5 years in dry form in co-disposal with gypsum from the station process (80:20 ash gypsum at approximately 15% moisture content). Thereafter the No.1 Ash Dump will receive gypsum only for the balance of power station design life, to 60 years (i.e. for a further 55 years). A second ash dump, to receive ash only for 55 years, will be developed on another site at a later stage.

The ash/gypsum in the first five years will be placed onto the dump using load and haul equipment. The ash/gypsum will be placed in low height paddocks, until full design height is achieved. A similar load/haul operation will apply for the gypsum only disposal over the remaining 55 years.

The construction of the ash dump facilities will be undertaken in phases. Phase 1 will include the footprint development for the first five years of deposition, together with all clean and dirty water management facilities designed to accommodate the ultimate development of the overall dump.

1.1 Background

Eskom is the principal supplier of electricity in South Africa. In order to meet the growing need for electricity, and in support of the growth and development strategy of national government, Eskom has embarked on an expansion programme to develop new power stations. Part of this expansion program includes the building of a number of coal-fired power stations. A proposed new 4,800 MW coal-fired power station (Kusile Power Station) near Kendal Power Station is one of the coal-fired power stations to be built. An extremely tight design and construction program is in place to achieve a first fire on coal date for the first boiler unit of July 2013. The project has been given National priority status. A preliminary version of this report (report 5492-90-011 Rev 1) was submitted in January 2009 with the Integrated Water Licence Application (IWULA) to the Department of Water Affairs (DWA). This final detail design report provides full detail of the ash dump final design, but has not deviated from the concept designs presented in the preliminary report.

1.2 General

The No.1 Ash Dump is located to the West of the main Kusile Power Station complex, as shown on the B&V Block Plan in **Appendix 1**.

The power station commissioning is currently scheduled as follows:

Date of first fire on coal: Unit 1: 1 July 2013

Date of first fire on coal: Unit 6: 1 November 2016

The ash dump will be constructed and commissioned in time to receive ash on 1 July 2013. Construction is scheduled to commence in August 2011.

1.3 Scope

The station ash dump, approximately 2500 m by 1000 m in plan extent (250 ha), is formed on sloping hill-top ground to the West of the station coal stockpile and its associated natural stream and stream diversion. The general location is shown on the Kusile site layout drawing in 1.2 above.

The following general drawings are presented in **Appendix 1**:

- Block Plan
- Ash Dump General Arrangement drawing K30300098/06-201
- Typical Ash Dump Cross-section drawing K30300098/06-207 Rev P1
 A list of all other drawings included in this report, together with a full schedule of all drawings associated with the Ash Dump, are included at the front of <u>Appendix 1.</u> The general arrangement drawings presented show the ultimate overall development of the dump. Accompanying detail drawings are for Phase 1 of the development only.

Clean and dirty water run-off from the ash dump terrace will be managed separately according to the DWA "Best Practice" series of publications.

The ash dump terrace layer works design is to address all relevant South African regulatory requirements, in particular:

- The National Water Act, No 36 of 1998
- Government Notice No.704, Regulations on use of water for mining and related activities aimed at the protection of water resources, in terms of the National Water Act (Act 36 of 1998)
- SANS 1200: Standardised Specifications for Civil Engineering Construction
- DWAF Minimum Requirements for Waste Disposal by Landfill (Second edition, 1998)

2 DESIGN PARAMETERS

2.1 General

The following basic parameters apply to the detail design of the no.1 Ash Dump:

- Ash and gypsum tonnages for disposal are as scheduled in <u>Appendix 2</u>
- Co-disposal Ash/gypsum for the 1st 5yrs: Storage Volume = 32.287 x 10⁶ m³

Gypsum disposal for the next 55 yrs: Storage Volume = 49.788 x 10⁶ m³
 Total disposal for 60 yrs: Storage Volume = 82.075 x 10⁶ m³

Top elevation of dump: 1540.00 m

Dump height: Varies 33 to 51 m

• The dump will be developed to full height starting at the North end of the site, during the first 5 years of operation, and will progressively move forward at full height towards the south.

- The 5 year footprint will be developed to full height in two sections of coverage, the first over 3 years, the second over 2 years.
- All dump side slopes are at 1V to 5H. The advancing front face will also be benched to have an effective slope of 1V to 5H.
- Ash/gypsum co-disposal and gypsum disposal will be disposed by a load/haul operation in successive paddock of suggested size 200m by 200m, developed in 2mlifts, built to full height of the dump as quickly as possible. In this way dust suppression and irrigation water would be minimized and haul-truck distances reduced.
- The alternating paddock development approach will take approximately 5 years, in two sub-phases, to develop ash dump to full height along the full 5 year footprint face. Thereafter the entire ash dump face will develop progressively towards the south.
- Dust suppression of the top dump area will be controlled by a 100 mm permeable blanket layer of gravel, followed by top soiling and grassing.
- Storage volume / dump size derived for the first 5 years assumes that the six boiler units are commissioned, one every 8 months over 4 years, plus a further year at full production.
- Active area of the dump will be equivalent to the advancing face plus a 50 m section extending behind the advancing face of the dump.
- Rehabilitation establishment will take 3 years, developed progressively as each section of the dump is finalised. Irrigation will be provided for 1 year behind the active dump site. Thereafter no irrigation will be applied.
- All stormwater runoff collected from the active face, the active deposition zone and the active rehabilitation zone will be discharged to the dirty water system.
- Assumed tonnages per boiler unit for the ash dump volume calculations are:
 - Ash: 150 t/hr *0.9 load factor and 0.9 availability factor = 121.5 t/hr * factor of safety 1.1= 135 t/hr
 - FGD: 19.33 t/hr* 0.9 load factor and 0.9 availability factor = 15.66
 t/hr*factor of safety 1.1 = 17.4 t/hr
- The top dump surface at nominal elevation 1540.00 m will be graded to the short sides from the dump centreline at 1V to 200H to facilitate stormwater runoff.
- The dump footprint will be provided with a double HDPE liner system with leakage detection. (Note: The DWA "Minimum Standards" document requires a 3-layer lining system for a class Hh disposal site. As the Kusile dump is a dry dump, DWA have agreed to relax the requirement to a 2-layer liner (2*2 mm HDPE).

- The liner system will have a drainage layer above it to intercept any seepage through the dumped materials. Seepage will be discharged to the dirty water system.
- A groundwater drainage system will be provided under the liner system in areas where the natural water table is shallow. Collected groundwater will be discharged to the clean water system.
- A system of concrete lined dirty water culverts and pipes will channel the dirty stormwater runoff from the active part of the dump and from the area in the process of rehabilitation to the Ash Dump Dirty Water Dam.
- External Clean Water Diversion Drains
 - The 1:100 yr / 24 hr clean stormwater runoff will be kept separate from the dirty water runoff from the dump site.
 - Runoff from fully rehabilitated areas will be managed as clean water and discharged to the streams on either side of dump after passing through a series of retention/settling dams located around the ash dump perimeter.
 - The runoff from the incremental cleanwater catchments outside of the active footprint, flowing towards the active dump will be intercepted with temporary cut-off drains. These drains will divert the flow around the ash dump footprint, into the clean water system after passing through retention/settling dams.
- Ash Dump Dirty Water Dam (ADDD)
 - Government Notice Regulation 704 specifies that a dirty water system may not spill into a clean water system more than once in 50 years, and that 800 mm freeboard be provided.
 - The ADDD will be designed to ultimately store the 1:50 yr / 8 day storm runoff from the active dump surface area and the 3 year rehabilitation zone at any time. To allow emptying and cleaning access one at a time
 - The ADDD storage is accommodated in two equal size compartments
 - A silt settling sub-compartment is provided at the dirty water inlet zone of each main compartment
 - Dust control and irrigation water will also be stored in the ADDD. The
 operating storage volume will be equivalent to 72 hours of dust control
 and irrigation water flow. The volume is based on the maximum pumping
 rate of 25 l/s for a period of 72 hours.
 - The ADDD will be operated at or below the irrigation water storage level, at the start of each wet season, thereby providing the capacity above this to store the 1:50 yr / 8 day storm runoff.
 - Dust control and irrigation water will be sourced primarily from accumulated stormwater in the ADDD, supplemented as necessary from the Station Holding / Recycle Dam.

 Excess stormwater accumulated in the ADDD will be transferred by gravity to the Station Dirty Dams for re-use in the station system.

2.2 Ash and Gypsum Production

Based on the design parameters in 2 above, a detailed Ash and Gypsum production schedule has been developed. This is presented in **Appendix 2.**

The production of first ash from boiler unit 1 is schedule for 1 July 2013.

3 ASH/GYPSUM CLASSIFICATION

3.1 Classification of Ash and Gypsum

The specialist report "Classification and Environmental Evaluation of Kusile Power Station Ash and Gypsum in Terms of the Minimum Requirements: November 2008" is presented in **Appendix 5.**

The report concludes and classifies the ash and gypsum products as follows:

3.1.1 Ash

Using ARLP test (which is the appropriate, acceptable test for ash disposal), no element is leached above its acceptable risk limit and, therefore, the ash formally classifies as **non-hazardous**. As the ash is produced in large amounts ie 16700 t/day at full production, it can however still have a significant impact on the environment as it can increase salinity of water resources (specifically because the water table on the ash dump site is high). A dirty water and seepage management system is therefore required for disposal.

A GLB⁺ site will be required.

3.1.2 Gypsum

The Gypsum is predominantly calcium sulphate dehydrate but it contains a number of minor elements, i.e. A1, 0,254%; Mg, 0.22%, P, 0.428%; plus of a number of trace elements (<0.10%), i.e. Fe, F, K, etc. The FGD Gypsum sample leached only fluoride at a concentration above it acceptable risk limit using both the TCLP and the ARLP tests. Fluoride is a moderate hazard according to the Minimum Requirements and, therefore, the gypsum formally classifies as a **moderate hazard waste**. A class Hh landfill will be required.

3.1.3 Ash/FGD Gypsum (6:1) Mixture

The Ash/ Gypsum (6:1) mixture leaches Mn, Pb and P concentrations above their acceptable risk limits using TCLP solution number 1. Because Mn and Pb are classified as high hazard species, the mixture classifies as high hazard waste. However, the mixture leaches only F at a concentration above its acceptable risk limit using the ARLP. As F classifies as a moderate hazard species, the mixture classifies as moderate hazard waste. The origin of the fluoride is mainly the gypsum and, therefore, the hazard rating of the ash is increased by mixing with gypsum. Co-disposal of the ash and gypsum will require a class HhLB+ site.

3.2 DWAF Minimum Requirements for Waste Disposal by Landfill

The DWAF classification system (Ref1) is summarised as follows:

3.2.1 Classification System

G = General Waste B = No significant leachate produced

H = Hazardous Waste $B^+ = Significant leachate produced$

H:h = Hazard Rating 3 + 4

H:H = Hazard Rating 1 - 4 all waste types

L = Large Landfill

M = Medium Landfill

S = Small Landfill

Typical classifications may thus be:

 GLB^+ or HhLB^+ or HHLB^+ $\mathsf{GLB}^ \mathsf{HhLB}^ \mathsf{HHLB}^-$

3.2.2 Climatic Water Balance (CWB)

CWB is defined as B = R - E

B = Climatic water balance in mm of water

R = Rainfall in mm of water

E = Evaporation from soil surface in mm of water

If B is positive for more than one year in five for the years for which data is available,

The site is classified B+

• There should be significant leachate generation

In the case of the Kusile ash disposal site, this is classified as B^{\star} (water excess).

3.2.3 Hazard Ratings

Hazard Rating 1: Extremely hazardous

Hazard Rating 2: High hazard

Hazard Rating 3: Moderate hazard

Hazard Rating 4: Low hazard

3.2.4 Kusile Classification

- a) **Kusile Climatic Water Balance (CWB).** The CWB assessment and rainfall data for Kusile is presented in **Appendix 6** hereto.
- b) **Overall Classification**. The Kusile Ash Dump classifies as follows, according to the DWAF Minimum Requirements document:

4 ASH DUMP NO.1 DESIGN

4.1 Design Parameters

Design assumptions and parameters are set out in Section 2 hereto.

4.2 Ash Dump Deposition Modelling

Three dimensional volumetric models have been developed for the storage of ash/gypsum in the first five years of co-disposal, and for gypsum only for the remaining 55 years of the power station life.

The modelling incorporates the build-up of ash/gypsum production tonnages as the boiler units are brought on line at eight month intervals, per the schedule in **Appendix** 2.

Some of the modelling outputs are presented in **Appendix 4** as used for stormwater run-off and irrigation assessments.

The volumetric modelling output is summarised as follows:

Co-disposal Ash/gypsum for the 1st 5yrs: Storage Volume = 32.287 x 10⁶ m³
 Gypsum disposal for the next 55 yrs: Storage Volume = 49.788 x 10⁶ m³
 Total disposal for 60 yrs: Storage Volume = 82.075 x 10⁶ m³

Top elevation of dump: 1540.00 m

• Dump height: Varies 33 to 51 m

4.3 Ash Dump Terrace Layer Works Description

4.3.1 Topography

The Ash Dump is located to the West of the main power station terrace, on sloping ground on a spur/hill crest between two stream courses. The dump will have a footprint size of approximately 2500 m by 1000 m (250 ha). The maximum ground slope of ash dump footprint on the hill side has been limited to 1v to 15 h to ensure overall stability. The topography is more fully described in reference1, presented in Section 7 hereto.

4.3.2 Basic Terrace Layer Works

In accordance with the ash/gypsum HhLB classification Ref⁽¹⁾, the site layer works will be as follows:

The grass land site will be prepared as follows:

- Basic stripping and removal of vegetation.
- Topsoil will be removed and stockpiled for rehabilitation use. Topsoil depth is expected to be approximately 200 mm.
- The surface will be harrowed, raked to remove excess size stones and compacted to 95% Standard Proctor to receive the liner.
- Minor cut and fill adjustments to the terrace are required along the perimeter to ensure that clean stormwater runoff from the dump can pass over the concrete dirty water channel after rehabilitation has taken place.

- In the pan area located on high ground that is covered by the ash dump footprint, the following actions are specified:
 - The pan will be drained of standing water by means of a gravity trench excavated through the lip of the pan, into the central pan area
 - A capillary break/drainage layer incorporating a porous dump rock layer and a herring-bone type system of agricultural drains will be provided to intercept ground water and to relieve any excess pore pressures developed as the ash is stacked. (see dwgs K30300098/06-208 and -209 in <u>Appendix</u> 1.
- Similarly, a herringbone drainage system will be provided under the liner system in areas of the main dump footprint where the groundwater table is within 2 m of the natural ground level. (see dwg K30300098/06-211 in Appendix 1). These drains will be treated as clean drains and will discharge to the ash dump perimeter clean drain system.
- A double liner system with leak detection facilities to satisfy the requirements of the DWAF Minimum Requirements (see Section 4.4 below) will be placed over the entire 5 year dump footprint, (and later over the entire footprint). The liner system will include provision for accommodation of tensile stresses on the liner caused during ash/gypsum placement operations. The capillary break under drain system and the liner system will be installed in stages as the footprint extends over time.
- Details of the liner system are presented on drawings K30300098/06-220, -221 and -224 in Appendix 1.

4.4. Ash Dump Liner Details

To prevent contamination to the underlying soil, the Ash Dump is required to be fully lined (see Section 3 above). The Ash Dump will be provided with a double liner, incorporating a leakage detection system, in accordance with the DWA document "Minimum Requirements for Waste Disposal by Landfill (1998)", as modified by agreement with DWA (see sub-report and correspondence in **Appendix 3**).

The sub-grade earthworks will entail removal of vegetation and topsoil to an approximate depth of 200 mm and preparation of a smooth surface, free from large or loose angular particles and vegetative matter, compacted to 95% Standard Proctor. The liner layer system will then be as follows, as depicted on drawings K30300098/06-220, 221 and -224 in **Appendix 1**:

 A grade A8 Geo-textile (or similar non-woven needled punched geo-fabric) will be placed on the finished grade as a protective measure for the lower HDPE liner.

- A continuous 2.0 mm double-textured HDPE geo-membrane liner will be placed as the secondary (lower) liner.
- A second grade A8 geofabric will be placed over the lower HDPE sheet to provide protection from the drainage layer sand.
- A leakage detection layer comprising 100 mm clean river sand, screened to minus 3 mm, will be laid onto the geofabric, to facilitate leakage drainage to the leakage detection pipes reporting to the perimeter dirty water drain, should the primary liner have minor deficiencies.
- In area around the ash dump perimeter, where the ground slope steepens, a 35 mm or 50 mm high perforated, textured geocell retaining web (Neoweb or equal approved) will be imbedded in the sand layer to prevent migration of the sand down the slope.
- A 2.0 mm double textured HDPE geomembrane liner will be installed over the sand drainage layer as the primary (top) liner.
- Finally, an A8 grade geofabric will be laid over the top HDPE sheet to provide protection from the next gravel drainage layer.
- The liner system will then be covered with a 300 mm later of selected G5 gravel, to provide drainage for the stacked ash and gypsum. This layer will be provided with a herring-bone drainage collection system of agricultural drains, reporting to the dirty water drain.
- Drawing K30300098/06-221 in <u>Appendix 1</u> provides a schematic illustration of the liner system.

4.5 Dirty Water Drainage System: General

Dirty water run-off from the ash dump has been calculated using the 1:50 year / 24 hour storm hydrology applied to the calculated maximum exposed dirty areas as the dump develops over time. Details of the calculations are presented in Section 4.7.3 and in **Appendix 4**.

A dirty stormwater collection drain comprising rectangular concrete canal with removable precast concrete lids will be provided around the perimeter of the ash dam footprint as this is extended across the site during the various stages of development. The first phase of construction will provide for the first five years of ash/gypsum deposition. The concrete dirty stormwater channels, which also receive drainage from the leakage detection drains in 4.2 above will report to the dedicated ash dump dirty water storage dam (ADDD) via a system of dirty water drain pipes. Details of the dirty drains and pipes are provided on drawings K303000098/06-230 and -232 in **Appendix 1.**

The ADDD is separated into two operating compartments to allow cleaning. The dam will be fully lined with a double HDPE liner incorporating a leakage detection system. Access is provided to the concrete lined depressed operating storage compartment for silt removal. Stored dirty water will primarily be used for dust control and irrigation on the ash dump. Excess stored dirty water will be transferred to the Station Dirty Dams for re-use in the process.

The perimeter dirty water drainage canal comprises a rectangular concrete channel with pre-cast concrete lids. During the ash deposition stage when the ash is exposed, stormwater run-off will be collected into the open drain. Once rehabilitation of the exposed ash surfaces has been achieved by topsoiling and grassing, the dirty drain will be covered using the precast concrete lids, thereby allowing clean stormwater to flow over the covered drain, into the clean water drainage system.

The double HDPE liner on the ash dump footprint will be anchored to the upstream side of the dirty drain, with leakage outlet pipes from the leakage detection system discharging into the concrete dirty water drain at intervals.

Details of the concrete drain and the HDPE connection system are shown on the drawing K30300098/06-221 in **Appendix 1**.

The stormwater hydrology applying to the dirty water drains is presented in Section 4.7.3 hereto.

4.6 Clean Water Drainage System: General

Cleanwater run-off from the ash dump has been calculated using the 1:100 yr / 24 hour storm hydrology applied to the calculated maximum exposed clean areas as the dump develops over time. Details of the calculations are presented in Section 4.7.3 and in **Appendix 4**.

A system of temporary clean water drains will be developed outside the 5 year footprint to intercept and lead clean stormwater from undeveloped zones of the site, away from the ash dump footprint as the footprint extends with time over the site. The drains will discharge to silt retention dams before outlet to stream. Drawings K30300098/06-320 to -327 in **Appendix 1** show details

A series of clean water channels will also be provided around the perimeter of the ash dump, outside the concrete dirty water channel, to receive clean stormwater run-off from rehabilitated surfaces of the ash dump. These drains discharge through culverts under the perimeter access road, into a collector drain and then to a series of silt

retention dams, before final discharge to stream. Drawings of the clean water channels are presented in **Appendix 1**.(K303000098/06-303 and -304 refer)

All clean stormwater will be discharged after silt settlement to the existing streams to the East (stream diversion canal) and West of the ash dump.

The trapezoidal clean water drains are developed in short sections of variable depth, to maintain a 1:200 gradient on the steep perimeter slopes of the ash dump footprint thereby controlling the flow regime. The drains discharge through culverts under the perimeter access road, to a further trapezoidal collector drain outside the perimeter access road and then to a series of stormwater retention/silt dams located at intervals around the ash dump perimeter. These dams have perforated outlets which will allow discharge of intercepted stormwater to stream after primary silt settling has taken place.

The collector drain outside the perimeter access road together with the silt retention dams will be constructed as a first priority, to serve as construction phase stormwater and erosion control facilities.

Drawings K30300098/06-303 and -304 in **Appendix 1** show details of the ash dump clean water system.

The stormwater hydrology applying to the clean water drains is presented in Section 4.7.3 hereto.

4.7 Ash Dump Dirty Water Dam (ADDD)

4.7.1 General

General Arrangement drawings for the ADDD are presented in <u>Appendix 1</u> (drawings K30300098/06-280 to -288 refer).

The derivation of storage capacity of the Ash Dump Dirty Water Dam (ADDD) is dependent on the maximum exposed area of un-rehabilitated ash that will apply during the deposition process, for derivation of dirty water run-off volumes.

Exposed areas have been calculated for Phase 1 of ash/gypsum deposition in the first 5 years of operation, which will involve progressive covering of the 5-year lined footprint.

The maximum exposed area for dirty water runoff derivation, occurs in the 4th year of deposition. Thereafter the dirty water catchment area decrease to a fairly constant area, during the gypsum deposition phase. During Phase 2, an additional 150 m of liner will be placed beyond the toe of the active face, every 5 years. This 150 m of liner corresponds with approximately 5 years of gypsum deposition. A cut-off berm will be developed in front of the extended liner to divert any upstream clean water runoff from entering the ash dump. This diverted water will be returned to the streams on the East and West sides of the ash dump.

The ADDD will be inter-connected to the Station Dirty Dam (SDD) by a supply line, allowing excess accumulated stormwater to be transferred from the ADDD to the SDD. The SDD is in turn connected by a pumping main to the station Holding and Recycle Dam (HRD) which in turn supplies water to the power station process. The HRD is also connected to ADDD by a gravity supply line. During drier periods of the year, irrigation and dust suppression water can be transferred to the ADDD from the HRD to supplement the operation (Refer to attached schematic **K5406/018 Rev 5** in **Appendix 1**).

4.7.2 Ash Dump Dirty Dam (ADDD) Philosophy

The ADDD storage capacity derivation is set out in Section 4.7.3c following.

An 800 mm of dry freeboard has been provided above the full supply capacity/spillway level.

It is expected that during a severe storm event such as the 1:50 yr / 24 hr storm, all the station holding dams on site will be at capacity. During this event, raw water make-up supply to the Raw Water Reservoir (RWR) will be shutdown. Water from the HRD will supplement the plant. The transfer pipeline, linking the SDD and HRD, has a capacity to empty the SDD in 7 days. During the 7 days, water can be transferred by gravity from the ADDD to the SDD. This indicates that the station has the capacity to draw down all the reservoirs during and after a major storm event. The seven day buffer storage capacity at the ADDD is derived from this rationale.

At times when there is insufficient stored stormwater in the ADDD, the storage can be supplemented by a pipeline from the station Holding/Recycle Dam (in turn supplied from the SDD).

4.7.3 Ash Dump Flood Hydrology

a) Hydrology and Assumptions

- Rainfall data from station 0514618W at Wilge River
- Station Mean Annual Precipitation (MAP) = 655 mm
- Rainfall generally occurs between October and March. The 98 yrs of recorded data was analysed to determine the average weekly rainfall for these months.
- Maximum dust suppression and irrigation surface area = 854 191 m² (5-year co-disposal case).
- Calculated dust/irrigation water volume pumped per day = 854.19 m³/day.
 This is based on 1 mm of water per day over the derived dust suppression and irrigation areas.
- Minimum storage required at the start of each month = 2 562.57 m³ equivalent to 72 hrs of dust suppression and irrigation water.
- Maximum Installed Pump Capacity at ADDD = 25l/s. This equates to a
 72 hr capacity of 6480 m³. The operational demand storage for the ADDD
 will be set at 6480 m³. Based on the actually maximum 72 hr demand,
 there is therefore a Factor of Safety of 2.52 on the operational storage.
- Maximum Dirty Catchment Area (5-year co-disposal case) = 1 100 000 m²
 (a catchment area of 1 603 743 m².is encountered during year 6. Area only occurs for a short period during year 6, therefore not considered in design).
- Coefficient of Discharge = 0.504 assumed for exposed Ash Dump. The runoff coefficient is based on surface slopes, permeability and vegetation.

Catchment description - Rural area (%)

Surface slopes		Permeability		Vegetation	
Lakes and pans	0	Very permeable	0	Thick bush & forests	0
Flat area	15	Permeable	<i>55</i>	Light bush & cultivated land	0
Hilly	80	Semi-permeable	45	Grasslands	10
Steep areas	5	Impermeable	0	Bare	90

- Stormwater runoff calculated using Rational Method (suitable for small catchment areas).
- Time of Concentration assumes overland flow down the active face and then defined channel flow along the edge of ash dump.
- Design Storm for the ADDD is the 1:50 yr / 24hr storm event. Design rainfall is 122 mm.
- Longest flowpath is the longest distance that water would follow from the furthest point in the catchment to the ADDD. This was divided into the three sections;

down the active face, along the front edge of the active face and then along the canal.

The flowrate (m³/s) is calculated according to the following equation:

$$Q = \frac{CIA}{3.6}$$

Where C = Runoff Coefficient (-)

I = Rainfall Intensity (mm/hr)

A = Catchment Area (km²)

b) Stormwater Run-off

Clean Water Perimeter Drains

- The ash dump has been divided into a series of individual catchments, each contributing to an individual clean water canal, as defined by the topography along the canal routes.
- In order to maintain sub-critical flow conditions on the canals and to avoid large concrete drop structures, the catchment was divided into smaller subcatchments, each served by an individual length of trapezoidal drain. This reduced the canal sizes. Each individual length of canal has its gradient restricted to a 1:200 maximum slope.
- The run-off generated from the sub-catchments will flow into separate lengths of canal, running along the perimeter of the ash dump.
- Typical clean water sub-catchments are also presented in **Appendix 4**.
- The run-off is based on a rehabilitated run-off co-efficient of 0.436.
- The total 1:100 yr / 24hr clean water run-off from the fully rehabilitated zone of the dump, will increase with time.
- The clean water drains running around the ash dump will be unlined trapezoidal canals with a 1.00 m base width, 1V: 3H side slopes.
- The clean water drain system is shown on drawings K30300098/06-303 and -304 in <u>Appendix 1</u>.
- Each section of drain will pass through 750 x 750 concrete box culverts, running under the perimeter access road, flowing into retention / settling dams. Each retention dam will store the volume of the 1:100/24hr. Storm arising from the part catchment delivering to that dam. The dams will be provided with a perforated outlet tower so that the dams will drain by gravity over a short period of time and will thus generally be empty. Each retention dam is also provided with emergency spillways designed to carry the

- 1:100/24hr. Peak flow. The stilled clean run-off will then flow back into the natural streams surrounding the ash dump.
- Details of the silt retention dams are presented in drawings K30300098/06-320 to -327 in <u>Appendix 1.</u>

Dirty Water Perimeter Drains

- The dirty water catchment of the ash dump comprises of the active dumping face, a 50 m section behind the active face, the 1-year irrigation zone and a further 2 year rehabilitation zone (based on co-disposal tonnages and rate of ash dump development).
- The run-off is based on a rehabilitated run-off co-efficient of 0.504.
- The 5 year ash dump footprint is developed in two phases; 1A and 1B. Phase 1A comprises the 1st three years of deposition, while Phase 1B consists of years 4 and 5. The phased development of the Ash dump is illustrated in **Appendix 4**.
- In an attempt to minimise the dirty catchment areas, a berm will be constructed along the top edge of ash dump at the end of Phase 1A.
- The berm will separate the two phases, allowing Phase 1A to be fully rehabilitated after 6 years of deposition.
- The establishing surface area is still considered dirty water catchment, if it encloses both irrigation and dust suppression areas. The runoff from the irrigation and dust suppressions areas will flow over the establishing area into the dirty water perimeter drains. The berm along the edge of Phase 1A will avoid this and will reduce the rehabilitation period of phase 1A.
- Phase 1B will be fully rehabilitated after 8 years of deposition.
- The catchment areas during disposal are shown in Table 4.1 below.

Table 4.1: Dirty Water Catchments during Disposal

Years	Dust Suppression Area	Irrigation Area	Total Area
-	km ²	km²	km ²
1	0.500	0.028	0.528
2	0.464	0.098	0.562
3	0.294	0.102	0.574
4	0.680	0.175	1.131
5	0.504	0.116	1.532
6	0.131	0.190	1.554
7	0.098	0.114	1.579
8	0.127	0.115	1.604

- The dirty water catchment area was divided into sub-catchments in an attempt to minimise the total runoff. Separate canals will collect runoff from Phase 1A and 1B.
- Phase 2 comprises the remaining 55 years of deposition. This catchment area will be divided into east and west sections, each with a separate canal.
- The calculated dirty runoff flow rates are summarised in
- Table 4.2 below.

Table 4.2: Peak dirty runoff Flowrates

Catchment A	Area	Flowpath	Time of Concentration	Precipitation (mm)	Intensity	Runoff C	Flowrate
	km ²	km	hrs	mm	mm/hr	-	m³/s
Phase 1A	0.5105	1.7316	1.0212	122.0000	119.472	0.504	8.545
Phase 1B	0.7753	1.9489	1.1235	122.0000	108.591	0.504	11.796
Phase 2 East	0.1618	0.6889	0.4864	122.0000	250.842	0.504	5.687
Phase 2 West	0.2560	0.8749	0.5787	122.0000	210.804	0.504	7.562

- The dirty water drains will ultimately flow into the ADDD via a series of dirty water pipes.
- The rectangular concrete canals collecting runoff from Phases 1A and B will have a controlled gradient of 1:200 to maintain tranquil flow and will be 2.5 m wide with a flow depth of 2.0 m. The canal depths will vary from 2.2 to 2.7 m deep. The canals collecting from Phase 2 will be 2.5 m wide with a flow depth of 1.8 m and canal depths varying from 2.0 m to 2.5 m.
- Details of the dirty water drainage system are shown on drawings K30300098/06-230 and -232 in <u>Appendix 1.</u>

c) Ash Dump Stormwater Storage Volume in the ADDD

- A graph has been produced to illustrate the ash disposal volume at the ash dump after specific disposal times. The graph is presented in **Appendix 4**.
- The stormwater storage capacity for the ADDD is 204 000 m³, and corresponds with the 1:50 yr / 8 day storm event falling on the maximum dirty catchment area.

d) Dust Control & Irrigation Storage (Operating Storage)

 Additional storage in the ADDD is provided for 72 hours of water for dust control and irrigation over the active disposal area and the rehabilitation establishment zone.

- During the Ash Gypsum co-disposal phase, the dust control area comprises the advancing face and a 50 m section behind the face. The irrigation zone is located behind the dust control area and extends for a length equivalent to 1 year of disposal.
- During the Gypsum disposal phase, the dust control area comprises the advancing face and a 25 m section behind the face. The irrigation zone is located behind the dust control area and extends for 50 m.
- The dust control and irrigation storage volumes are based on 1 mm/day of equivalent rainfall. (1 mm/day is equivalent to 0.5*the average annual daily rainfall at Kusile Site).
- The dust control and irrigation volumes during disposal are shown in Table
 4.3 below.

Table 4.3: Dust Control and Irrigation Volumes

Years	Dust Suppression Area	Irrigation Area	Daily Volume	72 hr Volume
-	km ²	km²	m³/day	m ³
1	0.500	0.028	527.865	1583.595
2	0.464	0.098	562.196	1686.589
3	0.294	0.102	395.403	1186.210
4	0.680	0.175	854.191	2562.573
5	0.504	0.116	620.522	1861.565
6	0.131	0.190	320.956	962.867
7	0.098	0.114	212.206	636.619
8	0.127	0.115	241.379	724.138

- The maximum 72 hr dust suppression and irrigation volume is approximately 2562 m³. The maximum pumping capacity from the ADDD is 25l/s.
- Based on the maximum pumping capacity, the operating storage was set at 6480 m³, which is equivalent to 72 hrs of pumping at 25l/s.
- Appendix 4 includes system descriptions for the Dust Suppression and Irrigation Water, and Make-up Water.

e) ADDD Storage Volume

The ADDD storage volume is sufficient to store the dirty water run-off for
 1:50 yr / 8 day storm event, and for 72 hours of dust control and irrigation.

The required ADDD storage capacity is 210480 m³ as shown in Table 4.4 below.

Table 4.4: ADDD Storage Volumes

Stormwater Volume	Dust and Irrigation Volume	Total Required Volume
m ³	m ³	m ³
204 000	6480	210480

- The ADDD has a design total storage capacity of 227410 m³, made up as follows:
 - Operating storage in depressed sumps in each compartment of the dam, for the irrigation and dust control operations of 11,560m³ total. This includes an allowance for silt accumulation
 - Stormwater storage of 215850 m³, split between the two compartments.
 - The two stormwater storage compartments are each provided with a silt trap sub-compartment at the dirty water inlet zone of each main compartment. This sub-compartment has the same depressed floor level as the operating storage zone, to allow accumulation of settled silt. The sub-compartments are separated from the operating storage zone and the stormwater storage zone by low height perforated walls.
- The ADDD will be a double compartment storage structure located to the north of the ash dump.
- The ADDD will be approximately 600 m long and 90 m wide with a maximum depth of 4.8 m.
- Ash Dump Dirty Dam drawings are presented on drawings K30300098/06-280 to 288 in <u>Appendix 1</u>.

4.7.4 Water Mass Balance

Water Mass Balance diagrams for Kusile Power Station, including the Ash Dump and Ash Dump Dirty Dam, are presented in **Appendix 7** for the following cases:

- No rainfall case
- Annual average rainfall case
- 1-day, 50 year event

4.8 Site Geotechnical Investigation

4.8.1 Introduction

The geotechnical information supplied by Partridge Maud and Associates, report reference number 1-6/07 entitled *Project Bravo - Report on Geotechnical Investigations Undertaken for the Ash Dump by Partridge Maud and Associates (PMA), June 2008*^(Ref.1) has relevance and gives the overall geotechnical conditions of the plant site.

The Local Geology from the Golder Associates Hydrogeological report is presented in **Appendix 1a**, together with an interpretation of the ground water depth profile, extracted from the test pit logs.

The following text is extracted from the PMA report conclusion:

- i) We do not envisage any major soil problems in the areas of the site underlain by the Dwyka tillite and Rayton shale. Shale bedrock occurs at shallow depth (less than three metres) in the latter area, while the residual tillite under the Ash Dump is characterized by relatively high consistency and shear strength at an average depth of about two metres, and perhaps double that locally. The mechanical properties of the tillite are, in addition, well known on the basis of a large number of tests carried out on both the Power Station and Ash Dump sites. This will facilitate design of the relevant parts of the dump.
- The problematical material from a founding point of view is the clayey residual diabase. This is a material of low strength, low density and high void ratio, which is susceptible to the occurrence of shear failures and significant settlements at relatively low imposed pressures. These problems should be carefully considered by the designers of the Ash Dump. Once again, a significant body of test data, from various parts of the total site, is available to underpin design decisions.
- iii) A major concern, at least during the wet 2007/2008 summer season, was the extent to which shallow and rapid water seepage was encountered in the test pits. In many cases it proved too dangerous to descend the pits to their full depth because of the collapse of their sides under the high prevailing hydrostatic pressures. This problem was not confined to low-lying areas: some of the most rapid seepage occurred near the crest of the ridge on which the Ash Dump will be sited. It is clear, therefore, that comprehensive underdrainage will have to be provided to ensure that pore water pressures

dissipate sufficiently rapidly not to prejudice the stability of the dump as it is raised. The combined flow from the drains will be substantial, and this needs to be taken into account when planning both the treatment (where this is needed) and the disposal of this water.

Drawings K 30300098/06-202 to -205 attached in **Appendix 1** show the location and logs of the test pits excavated on the ash dump.

Soil types vary across the site, but the area has shallow topsoils with quartzitic stones and weathered shales or organic clay/silts. The topsoils are predominantly underlain by tillite and diabase, with shallow bedrock within the tillite to about 3 to 4 m depth and the deeper weathering in the diabase to depths to bedrock of about 5 m, with occasional areas in excess of 5 m.

4.8.2 Groundwater Conditions

Strong groundwater seepage was noted at relatively shallow depth in some of the test holes excavated by Partridge Maud and Associates⁽¹⁾ and by Knight Piésold. Hydrogeological studies undertaken by Knight Piésold indicate the presence of both a deep and a shallow water table in the area of the Ash Dump. The ground water contour drawing in <u>Appendix 1</u> shows the interpreted zones of the ash dump site that have shallow ground water table depths.

4.9 Ash Dump Stability

A detail Stability analysis report has been prepared for the ash dump. (reference in Section 7).

After feasibility appraisal of alternative ash stacking or placement methods for the 5-year duration when ash and gypsum will be placed at high rates onto the no.1 ash dump footprint (ie before the no.2 final ash dump is developed), it was concluded that the ash/gypsum co-disposal in the first 5 years on Ash Dump No.1 would be undertaken using conventional load and haul operations. The ash/gypsum will be placed into successive paddocks of suggested size 200m by 200m,placed in 2 m lifts. This enables good management and control over the side and front faces of the dump, which will all be maintained at a 1v to 5h slope.

The paddock method will also avoid the development of excess pore pressures in the foundation materials as the ash is stacked, which would apply in conventional stacking processes where the ash front face is advanced from the full final height of the dump onto the underlying foundation.

The ash/gypsum stacking operations will ultimately result in high stacked fills over the underlying liner system. The friction interfaces between the ash/gypsum and the liner and between the liner and the natural foundation are thus critical to the dump stability.

The ash dump footprint is located on high ground between two stream courses (convex surface as shown on the typical cross-sections on K30300098/06-207 in **Appendix 1**). The perimeter of the ash dump footprint has been defined by restricting it to ground slopes that are not in excess of 1v to 15h, in order to ensure acceptable stability factors of safety for the dump.

In-situ samples have been taken from the in-situ foundation materials (November 2008) for laboratory tri-axial testing to supplement the sampling and testing undertaken and presented in ref ⁽¹⁾.

Ash/gypsum and soil friction interface properties with HDPE and the HDPE/sand/HDPE leakage detection sandwich layer have also been investigated by laboratory shear box testing.

The testing will be followed by rigorous slope stability assessments to determine the maximum allowable ash stacking height and dump bench heights/ overall effective dump slopes for maintenance of a safe stability regime during operation.

The detail stability analysis for the ash dump and the liner system is presented in a separate report as referenced in Section 7 hereto.

4.10 Seepage Analysis

The ash/gypsum will be dry–disposed at approximately 15% moisture content. However, the climatic water balance is assessed to be positive and irrigation for dust control also adds water to the ash dump system. The entire footprint is provided with a double HDPE liner system as defined in Section 3.6 hereto. A preliminary seepage assessment has been undertaken, using very early and incomplete hydrological data (Ref 7). The preliminary seepage analysis for the ash/gypsum dump, with an HDPE liner, shows a potential total footprint seepage varying from 69,6 to 72,9m³/d in the period 5 to 50 years of operation.

5 CONSTRUCTION

5.1 Method

The construction of the Ash Dump layer works is presented in the following separate work method statement reports:

- WMS 5452-90-011.1: Ash Dump Layer Works, Work Method Statement
- WMS 5452-90-011.2: Ash Dump Wetland Pan Area
- WMS 5452-90-011.3: Ash Dump Dirty Dam

In order to comply with Environmental and Water Licence requirements for protection of the water in the adjacent stream beds, silt and erosion control facilities in the form of interception trenches and silt retention dams will be constructed as a first priority before the main works are commenced.

Details of the construction phase works are presented on drawings K30300098/06-215 and -216 in **Appendix 1**.

5.2 Specifications

All work will be undertaken in accordance with the drawings and the provisions of the SANS 1200 series of documents and Eskom Technical Specification P23A – Combustion Waste Terrace.

6 OPERATION

After study of alternative deposition systems and life cycle cost comparisons, it was decided to place the ash/gypsum onto the ash dump for the first 5 years of power station operation by a load and haul operation. Ash and gypsum will be delivered by conveyor to a radial stacker near the ash dump, for subsequent loading, hauling and placement into paddocks of suggested size 200m by 200m, developed in 2m lifts, spread initially over the ash dump 5-year half-footprint, to full design height on the ash dump, and then similarly over the second half of the footprint.

The power station comprises six boiler units and these will be commissioned one every eight months, commencing 1 July 2013. The full power station ash/gypsum output will thus only be effective in the 4th year of operation.

In years 6 to 60 of operation, gypsum only will be placed at significantly reduced tonnages onto the ash dump by the same, but much smaller, load and haul operation.

PANEL B CONSULTANTS JOINT VENTURE

A second dump, to receive ash only is planned to be developed later on another site, still to be selected.

The ash/gypsum load and haul deposition system will enable the ash dump operators to place the ash/gypsum in such a manner as to be free draining in shape, with minimisation of any depression that will collect and retain stormwater run-off.

Temporary artificial channels will be deployed on the exposed ash surfaces to lead stormwater down the faces to the dirty water collection dams in a controlled manner thereby preventing erosion.

Irrigation of the exposed ash surfaces will take place to achieve dust control. Irrigation water volumes will be restricted as far as possible to limit any seepage potential arising from the irrigation waters.

Exposed ash surfaces will be finally shaped at 1:5 on the side slopes and at 1:200 on the top surfaces and rehabilitated as soon as practically possible by placement of selected topsoil and vegetation cover. These areas will be irrigated to promote and sustain the vegetation.

Spillages at ash transfer houses will be contained and removed in an effective manner.

Dirty stormwater run-off from the radial stacker terrace adjacent to the ash dump will be contained by perimeter ditches, and transferred to the ADDD.

7 REFERENCES

- 1. Project Bravo Report on Geotechnical Investigations undertaken at the Ash Dump, No. 1-6/07, Partridge Maude and Associates, June 2008
- 2. En Chem DR. David Baldwin: Kusile Power Station project: Classification and Environmental Evaluation of Ash and FGD Gypsum in Terms of the Minimum Requirements, November 2008
- 3. Government Notice No.704, Regulations on use of water for mining and related activities aimed at the protection of water resources, in terms of the National Water Act (Act 36 of 1998)
- 4. Minimum Requirements for Waste Disposal by Landfill, DWAF, 1998
- 5. The National Water Act, No 36 of 1998
- 6. SANS 1200: Standardised Specifications for Civil Engineering Construction
- 7. Panel B Consultants JV: Ash Dump Stability Analysis (Report 5452/10/019)
- 8. Eskom Technical Specification 100820-P23A –Combustion Waste Terrace.

9. DOCUMENT CONTROL SHEET

CLIENT: ESKOM HOLDINGS LIMITED

PROJECT: KUSILE POWER STATION PROJECT No: 5452/50

TITLE: -DESIGN REPORT 5452-50-006

	Prepared by	Reviewed by	Approved by
	NAME	NAME	NAME
ORIGINAL	J R WILLIAMSON	A J STRAUSS	D GRANT-STUART
DATE	signature	SIGNATURE	SIGNATURE
DEVICION 0	NAME	NAME	NAME
REVISION 2	J R WILLIAMSON	A J STRAUSS	D GRANT-STUART
DATE	SIGNATURE	SIGNATURE ALL	SIGNATURE
12/01/09	To water	Atraus	7
DEMOION O	NAME	NAME	NAME
REVISION 3	J R WILLIAMSON	A J STRAUSS	D GRANT-STUART
DATE	SIGNATURE	SIGNATURE ALL	SIGNATURE
31/08/10	To water	ftraus	To
DEVIOLON 5	NAME	NAME	NAME
REVISION 5	J R WILLIAMSON	A J STRAUSS	D GRANT-STUART
DATE	SIGNATURE	SIGNATURE #	SIGNATURE
03/12/10		Atraus	To

This report, and information or advice, which it contains, is provided by PANEL B CJV solely for internal use and reliance by its Client in performance of PANEL B CJV duties and liabilities under its contract with the Client. Any advice, opinions, or recommendations within this report should be read and relied upon only in the context of the report as a whole. The advice and opinions in this report are based upon the information made available to PANEL B CJV at the date of this report and on current SA standards, codes, technology and construction practices as at the date of this report. Following final delivery of this report to the Client, PANEL B CJV will have no further obligations or duty to advise the Client on any matters, including development affecting the information or advice provided in this report. This report has been prepared by PANEL B CJV in their professional capacity as Consulting Engineers. The contents of the report do not, in any way, purport to include any manner of legal advice or opinion. This report is prepared in accordance with the terms and conditions of the PANEL B CJV contract with the Client. Regard should be had to those terms and conditions when considering and/or placing any reliance on this report. Should the Client wish to release this report to a Third Party for that party's reliance, PANEL B CJV may, at its discretion, agree to such release provided that:

⁽a) PANEL B CJV written agreement is obtained prior to such release, and

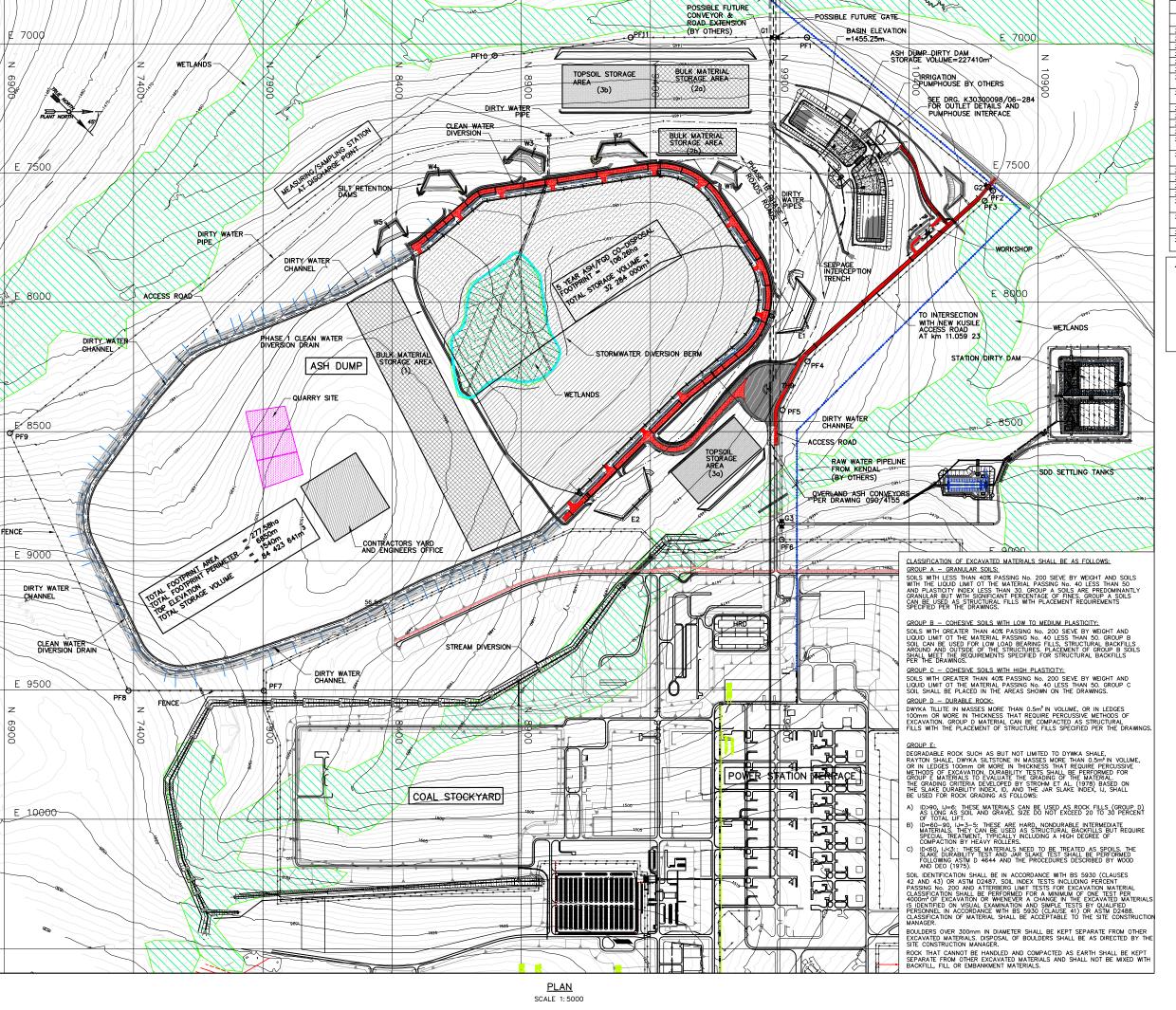
⁽b) By release of the report to the Third Party, that Third Party does not acquire any rights, contractual or otherwise, whatsoever against PANEL B CJV and PANEL B CJV, accordingly, assume no duties, liabilities or obligations to that Third Party, and

⁽c) PANEL B CJV accepts no responsibility for any loss or damage incurred by the Client or for any conflict of PANEL B CJV interests arising out of the Client's release of this report to the Third Party.

APPENDIX 1

DRAWING SCHEDULES

DRAWINGS


KUSILE POWER STATION ASH DUMP SITE No. 1 DRAWING SCHEDULE

Ash Dump No. 1 - General Ash Dump No. 1 - General Pranagerent Plan 201 Ash Dump No. 1 - General Arrangement Plan 202 Ash Dump No. 1 - General Arrangement Plan 203 Ash Dump No. 1 - General Arrangement Plan 204 Ash Dump No. 1 - General Arrangement Plan 205 Ash Dump No. 1 - General Arrangement Setting Out Coordinates 206 Ash Dump No. 1 - General Arrangement Setting Out Coordinates 207 Ash Dump No. 1 - General Arrangement Setting Out Coordinates 207 Ash Dump No. 1 - Setting Setting Setting Out Coordinates 207 Ash Dump No. 1 - Type Coordinates 208 Ash Dump No. 1 - Setting Setting Setting Out Coordinates 209 Ash Dump No. 1 - Type Coordinates 209 Ash Dump No. 1 - Type Coordinates 209 Ash Dump No. 1 - Type Coordinates 209 Averting A Pan Dranage Plan and Details 209 Verting A Pan Dranage Plan and Details 209 Ash Dump No. 1 - Type Coordinates 210 Footprint Set Preparation - Phase 1 211 Footprint Set Preparation - Phase 1 212 Footprint Set Preparation - Phase 1 213 Ash Dump No. 1 - Setting Setting Setting Setting 214 Ash Dump No. 1 - Setting S
201 Ash Dump No. 1 - Gencet Plan 202 Ash Dump No. 1 - Gencet Plan 203 Ash Dump No. 1 - Gencet Plan 204 Ash Dump No. 1 - Gencet Plan 205 Ash Dump No. 1 - Gencet Plan 206 Ash Dump No. 1 - Gencet Plan 207 Ash Dump No. 1 - Gencet Plan 208 Ash Dump No. 1 - Gencet Plan 209 Ash Dump No. 1 - Gencet Plan 209 Ash Dump No. 1 - Gencet Plan 200 Ash Dump No. 1 - Gencet Plan 200 Ash Dump No. 1 - Gencet Plan 201 Ash Dump No. 1 - Septic Plan 202 Ash Dump No. 1 - Septic Plan 203 Ash Dump No. 1 - Typic Devel Sections 207 Ash Dump No. 1 - Typic Devel Sections 208 Wetland / Pan Drainage Plan and Details 209 Wetland / Pan Drainage Plan and Details 209 Wetland / Pan Drainage Plan and Details 209 Wetland / Pan Drainage Plan Section 210 Footprint Site Preparation - Plase 1 211 Footprint Site Preparation - Plase 1 212 Footprint Site Preparation - Plase 1 213 Terracing of Hadid Stacker 6. As and Typical Sections 214 Ash Dump Dirty Dam - Construction Phase Storm Water Management GA and Details 215 Ash Dump Dirty Dam - Construction Phase Storm Water Management GA and Details 216 Ash Dump No. 1 - Construction Phase Storm Water Management GA and Details 217 Workshop Terrace - General Arrangement & Typical Sections 218 Pump Station Terrace - General Arrangement & Typical Sections 219 Ash Dump No. 1 - Storm Water Diversion Channels - Typical Sections & Details 210 Ash Dump No. 1 - Storm Water Diversion Channels - Typical Sections & Details 211 Plane D Drawings 212 Drawings - Drawings 213 Drawings - Drawi
201 Ash Dump No. 1 - Seneral Arrangement Plan 202 Ash Dump No. 1 - Geotechnical Plan 203 Ash Dump No. 1 - Geotechnical Logs - Sheet 3 of 3 204 Ash Dump No. 1 - Geotechnical Logs - Sheet 3 of 3 205 Ash Dump No. 1 - Floretochnical Logs - Sheet 3 of 3 206 Ash Dump No. 1 - Phase 1 General Arrangement & Setting Out Coordinates 207 Ash Dump No. 1 - Phase 1 Details 208 Ash Dump No. 1 - Phase 1 Details 209 Wetland / Pan Drainage Plan and Details 210 Footprint Site Preparation - Phase 1 Details 211 Footprint Site Preparation - Phase 1 Details 212 Transing of Baddy Stackers - G. A. and Typical Sections 213 Terracing of Baddy Stackers - G. A. and Typical Sections 214 Ash Dump No. 1 - Construction Phase Storm Water Management GA and Details 215 Ash Dump No. 1 - Construction Phase Storm Water Management GA and Details 216 Ash Dump No. 1 - Construction Phase Storm Water Management GA and Details 217 Workshop Terrace - General Arrangement & Typical Sections 218 Pump Station Terrace - General Arrangement & Typical Sections 219 Ash Dump No. 1 - Storm Water Phase 1 Sections & Details 210 Civil Works - HDPE Liner 211 Phase 1 Drawings 212 Drawings 213 Sections and Details, Phase 1 214 Sections and Details, Phase 1 215 Sections and Details, Phase 1 216 Drity Water Drains - Phase 1 General Arrangement 217 Drivy Water Drains - Phase 1 General Arrangement 218 Drity Water Drains - Phase 1 General Arrangement 219 Drity Water Drains - Phase 1 General Arrangement 220 Drity Water Drains - Phase 1 General Arrangement 221 Drity Water Drains - Phase 1 General Arrangement 222 Drity Water Drains - Phase 1 General Arrangement 223 Drity Water Drains - Phase 1 General Arrangement 224 Drity Water Drains - Phase 1 General Arrangement 225 Drity Water Drains - Phase 1 General Arrangement 226 Drity Water Drains - Phase 1 General Arrangement 227 Drity Water Drains - Phase 1 General Arrangement 228 Drity Water Drains - Phase
202 Ash Dump No. 1 - Geotechnical Days - Sheet 1 of 3 204 Ash Dump No. 1 - Geotechnical Logs - Sheet 2 of 3 205 Ash Dump No. 1 - Geotechnical Logs - Sheet 3 of 3 206 Ash Dump No. 1 - Phase 1 General Arrangement & Setting Out Coordinates 207 Ash Dump No. 1 - Phase 1 General Arrangement & Setting Out Coordinates 208 Ash Dump No. 1 - Phase 1 General Arrangement & Setting Out Coordinates 209 Ash Dump No. 1 - Phase 1 General Arrangement & Setting Out Coordinates 209 Wetland / Pan Drainage Plan and Details 210 Footprint Site Preparation - Phase 1 Details 211 Footprint Site Preparation - Phase 2 Details 212 Topotprint Site Preparation - Phase 2 Details 213 Terrange of Radial Stacker - G. A. and Typical Sections 214 Ash Dump Dirty Dam - Construction Phase Storm Water Management GA and Details 215 Ash Dump No 1 - Construction Phase Storm Water Management GA and Details 216 Ash Dump No 1 - Storm Water Management GA and Details 217 Workshop Terrace - General Arrangement & Typical Sections 218 Pump Station Terrace - General Arrangement & Typical Sections 219 Ash Dump No 1 - Storm Water Diversion Channels - Typical Sections & Details 220 Ash Dump No 1 - Storm Water Diversion Channels - Typical Sections & Details 221 Sections and Details, Phase 1 222 Dirty Water General Arrangement & Stylead Sections 223 Dirty Water Drains 224 Drainage Above + IDPE Liner - General Arrangement & Details, Phase 1 225 Dirty Water Drains - Typical Reindroring 226 Dirty Water Drains - Typical Reindroring 227 Dirty Water Drains - Typical Reindroring 228 Dirty Water Drains - Typical Reindroring 229 Dirty Water Drains - Typical Reindroring 220 Dirty Water Drains - Plan and Profile, Sheet 1 221 Dirty Water Drains - Plan and Profile, Sheet 1 222 Dirty Water Drains - Plan and Profile, Sheet 1 223 Dirty Water Pipes - Plan and Profile, Sheet 3 224 Dirty Water Pipes - Plan and Profile, Sheet 3 225 Dirty Water Pipes - Plan and
203 Ash Dump No. 1 - Geotechnical Logs - Sheet 1 of 3 204 Ash Dump No. 1 - Geotechnical Logs - Sheet 2 of 3 205 Ash Dump No. 1 - Seotechnical Logs - Sheet 3 of 3 206 Ash Dump No. 1 - Pase 1 General Arrangement & Setting Out Coordinates 207 Ash Dump No. 1 - Typical Overall Sections 208 Ash Dump No. 1 - Typical Overall Sections Earthworks - Ash Dump No. 1 & Ascillary Structures Pase 1 Drawings 208 Wetland / Pan Drainage Plan and Details 209 Wetland / Fan Drainage - DN110 Kabelflex Longitudinal Section 210 Footprint Site Preparation - Phase 1 Details 211 Footprint Site Preparation - Phase 1 Details 212 Footprint Site Preparation - Phase 1 Details 213 Terrange of Radial Sacker - G. A. and Typical Sections 214 Ash Dump Dry Dam - Construction Phase Storm Water Management GA and Details 215 Ash Dump Dry Dam - Construction Phase Storm Water Management GA and Details 216 Ash Dump Dry Dam - Construction Phase Storm Water Management GA and Details 217 Workshop Terrace - General Arrangement & Typical Sections 218 Pump Sation Terrace - General Arrangement & Typical Sections & Details 219 Ash Dump No. 1 - Storm Water Diversion Channels - Typical Sections & Details 219 Ash Dump No. 1 - Storm Water Diversion Channels - Typical Sections & Details 220 HDPE Liner General Arrangement & Typical Sections & Details 221 Dirty Works - Stormwater Management Phase 1 222 Details - Section and Details, Phase 1 223 Dirty Water Drainage Above HDPE Liner - General Arrangement 224 Drainage Above HDPE Liner - General Arrangement 225 Dirty Water Drains - Sprain and Profile, Sheet 1 226 Dirty Water Drains - Sprain and Profile, Sheet 1 227 Dirty Water Drains - Plan and Profile, Sheet 1 228 Dirty Water Drains - Plan and Profile, Sheet 1 229 Dirty Water Drains - Plan and Profile, Sheet 2 230 Dirty Water Pipes - Plan and Profile, Sheet 1 231 Dirty Water Pipes - Plan and Profile, Sheet 2 232 Dirty Water Pipes - Plan and Profile, Sheet 3 233 Dirty Water Pipes - Plan and Profile, Sheet 3 234 Dirty Water Pipes - Plan and Profile, Sheet 3 235 Dirty Wat
204
205 Ash Dump No. 1 - Seotechnical Logs - Sheet 3 of 3 206 Ash Dump No. 1 - Typical Overall Sections 207 Ash Dump No. 1 - Typical Overall Sections 207 Earthworks - Ash Dump No. 1 & Ancillary Structures 208 Phase 1 Drawings 208 Wetland / Pan Drainage - DNILIO Kabellex Longitudinal Section 209 Wetland / Pan Drainage - DNILIO Kabellex Longitudinal Section 210 Footpint Site Preparation - Phase 1 211 Footpint Site Preparation - Phase 1 212 Footpint Site Preparation - Phase 1 213 Terrange of Radial Stacker - G. A and Typical Sections 214 Ash Dump Driy Dam - Construction Phase Storm Water Management GA and Details 215 Ash Dump Driy Dam - Construction Phase Storm Water Management GA and Details 216 Ash Dump Dri - Construction Phase Storm Water Management GA and Details 217 Workshop Terrace - General Arrangement & Typical Sections 218 Punp Station Terrace - General Arrangement & Typical Sections & Details 219 Ash Dump No - 1 - Construction Phase Storm Water Management GA and Details 210 Civil Works - HDPE Liner 210 Phase 1 Drawings 211 Drawings 212 Drawings 213 Civil Works - Storm Water Diversion Channels - Typical Sections & Details 214 Drainage Above HDPE Liner 215 Phase 1 Drawings 216 Drawings 217 Drawings 218 Drawings Drawings 219 Drawings
Earthworks - Ash Dump No. 1 - Typical Overall Sections Earthworks - Ash Dump No. 1 & Ancillary Structures
Earthworks - Ash Dump No. 1 & Ancillary Structures Phase 1 Drawings
Phase 1 Drawings 208 Wetland / Pan Drainage Plan and Details 209 Wetland / Pan Drainage Plan and Details 209 Wetland / Pan Drainage Plan and Details 210 Footprint Site Preparation - Phase 1 211 Footprint Site Preparation - Phase 1 Details 213 Terracing of Radial Stacker - G. A. and Tylcial Sections 215 Ash Dump Drity Dam - Construction Phase Storm Water Management GA and Details 216 Ash Dump Drity Dam - Construction Phase Storm Water Management GA and Details 217 Workshop Terrace - General Arrangement & Typical Sections 218 Pump Station Terrace - General Arrangement & Typical Sections 219 Ash Dump No. 1 - Storm Water Diversion Channels - Typical Sections 219 Ash Dump No. 1 - Storm Water Diversion Channels - Typical Sections 220 Ab Dump No. 1 - Storm Water Diversion Channels - Typical Sections & Details Civil Works - HOPE Liner Phase 1 Drawings 220 HOPE Liner General Arrangement, Phase 1 221 Sections and Details, Phase 1 222 Drainage Above HOPE Liner - General Arrangement & Details, Phase 1 223 Dirty Water Orains Dirty Water Drains 230 Dirty Water Management - General Arrangement & Details, Phase 1 231 Dirty Water Management - General Arrangement 232 Dirty Water Management - Phase 1 General Arrangement 233 Dirty Water Orains - General Arrangement 234 Dirty Water Orains - Storm Seedile Sections 235 Dirty Water Orains - Plan and Profile, Sheet 1 236 Dirty Water Orains - Plan and Profile, Sheet 1 237 Dirty Water Orains - Plan and Profile, Sheet 1 238 Dirty Water Pipes - Plan and Profile, Sheet 1 259 Dirty Water Pipes - Plan and Profile, Sheet 1 250 Dirty Water Pipes - Plan and Profile, Sheet 1 251 Dirty Water Pipes - Plan and Profile, Sheet 1 252 Dirty Water Pipes - Plan and Profile, Sheet 1 253 Dirty Water Pipes - Plan and Profile, Sheet 1 254 Dirty Water Pipes - Plan and Profile, Sheet 3 255 Dirty Water Pipes - Plan and Profile, Sheet 3 256 Dirty Water Pipes - Plan and Profile, Sheet 3 257 Dirty Water Pipes - Plan and Profile, Sheet 3 258 Dirty Water Pipes - Plan and Profile
Phase 1 Drawings 208 Wetland / Pan Drainage Plan and Details 209 Wetland / Pan Drainage Plan and Details 209 Wetland / Pan Drainage Plan and Details 210 Footprint Site Preparation - Phase 1 211 Footprint Site Preparation - Phase 1 Details 213 Terracing of Radial Stacker - G. A. and Tylcial Sections 215 Ash Dump Drity Dam - Construction Phase Storm Water Management GA and Details 216 Ash Dump Drity Dam - Construction Phase Storm Water Management GA and Details 217 Workshop Terrace - General Arrangement & Typical Sections 218 Pump Station Terrace - General Arrangement & Typical Sections 219 Ash Dump No. 1 - Storm Water Diversion Channels - Typical Sections 219 Ash Dump No. 1 - Storm Water Diversion Channels - Typical Sections 220 Ab Dump No. 1 - Storm Water Diversion Channels - Typical Sections & Details Civil Works - HOPE Liner Phase 1 Drawings 220 HOPE Liner General Arrangement, Phase 1 221 Sections and Details, Phase 1 222 Drainage Above HOPE Liner - General Arrangement & Details, Phase 1 223 Dirty Water Orains Dirty Water Drains 230 Dirty Water Management - General Arrangement & Details, Phase 1 231 Dirty Water Management - General Arrangement 232 Dirty Water Management - Phase 1 General Arrangement 233 Dirty Water Orains - General Arrangement 234 Dirty Water Orains - Storm Seedile Sections 235 Dirty Water Orains - Plan and Profile, Sheet 1 236 Dirty Water Orains - Plan and Profile, Sheet 1 237 Dirty Water Orains - Plan and Profile, Sheet 1 238 Dirty Water Pipes - Plan and Profile, Sheet 1 259 Dirty Water Pipes - Plan and Profile, Sheet 1 250 Dirty Water Pipes - Plan and Profile, Sheet 1 251 Dirty Water Pipes - Plan and Profile, Sheet 1 252 Dirty Water Pipes - Plan and Profile, Sheet 1 253 Dirty Water Pipes - Plan and Profile, Sheet 1 254 Dirty Water Pipes - Plan and Profile, Sheet 3 255 Dirty Water Pipes - Plan and Profile, Sheet 3 256 Dirty Water Pipes - Plan and Profile, Sheet 3 257 Dirty Water Pipes - Plan and Profile, Sheet 3 258 Dirty Water Pipes - Plan and Profile
208 Wetland / Pan Drainage Pan I Debatellac Longitudinal Section
Description of the Proparation - Phase 1
10
Page
213 Terrating of Radial Stacker - G. A. and Typical Sections 215 Ash Dump Dirty Dam - Construction Phase Storm Water Management GA and Details 216 Ash Dump No. 1 - Construction Phase Storm Water Management GA and Details 217 Workshop Terrace - General Arrangement & Typical Sections 218 Pump Station Terrace - General Arrangement & Typical Sections 219 Ash Dump No. 1 - Storm Water Diversion Channels - Typical Sections & Details 219 Ash Dump No. 1 - Storm Water Diversion Channels - Typical Sections & Details Civil Works - HDPE Liner Phase 1 Drawings 220 HDPE Liner General Arrangement, Phase 1 221 Sections and Details, Phase 1 222 Drainage Above HDPE Liner - General Arrangement & Details, Phase 1 223 Drainage Above HDPE Liner - General Arrangement & Details, Phase 1 Civil Works - Stormwater Management System Dirty Water Drains 230 Dirty Water Management - General Arrangement 231 Dirty Water Management - Fhase 1 General Arrangement 232 Dirty Water Management - Phase 1 General Arrangement 233 Dirty Water Drains - Concrete Details 234 Dirty Water Drains - Funding Schedule 235 Dirty Water Drains - Plan and Profile, Sheet 1 236 Dirty Water Drains - Plan and Profile, Sheet 1 237 Dirty Water Drains - Plan and Profile, Sheet 3 238 Dirty Water Prains - Plan and Profile, Sheet 3 239 Dirty Water Pipes - Plan and Profile, Sheet 3 250 Dirty Water Pipes - Plan and Profile, Sheet 3 251 Dirty Water Pipes - Plan and Profile, Sheet 3 252 Dirty Water Pipes - Plan and Profile, Sheet 3 253 Dirty Water Pipes - Plan and Profile, Sheet 3 254 Dirty Water Pipes - Plan and Profile, Sheet 3 255 Dirty Water Pipes - Plan and Profile, Sheet 3 256 Dirty Water Pipes - Plan and Profile, Sheet 3 257 Dirty Water Pipes - Plan and Profile, Sheet 3 258 Dirty Water Pipes - Plan and Profile, Sheet 3 259 Dirty Water Pipes - Plan and Profile, Sheet 3 250 Dirty Water Pipes - Plan and Profile, Sheet 3 251 Dirty Water Pipes - Plan and Profile, Sheet 3 252 Dirty Water Pipes - Plan and Profile, Sheet 3 253 Dirty Water Pipes - Plan and Profile, Sheet 3 254 Dirt
215 Ash Dump Dirty Dam - Construction Phase Storm Water Management GA and Details 216 Ash Dump No. 1 - Construction Phase Storm Water Management GA and Details 217 Workshop Terrace - General Arrangement & Typical Sections 218 Pump Station Terrace - General Arrangement & Typical Sections 219 Ash Dump No. 1 - Storm Water Diversion Channels - Typical Sections & Details 219 Ash Dump No. 1 - Storm Water Diversion Channels - Typical Sections & Details 210
216 Ash Dump No. 1 - Construction Phase Storm Water Management GA and Details 217 Workshop Terrace - General Arrangement & Typical Sections 218 Pump Station Terrace - General Arrangement & Typical Sections 219 Ash Dump No. 1 - Storm Water Diversion Channels - Typical Sections & Details 219 Details Station For Station For Stations & Details 210 Civil Works - HDPE Liner 221 Phase 1 Drawings 2220 HDPE Liner General Arrangement, Phase 1 2221 Sections and Details, Phase 1 2224 Drainage Above HDPE Liner - General Arrangement & Details, Phase 1 2234 Drainage Above HDPE Liner - General Arrangement & Details, Phase 1 230 Dirty Water Drains 230 Dirty Water Management - General Arrangement 231 Dirty Water Management - General Arrangement 232 Dirty Water Management - Phase 1 General Arrangement 233 Dirty Water Management - Phase 1 General Arrangement 234 Dirty Water Drains - Station Schedule 235 Dirty Water Drains - Standard Reinforcing 234 Dirty Water Drains - Bending Schedule 235 Dirty Water Drains - Plan and Profile, Sheet 1 236 Dirty Water Drains - Plan and Profile, Sheet 1 237 Dirty Water Drains - Plan and Profile, Sheet 3 238 Dirty Water Drains - Plan and Profile, Sheet 3 239 Dirty Water Pripas - Plan and Profile, Sheet 1 250 Dirty Water Pipes - Plan and Profile, Sheet 1 251 Dirty Water Pipes - Plan and Profile, Sheet 2 252 Dirty Water Pipes - Plan and Profile, Sheet 3 253 Dirty Water Pipes - Plan and Profile, Sheet 3 254 Dirty Water Pipes - Plan and Profile, Sheet 3 255 Dirty Water Pipes - Plan and Profile, Sheet 3 256 Dirty Water Pipes - Plan and Profile, Sheet 3 257 Dirty Water Pipes - Plan and Profile, Sheet 3 258 Dirty Water Pipes - Plan and Profile, Sheet 4 259 Dirty Water Pipes - Plan and Profile, Sheet 3 250 Dirty Water Pipes - Plan and Profile, Sheet 4 256 Dirty Water Pipes - Plan and Profile, Sheet 4 257 Dirty Water Pipes - Plan and Profile, Sheet 4 258 Dirty Water Pipes - Plan and Profile, Sheet 4 259 Dirty Water Pipes - Plan and Profile, Sheet 4 250 Dirty Water Pipes - Plan and Profile, Sheet 4 250 Dirty
218 Pump Station Terrace - General Arrangement & Typical Sections & Details 219 Ash Dump No. 1 - Storm Water Diversion Channels - Typical Sections & Details Civil Works - HDPE Liner Phase 1 Drawings 220 HDPE Liner General Arrangement, Phase 1 221 Sections and Details, Phase 1 2224 Drainage Above HDPE Liner - General Arrangement & Details, Phase 1 Civil Works - Stormwater Management System Dirty Water Drains 230 Dirty Water Management - General Arrangement 231 Dirty Water Management - Phase 1 General Arrangement 232 Dirty Water Management - Phase 1 General Arrangement Phase 1 Drawings 233 Dirty Water Drains - Concrete Details 234 Dirty Water Drains - Typical Reinforcing 235 Dirty Water Drains - Phase 1 General Arrangement 236 Dirty Water Drains - Plan and Profile, Sheet 1 237 Dirty Water Drains - Plan and Profile, Sheet 1 238 Dirty Water Drains - Plan and Profile, Sheet 3 239 Dirty Water Drains - Plan and Profile, Sheet 3 230 Dirty Water Drains - Plan and Profile, Sheet 3 231 Dirty Water Pipes - Plan and Profile, Sheet 1 232 Dirty Water Pipes - Plan and Profile, Sheet 1 233 Dirty Water Pipes - Plan and Profile, Sheet 1 244 Dirty Water Pipes - Plan and Profile, Sheet 1 250 Dirty Water Pipes - Plan and Profile, Sheet 3 251 Dirty Water Pipes - Plan and Profile, Sheet 3 252 Dirty Water Pipes - Plan and Profile, Sheet 3 253 Dirty Water Pipes - Plan and Profile, Sheet 3 254 Dirty Water Pipes - Plan and Profile, Sheet 3 255 Dirty Water Pipes - Plan and Profile, Sheet 4 256 Dirty Water Pipes - Plan and Profile, Sheet 4 256 Dirty Water Pipes - Plan and Profile, Sheet 4 256 Dirty Water Pipes - Plan and Profile, Sheet 4 257 Dirty Water Pipes - Plan and Profile, Sheet 4 258 Dirty Water Pipes - Plan and Profile, Sheet 4 259 Dirty Water Pipes - Plan and Profile, Sheet 4 250 Dirty Water Pipes - Plan and Profile, Sheet 4 256 Dirty Water Pipes - Plan and Profile, Sheet 4 257 Dirty Water Pipes - Plan and Profile, Sheet 4 258 Dirty Water Pipes - Plan and Profile, Sheet 4 259 Dirty Water Pipes - Plan and Profile, Sheet 3 25
Ash Dump No. 1 - Storm Water Diversion Channels - Typical Sections & Details
Civil Works - HDPE Liner Phase 1 Drawings 220
Phase 1 Drawings Dirty Water Drains - Concrete Details Dirty Water Drains - Plan and Profile, Sheet 1 234 Dirty Water Drains - Plan and Profile, Sheet 3 Dirty Water Drains - Plan and Profile, Sheet 4 Dirty Water Drains - Plan and Profile, Sheet 4 Dirty Water Drawings - Plan and Profile, Sheet 1 235 Dirty Water Drawings - Plan and Profile, Sheet 2 Dirty Water Drawings - Plan and Profile, Sheet 3 Dirty Water Drains - Plan and Profile, Sheet 4 Dirty Water Drains - Plan and Profile, Sheet 3 Dirty Water Drains - Plan and Profile, Sheet 3 Dirty Water Drains - Plan and Profile, Sheet 3 Dirty Water Drains - Plan and Profile, Sheet 3 Dirty Water Drains - Plan and Profile, Sheet 3 Dirty Water Drains - Plan and Profile, Sheet 3 Dirty Water Drains - Plan and Profile, Sheet 3 Dirty Water Drains - Plan and Profile, Sheet 3 Dirty Water Drains - Plan and Profile, Sheet 3 Dirty Water Pipes - Plan and Profile, Sheet 3 Dirty Water Pipes - Plan and Profile, Sheet 1 250 Dirty Water Pipes - Plan and Profile, Sheet 2 Dirty Water Pipes - Plan and Profile, Sheet 3 Dirty Water Pipes - Plan and Profile, Sheet 3 Dirty Water Pipes - Plan and Profile, Sheet 3 Dirty Water Pipes - Plan and Profile, Sheet 3 Dirty Water Pipes - Plan and Profile, Sheet 3 Dirty Water Pipes - Plan and Profile, Sheet 3 Dirty Water Pipes - Plan and Profile, Sheet 3 Dirty Water Pipes - Plan and Profile, Sheet 3 Dirty Water Pipes - Plan and Profile, Sheet 3 Dirty Water Pipes - Plan and Profile, Sheet 3 Dirty Water Pipes - Plan and Profile, Sheet 4 Dirty Water Pipes - Typical Sections and Details Dunction Boxes & Manholes Phase 1 Drawings
Phase 1 Drawings Dirty Water Drains - Concrete Details Dirty Water Drains - Plan and Profile, Sheet 1 234 Dirty Water Drains - Plan and Profile, Sheet 3 Dirty Water Drains - Plan and Profile, Sheet 4 Dirty Water Drains - Plan and Profile, Sheet 4 Dirty Water Drawings - Plan and Profile, Sheet 1 235 Dirty Water Drawings - Plan and Profile, Sheet 2 Dirty Water Drawings - Plan and Profile, Sheet 3 Dirty Water Drains - Plan and Profile, Sheet 4 Dirty Water Drains - Plan and Profile, Sheet 3 Dirty Water Drains - Plan and Profile, Sheet 3 Dirty Water Drains - Plan and Profile, Sheet 3 Dirty Water Drains - Plan and Profile, Sheet 3 Dirty Water Drains - Plan and Profile, Sheet 3 Dirty Water Drains - Plan and Profile, Sheet 3 Dirty Water Drains - Plan and Profile, Sheet 3 Dirty Water Drains - Plan and Profile, Sheet 3 Dirty Water Drains - Plan and Profile, Sheet 3 Dirty Water Pipes - Plan and Profile, Sheet 3 Dirty Water Pipes - Plan and Profile, Sheet 1 250 Dirty Water Pipes - Plan and Profile, Sheet 2 Dirty Water Pipes - Plan and Profile, Sheet 3 Dirty Water Pipes - Plan and Profile, Sheet 3 Dirty Water Pipes - Plan and Profile, Sheet 3 Dirty Water Pipes - Plan and Profile, Sheet 3 Dirty Water Pipes - Plan and Profile, Sheet 3 Dirty Water Pipes - Plan and Profile, Sheet 3 Dirty Water Pipes - Plan and Profile, Sheet 3 Dirty Water Pipes - Plan and Profile, Sheet 3 Dirty Water Pipes - Plan and Profile, Sheet 3 Dirty Water Pipes - Plan and Profile, Sheet 3 Dirty Water Pipes - Plan and Profile, Sheet 4 Dirty Water Pipes - Typical Sections and Details Dunction Boxes & Manholes Phase 1 Drawings
Dirty Water Drains - Plan and Profile, Sheet 1 235 236 237 237 238 238 237 237 238 238 238 238 238 238 238 238 238 239
Sections and Details, Phase 1 224 Drainage Above HDPE Liner - General Arrangement & Details, Phase 1
Drainage Above HDPE Liner - General Arrangement & Details, Phase 1
Civil Works - Stormwater Management System Dirty Water Drains 230 Dirty Water Management - General Arrangement 231 Dirty Water Management - Phase 1 General Arrangement Phase 1 Drawings 232 Dirty Water Drains - Concrete Details 233 Dirty Water Drains - Typical Reinforcing 234 Dirty Water Drains - Plan and Profile, Sheet 1 235 Dirty Water Drains - Plan and Profile, Sheet 1 236 Dirty Water Drains - Plan and Profile, Sheet 2 237 Dirty Water Drains - Plan and Profile, Sheet 3 238 Dirty Water Drains - Plan and Profile, Sheet 4 Dirty Water Pipas - Plan and Profile, Sheet 4 Dirty Water Pipes - Plan and Profile, Sheet 1 250 Dirty Water Pipes - Plan and Profile, Sheet 2 251 Dirty Water Pipes - Plan and Profile, Sheet 3 252 Dirty Water Pipes - Plan and Profile, Sheet 3 253 Dirty Water Pipes - Plan and Profile, Sheet 3 254 Dirty Water Pipes - Plan and Profile, Sheet 3 255 Dirty Water Pipes - Plan and Profile, Sheet 3 256 Dirty Water Pipes - Plan and Profile, Sheet 3 257 Dirty Water Pipes - Plan and Profile, Sheet 3 258 Dirty Water Pipes - Plan and Profile, Sheet 3 259 Dirty Water Pipes - Plan and Profile, Sheet 3 250 Dirty Water Pipes - Plan and Profile, Sheet 3 251 Dirty Water Pipes - Plan and Profile, Sheet 3 252 Dirty Water Pipes - Plan and Profile, Sheet 3 253 Dirty Water Pipes - Plan and Profile, Sheet 3 254 Dirty Water Pipes - Plan and Profile, Sheet 3 255 Dirty Water Pipes - Plan and Profile, Sheet 3 256 Dirty Water Pipes - Plan and Profile, Sheet 4 256 Dirty Water Pipes - Plan and Profile, Sheet 4 257 Dirty Water Pipes - Plan and Profile, Sheet 4 258 Dirty Water Pipes - Plan and Profile, Sheet 4 259 Dirty Water Pipes - Plan and Profile, Sheet 4 250 Dirty Water Pipes - Plan and Profile, Sheet 4 250 Dirty Water Pipes - Plan and Profile, Sheet 3 251 Dirty Water Pipes - Plan and Profile, Sheet 3 252 Dirty Water Pipes - Plan and Profile, Sheet 3 253 Dirty Water Pipes - Plan and Profile, Sheet 3 254 Dirty Water Pipes - Plan and Profile, Sheet 3 255 Dirty Water Pipes - Plan and Pro
Dirty Water Drains
Dirty Water Drains
Dirty Water Management - General Arrangement
Dirty Water Management - Phase 1 General Arrangement
232 Dirty Water Drains - Concrete Details 233 Dirty Water Drains - Typical Reinforcing 234 Dirty Water Drains - Plan and Profile, Sheet 1 235 Dirty Water Drains - Plan and Profile, Sheet 1 236 Dirty Water Drains - Plan and Profile, Sheet 2 237 Dirty Water Drains - Plan and Profile, Sheet 3 238 Dirty Water Drains - Plan and Profile, Sheet 3 238 Dirty Water Drains - Plan and Profile, Sheet 4 Dirty Water Pipes Phase 1 Drawings 250 Dirty Water Pipes - Plan and Profile, Sheet 1 251 Dirty Water Pipes - Plan and Profile, Sheet 2 252 Dirty Water Pipes - Plan and Profile, Sheet 3 253 Dirty Water Pipes - Plan and Profile, Sheet 3 254 Dirty Water Pipes - Plan and Profile, Sheet 3 255 Dirty Water Pipes - Plan and Profile, Sheet 3 256 Dirty Water Pipes - Plan and Profile, Sheet 4 257 Dirty Water Pipes - Plan and Profile, Sheet 4 258 Dirty Water Pipes - Plan and Profile, Sheet 4 259 Dirty Water Pipes - Typical Sections and Details Junction Boxes & Manholes Phase 1 Drawings
232 Dirty Water Drains - Concrete Details 233 Dirty Water Drains - Typical Reinforcing 234 Dirty Water Drains - Plan and Profile, Sheet 1 235 Dirty Water Drains - Plan and Profile, Sheet 1 236 Dirty Water Drains - Plan and Profile, Sheet 2 237 Dirty Water Drains - Plan and Profile, Sheet 3 238 Dirty Water Drains - Plan and Profile, Sheet 3 238 Dirty Water Drains - Plan and Profile, Sheet 4 Dirty Water Pipes Phase 1 Drawings 250 Dirty Water Pipes - Plan and Profile, Sheet 1 251 Dirty Water Pipes - Plan and Profile, Sheet 2 252 Dirty Water Pipes - Plan and Profile, Sheet 3 253 Dirty Water Pipes - Plan and Profile, Sheet 3 254 Dirty Water Pipes - Plan and Profile, Sheet 3 255 Dirty Water Pipes - Plan and Profile, Sheet 3 256 Dirty Water Pipes - Plan and Profile, Sheet 4 257 Dirty Water Pipes - Plan and Profile, Sheet 4 258 Dirty Water Pipes - Plan and Profile, Sheet 4 259 Dirty Water Pipes - Typical Sections and Details Junction Boxes & Manholes Phase 1 Drawings
233 Dirty Water Drains - Typical Reinforcing 234 Dirty Water Drains - Bending Schedule 235 Dirty Water Drains - Plan and Profile, Sheet 1 236 Dirty Water Drains - Plan and Profile, Sheet 2 237 Dirty Water Drains - Plan and Profile, Sheet 3 238 Dirty Water Drains - Plan and Profile, Sheet 3 238 Dirty Water Drains - Plan and Profile, Sheet 4 Dirty Water Pipes Phase 1 Drawings 250 Dirty Water Pipes - Plan and Profile, Sheet 1 251 Dirty Water Pipes - Plan and Profile, Sheet 2 252 Dirty Water Pipes - Plan and Profile, Sheet 3 253 Dirty Water Pipes - Plan and Profile, Sheet 3 254 Dirty Water Pipes - Plan and Profile, Sheet 3 255 Dirty Water Pipes - Plan and Profile, Sheet 3 256 Dirty Water Pipes - Plan and Profile, Sheet 4 257 Dirty Water Pipes - Plan and Profile, Sheet 4 258 Dirty Water Pipes - Plan and Details Junction Boxes & Manholes Phase 1 Drawings
234 Dirty Water Drains - Bending Schedule 235 Dirty Water Drains - Plan and Profile, Sheet 1 236 Dirty Water Drains - Plan and Profile, Sheet 2 237 Dirty Water Drains - Plan and Profile, Sheet 3 238 Dirty Water Drains - Plan and Profile, Sheet 3 238 Dirty Water Drains - Plan and Profile, Sheet 4 Dirty Water Pipes Phase 1 Drawings 250 Dirty Water Pipes - Plan and Profile, Sheet 1 251 Dirty Water Pipes - Plan and Profile, Sheet 2 252 Dirty Water Pipes - Plan and Profile, Sheet 3 253 Dirty Water Pipes - Plan and Profile, Sheet 3 254 Dirty Water Pipes - Plan and Profile, Sheet 4 255 Dirty Water Pipes - Plan and Profile, Sheet 4 256 Dirty Water Pipes - Plan and Profile, Sheet 4 256 Dirty Water Pipes - Plan and Profile, Sheet 4 256 Dirty Water Pipes - Typical Sections and Details Junction Boxes & Manholes Phase 1 Drawings
235 Dirty Water Drains - Plan and Profile, Sheet 1 236 Dirty Water Drains - Plan and Profile, Sheet 2 237 Dirty Water Drains - Plan and Profile, Sheet 3 238 Dirty Water Drains - Plan and Profile, Sheet 3 238 Dirty Water Drains - Plan and Profile, Sheet 4 239 Dirty Water Pipes - Plan and Profile, Sheet 4 250 Dirty Water Pipes - Plan and Profile, Sheet 1 251 Dirty Water Pipes - Plan and Profile, Sheet 2 252 Dirty Water Pipes - Plan and Profile, Sheet 3 253 Dirty Water Pipes - Plan and Profile, Sheet 3 253 Dirty Water Pipes - Radial Stacker Drop Inlet Details 254 Dirty Water Pipes - Plan and Profile, Sheet 4 256 Dirty Water Pipes - Plan and Details Junction Boxes & Manholes Phase 1 Drawings
236 Dirty Water Drains - Plan and Profile, Sheet 2 237 Dirty Water Drains - Plan and Profile, Sheet 3 238 Dirty Water Drains - Plan and Profile, Sheet 4 239 Dirty Water Pians - Plan and Profile, Sheet 4 240 Dirty Water Pipes 250 Phase 1 Drawings 251 Dirty Water Pipes - Plan and Profile, Sheet 1 251 Dirty Water Pipes - Plan and Profile, Sheet 2 252 Dirty Water Pipes - Plan and Profile, Sheet 3 253 Dirty Water Pipes - Plan and Profile, Sheet 3 253 Dirty Water Pipes - Plan and Profile, Sheet 3 254 Dirty Water Pipes - Plan and Profile, Sheet 4 256 Dirty Water Pipes - Plan and Profile, Sheet 4 256 Dirty Water Pipes - Typical Sections and Details Junction Boxes & Manholes Phase 1 Drawings
237 Dirty Water Drains - Plan and Profile, Sheet 3 238 Dirty Water Drains - Plan and Profile, Sheet 4 Dirty Water Pipes Phase 1 Drawings 250 Dirty Water Pipes - Plan and Profile, Sheet 1 251 Dirty Water Pipes - Plan and Profile, Sheet 2 252 Dirty Water Pipes - Plan and Profile, Sheet 3 253 Dirty Water Pipes - Plan and Profile, Sheet 3 253 Dirty Water Pipes - Plan and Profile, Sheet 4 254 Dirty Water Pipes - Plan and Profile, Sheet 4 255 Dirty Water Pipes - Plan and Profile, Sheet 4 256 Dirty Water Pipes - Typical Sections and Details Junction Boxes & Manholes Phase 1 Drawings
Dirty Water Pipes Phase 1 Drawings 250 Dirty Water Pipes - Plan and Profile, Sheet 1 251 Dirty Water Pipes - Plan and Profile, Sheet 1 251 Dirty Water Pipes - Plan and Profile, Sheet 2 252 Dirty Water Pipes - Plan and Profile, Sheet 3 253 Dirty Water Pipes - Plan and Profile, Sheet 3 254 Dirty Water Pipes - Radial Stacker Drop Inlet Details 255 Dirty Water Pipes - Plan and Profile, Sheet 4 256 Dirty Water Pipes - Typical Sections and Details Junction Boxes & Manholes Phase 1 Drawings
Dirty Water Pipes Phase 1 Drawings 250 Dirty Water Pipes - Plan and Profile, Sheet 1 251 Dirty Water Pipes - Plan and Profile, Sheet 2 252 Dirty Water Pipes - Plan and Profile, Sheet 3 253 Dirty Water Pipes - Plan and Profile, Sheet 3 253 Dirty Water Pipes - Plan and Profile, Sheet 4 254 Dirty Water Pipes - Plan and Profile, Sheet 4 255 Dirty Water Pipes - Plan and Profile, Sheet 4 256 Dirty Water Pipes - Plan and Profile, Sheet 4 256 Dirty Water Pipes - Typical Sections and Details Junction Boxes & Manholes Phase 1 Drawings
Phase 1 Drawings
Phase 1 Drawings
251 Dirty Water Pipes - Plan and Profile, Sheet 2 252 Dirty Water Pipes - Plan and Profile, Sheet 3 253 Dirty Water Pipes - Plan and Profile, Sheet 3 254 Dirty Water Pipes - Radial Stacker Drop Inlet Details 254 Dirty Water Pipes - Plan and Profile, Sheet 4 256 Dirty Water Pipes - Plan and Profile, Sheet 4 256 Dirty Water Pipes - Typical Sections and Details Junction Boxes & Manholes Phase 1 Drawings
252 Dirty Water Pipes - Plan and Profile, Sheet 3 253 Dirty Water Pipes - Radial Stacker Drop Inlet Details 254 Dirty Water Pipes - Plan and Profile, Sheet 4 256 Dirty Water Pipes - Plan and Profile, Sheet 4 256 Dirty Water Pipes - Typical Sections and Details Junction Boxes & Manholes Phase 1 Drawings
253 Dirty Water Pipes - Radial Stacker Drop Inlet Details 254 Dirty Water Pipes - Plan and Profile, Sheet 4 256 Dirty Water Pipes - Typical Sections and Details Junction Boxes & Manholes Phase 1 Drawings
254 Dirty Water Pipes - Plan and Profile, Sheet 4 256 Dirty Water Pipes - Typical Sections and Details Junction Boxes & Manholes Phase 1 Drawings
256 Dirty Water Pipes - Typical Sections and Details Junction Boxes & Manholes Phase 1 Drawings
Junction Boxes & Manholes Phase 1 Drawings
Phase 1 Drawings
Phase 1 Drawings
260 Junction Box No. 1, 2 & 4 - Sections and Details
261 Junction Box No. 1 - Reinforcing
263 Junction Box No. 2 - Reinforcing
264 Junction Box No. 3 - Sections and Details
265 Junction Box No. 3 - Reinforcing
267 Junction Box No. 4 - Reinforcing
268 Junction Box No. 5 - Sections and Details 269 Junction Box No. 5 - Reinforcing
269 JULICUIO BOX NO. 5 - REINIOTORIG 271 JUNCIOR BOX BORIGO SCHOOLE 272 JUNCIOR BOX BORIGO SCHOOLE
271 JULICUM BOX BERINING SCIENCINE 380 Manhole No. 1 - Details, G.A., Sections and Reinforcing
381 Manhole No. 2 - Details, G.A., Sections and removing 381 Manhole No. 2 - Details, G.A., Sections and Reinforcing
382 Manhole No. 3 - Details, G.A., Sections and Reinforcing
383 Manhole No. 4 - Details, G.A., Sections and Reinforcing
384 Manhole No. 5 - Details, G.A., Sections and Reinforcing
385 Manhole No. 6 - Details, G.A., Sections and Reinforcing
386 Manhole No. 7 - Details, G.A., Sections and Reinforcing
387 Manhole No. 8 - Details, G.A., Sections and Reinforcing
388 Manhole No. 9 - Details, G.A., Sections and Reinforcing
389 Manhole No. 10 - Details, G.A., Sections and Reinforcing
390 Manhole No. 11 - Details, G.A., Sections and Reinforcing 391 Manhole No. 12 - Details, G.A., Sections and Reinforcing
231 Mainiole No. 14 - Details, O.A., Sections and Bennorchis
392 Manhole No. 13 - Details, G.A., Sections and Reinforcing
392 Manhole No. 13 - Details, G.A., Sections and Reinforcing 393 Manhole No. 14 - Details, G.A., Sections and Reinforcing
392 Manhole No. 13 - Details, G.A., Sections and Reinforcing 393 Manhole No. 14 - Details, G.A., Sections and Reinforcing
392 Manhole No. 13 - Details, G.A., Sections and Reinforcing 393 Manhole No. 14 - Details, G.A., Sections and Reinforcing 394 Manhole No. 15 - Details, G.A., Sections and Reinforcing
392 Manhole No. 13 - Details, G.A., Sections and Reinforcing 393 Manhole No. 14 - Details, G.A., Sections and Reinforcing 394 Manhole No. 15 - Details, G.A., Sections and Reinforcing 395 Manhole No. 16 - Details, G.A., Sections and Reinforcing
392 Manhole No. 13 - Details, G.A., Sections and Reinforcing 393 Manhole No. 14 - Details, G.A., Sections and Reinforcing 394 Manhole No. 15 - Details, G.A., Sections and Reinforcing 395 Manhole No. 16 - Details, G.A., Sections and Reinforcing 396 Manhole No. 17 - Details, G.A., Sections and Reinforcing
392 Manhole No. 13 - Details, G.A., Sections and Reinforcing 393 Manhole No. 14 - Details, G.A., Sections and Reinforcing 394 Manhole No. 15 - Details, G.A., Sections and Reinforcing 395 Manhole No. 16 - Details, G.A., Sections and Reinforcing 396 Manhole No. 17 - Details, G.A., Sections and Reinforcing 397 Manhole No. 18 - Details, G.A., Sections and Reinforcing

		Ash Dump Dirty Dam
	280	ADDD - General Arrangement and Setting Out Coordinates
	281	ADDD - Sections and Details - Sheet 1 of 2
	282	ADDD - Sections and Details - Sheet 2 of 2
	283	ADDD - Compartment No. 1 Inlet General Arrangement
	284	ADDD - Compartment No. 1 Outlet General Arrangement
	285	ADDD - Spillway No.1 - GA & Typical Details
	286	ADDD - Spillway No.2 - GA & Typical Details
	287	ADDD - Energy Dissipator No. 1 - GA & Details
	288	ADDD - Leakage Detection Sump - GA & Details
	289	ADDD - Compartment No. 2 Inlet General Arrangement
	290	ADDD - Compartment No. 2 Outlet General Arrangement
	292	ADDD - Energy Dissipators No. 1 and 2 Reinforcing
	293	ADDD - Spillway No. 1 & 2 Concrete Reinforcing Details
	294	ADDD - Leakage Detection Sump Reinforcing Details
	295	ADDD - Basin Division Walls, Compartment No. 1
	296	ADDD - Basin Division Walls, Compartment No. 2
	297	ADDD - Compartment No. 1 Floor Slab Layout
	298	ADDD - Compartment No. 2 Floor Slab Layout
	404	ADDD - Energy Dissipator No. 2 - GA & Details
		Clean Water Drains
	300	Clean Water Management - General Arrangement
		Phase 1 Drawings
	301	Clean Water Management - Phase 1 General Arrangement
	303	Clean Water Drains, Sheet 1 of 6
	304	Clean Water Drains, Sheet 2 of 6
	310	Clean Water Drains - Culvert Cross-Sections
	311	Clean Water Drains - Wing walls / Apron slabs - Sections and Details, Sheet 1 of 2
	312	Clean Water Drains - Wing walls / Apron slabs - Sections and Details, Sheet 2 of 2
	313	Clean Water Drains - Wing walls / Apron slabs Reinforcing Details Clean Water Drains - Wing walls / Apron slabs Reinforcing Details
-	313	Clean water brains - wing wans / Apron slabs kelinorung betans
	_	Clean Water Sediment Control Dams
	_	Phase 1 Drawings
	320	Bulk Material Storage Areas - General Arrangement and Setting Out Coordinates
	321	Clean Water Sediment Control Dam E1
-	_	Clean Water Sediment Control Dam E1
	222	Clean Water Sediment Central Dam 52
 	322	Clean Water Sediment Control Dam E2
	323	Clean Water Sediment Control Dam W1
	323 324	Clean Water Sediment Control Dam W1 Clean Water Sediment Control Dam W2
	323 324 325	Clean Water Sediment Control Dam W1 Clean Water Sediment Control Dam W2 Clean Water Sediment Control Dam W3
	323 324 325 326	Clean Water Sediment Control Dam W1 Clean Water Sediment Control Dam W2 Clean Water Sediment Control Dam W3 Clean Water Sediment Control Dam W4
	323 324 325 326 327	Clean Water Sediment Control Dam W1 Clean Water Sediment Control Dam W2 Clean Water Sediment Control Dam W3 Clean Water Sediment Control Dam W4 Clean Water Sediment Control Dam W5
	323 324 325 326 327 328	Clean Water Sediment Control Dam W1 Clean Water Sediment Control Dam W2 Clean Water Sediment Control Dam W3 Clean Water Sediment Control Dam W4 Clean Water Sediment Control Dam W5 Clean Water Collection Channels - Long-Sections, West Channels
	323 324 325 326 327	Clean Water Sediment Control Dam W1 Clean Water Sediment Control Dam W2 Clean Water Sediment Control Dam W3 Clean Water Sediment Control Dam W4 Clean Water Sediment Control Dam W5
	323 324 325 326 327 328	Clean Water Sediment Control Dam W1 Clean Water Sediment Control Dam W2 Clean Water Sediment Control Dam W3 Clean Water Sediment Control Dam W4 Clean Water Sediment Control Dam W5 Clean Water Sediment Control Dam W5 Clean Water Collection Channels - Long-Sections, West Channels Clean Water Collection Channels - Long-Sections, East Channels
	323 324 325 326 327 328	Clean Water Sediment Control Dam W1 Clean Water Sediment Control Dam W2 Clean Water Sediment Control Dam W3 Clean Water Sediment Control Dam W4 Clean Water Sediment Control Dam W5 Clean Water Sediment Control Dam W5 Clean Water Collection Channels - Long-Sections, West Channels Clean Water Collection Channels - Long-Sections, East Channels Ash Dump No. 1 - Access Roads
	323 324 325 326 327 328 329	Clean Water Sediment Control Dam W1 Clean Water Sediment Control Dam W2 Clean Water Sediment Control Dam W3 Clean Water Sediment Control Dam W4 Clean Water Sediment Control Dam W5 Clean Water Sediment Control Dam W5 Clean Water Collection Channels - Long-Sections, West Channels Clean Water Collection Channels - Long-Sections, East Channels Ash Dump No. 1 - Access Roads Perimeter Access Road
	323 324 325 326 327 328	Clean Water Sediment Control Dam W1 Clean Water Sediment Control Dam W2 Clean Water Sediment Control Dam W3 Clean Water Sediment Control Dam W4 Clean Water Sediment Control Dam W5 Clean Water Sediment Control Dam W5 Clean Water Collection Channels - Long-Sections, West Channels Clean Water Collection Channels - Long-Sections, East Channels Ash Dump No. 1 - Access Roads
	323 324 325 326 327 328 329	Clean Water Sediment Control Dam W1 Clean Water Sediment Control Dam W2 Clean Water Sediment Control Dam W3 Clean Water Sediment Control Dam W4 Clean Water Sediment Control Dam W5 Clean Water Sediment Control Dam W5 Clean Water Collection Channels - Long-Sections, West Channels Clean Water Collection Channels - Long-Sections, East Channels Ash Dump No. 1 - Access Roads Perimeter Access Road Perimeter Access Road - General Arrangement
	323 324 325 326 327 328 329 340	Clean Water Sediment Control Dam W1 Clean Water Sediment Control Dam W2 Clean Water Sediment Control Dam W3 Clean Water Sediment Control Dam W4 Clean Water Sediment Control Dam W5 Clean Water Sediment Control Dam W5 Clean Water Collection Channels - Long-Sections, West Channels Clean Water Collection Channels - Long-Sections, East Channels Ash Dump No. 1 - Access Roads Perimeter Access Road Perimeter Access Road - General Arrangement Phase 1 Drawings
	323 324 325 326 327 328 329	Clean Water Sediment Control Dam W1 Clean Water Sediment Control Dam W2 Clean Water Sediment Control Dam W3 Clean Water Sediment Control Dam W4 Clean Water Sediment Control Dam W5 Clean Water Sediment Control Dam W5 Clean Water Collection Channels - Long-Sections, West Channels Clean Water Collection Channels - Long-Sections, East Channels Clean Water Collection Channels - Long-Sections, East Channels Ash Dump No. 1 - Access Roads Perimeter Access Road Perimeter Access Road - General Arrangement Phase 1 Drawings Perimeter Access Road - Profile, Sheet 1 of 7
	323 324 325 326 327 328 329 340	Clean Water Sediment Control Dam W1 Clean Water Sediment Control Dam W2 Clean Water Sediment Control Dam W3 Clean Water Sediment Control Dam W4 Clean Water Sediment Control Dam W5 Clean Water Sediment Control Dam W5 Clean Water Collection Channels - Long-Sections, West Channels Clean Water Collection Channels - Long-Sections, East Channels Ash Dump No. 1 - Access Roads Perimeter Access Road Perimeter Access Road - General Arrangement Phase 1 Drawings Perimeter Access Road - Profile, Sheet 1 of 7 Perimeter Access Road - Profile, Sheet 2 of 7
	323 324 325 326 327 328 329 340 340	Clean Water Sediment Control Dam W1 Clean Water Sediment Control Dam W2 Clean Water Sediment Control Dam W3 Clean Water Sediment Control Dam W4 Clean Water Sediment Control Dam W4 Clean Water Sediment Control Dam W5 Clean Water Collection Channels - Long-Sections, West Channels Clean Water Collection Channels - Long-Sections, East Channels Ash Dump No. 1 - Access Roads Perimeter Access Road Perimeter Access Road - General Arrangement Phase 1 Drawings Perimeter Access Road - Profile, Sheet 1 of 7 Perimeter Access Road - Profile, Sheet 2 of 7 Perimeter Access Road - Profile, Sheet 3 of 7
	323 324 325 326 327 328 329 340 340	Clean Water Sediment Control Dam W1 Clean Water Sediment Control Dam W2 Clean Water Sediment Control Dam W3 Clean Water Sediment Control Dam W4 Clean Water Sediment Control Dam W5 Clean Water Sediment Control Dam W5 Clean Water Collection Channels - Long-Sections, West Channels Clean Water Collection Channels - Long-Sections, East Channels Ash Dump No. 1 - Access Roads Perimeter Access Road Perimeter Access Road - General Arrangement Phase 1 Drawings Perimeter Access Road - Profile, Sheet 1 of 7 Perimeter Access Road - Profile, Sheet 2 of 7
	323 324 325 326 327 328 329 340 340	Clean Water Sediment Control Dam W1 Clean Water Sediment Control Dam W2 Clean Water Sediment Control Dam W3 Clean Water Sediment Control Dam W4 Clean Water Sediment Control Dam W4 Clean Water Sediment Control Dam W5 Clean Water Collection Channels - Long-Sections, West Channels Clean Water Collection Channels - Long-Sections, East Channels Ash Dump No. 1 - Access Roads Perimeter Access Road Perimeter Access Road - General Arrangement Phase 1 Drawings Perimeter Access Road - Profile, Sheet 1 of 7 Perimeter Access Road - Profile, Sheet 2 of 7 Perimeter Access Road - Profile, Sheet 3 of 7
	323 324 325 326 327 328 329 340 340	Clean Water Sediment Control Dam W1 Clean Water Sediment Control Dam W2 Clean Water Sediment Control Dam W3 Clean Water Sediment Control Dam W4 Clean Water Sediment Control Dam W4 Clean Water Sediment Control Dam W5 Clean Water Collection Channels - Long-Sections, West Channels Clean Water Collection Channels - Long-Sections, East Channels Ash Dump No. 1 - Access Roads Perimeter Access Road Perimeter Access Road - General Arrangement Phase 1 Drawings Perimeter Access Road - Profile, Sheet 1 of 7 Perimeter Access Road - Profile, Sheet 2 of 7 Perimeter Access Road - Profile, Sheet 3 of 7
	323 324 325 326 327 328 329 340 340	Clean Water Sediment Control Dam W1 Clean Water Sediment Control Dam W2 Clean Water Sediment Control Dam W3 Clean Water Sediment Control Dam W4 Clean Water Sediment Control Dam W5 Clean Water Sediment Control Dam W5 Clean Water Collection Channels - Long-Sections, West Channels Clean Water Collection Channels - Long-Sections, East Channels Ash Dump No. 1 - Access Roads Perimeter Access Road Perimeter Access Road - General Arrangement Phase 1 Drawings Perimeter Access Road - Profile, Sheet 1 of 7 Perimeter Access Road - Profile, Sheet 2 of 7 Perimeter Access Road - Profile, Sheet 3 of 7 Perimeter Access Road - Access to Ash Dump
	323 324 325 326 327 328 329 340 340 342 343 344 349	Clean Water Sediment Control Dam W1 Clean Water Sediment Control Dam W2 Clean Water Sediment Control Dam W3 Clean Water Sediment Control Dam W4 Clean Water Sediment Control Dam W4 Clean Water Sediment Control Dam W5 Clean Water Collection Channels - Long-Sections, West Channels Clean Water Collection Channels - Long-Sections, East Channels Clean Water Collection Channels - Long-Sections, East Channels Perimeter Access Road Perimeter Access Road Perimeter Access Road - General Arrangement Phase 1 Drawings Perimeter Access Road - Profile, Sheet 1 of 7 Perimeter Access Road - Profile, Sheet 2 of 7 Perimeter Access Road - Profile, Sheet 3 of 7 Perimeter Access Road - Access to Ash Dump Access Road 3 (From Kusile Access Road to Radial Stacker - Includes Workshop and Pumphouse
	323 324 325 326 327 328 329 340 340 342 343 344 349	Clean Water Sediment Control Dam W1 Clean Water Sediment Control Dam W2 Clean Water Sediment Control Dam W3 Clean Water Sediment Control Dam W4 Clean Water Sediment Control Dam W4 Clean Water Sediment Control Dam W5 Clean Water Sediment Control Dam W5 Clean Water Collection Channels - Long-Sections, West Channels Clean Water Collection Channels - Long-Sections, East Channels Ash Dump No. 1 - Access Roads Perimeter Access Road Perimeter Access Road - General Arrangement Phase 1 Drawings Perimeter Access Road - Profile, Sheet 1 of 7 Perimeter Access Road - Profile, Sheet 2 of 7 Perimeter Access Road - Profile, Sheet 3 of 7 Perimeter Access Road - Access to Ash Dump Access Road 3 (From Kusile Access Road to Radial Stacker - Includes Workshop and Pumphouse Access Road 3 - General Arrangement and Setting Out Coordinates
	323 324 325 326 327 328 329 340 340 342 343 344 349	Clean Water Sediment Control Dam W1 Clean Water Sediment Control Dam W2 Clean Water Sediment Control Dam W3 Clean Water Sediment Control Dam W4 Clean Water Sediment Control Dam W5 Clean Water Sediment Control Dam W5 Clean Water Collection Channels - Long-Sections, West Channels Clean Water Collection Channels - Long-Sections, East Channels Ash Dump No. 1 - Access Roads Perimeter Access Road Perimeter Access Road - Perimeter Access Road - Perimeter Access Road - Perimeter Access Road - Profile, Sheet 1 of 7 Perimeter Access Road - Profile, Sheet 2 of 7 Perimeter Access Road - Profile, Sheet 3 of 7 Perimeter Access Road - Access Road - Profile Sheet 3 of 7 Perimeter Access Road - Access Road - Profile Sheet 3 of 7 Perimeter Access Road - Access Road

KUSILE POWER STATION ASH DUMP No. 1 SCHEDULE OF DRAWINGS INCLUDED IN DESIGN REPORT 5452-90-011 Rev4

	Dwg No.	Rev No.	Title				
			Ash Dump No. 1 - General				
	201	1	Ash Dump No. 1 - General Arrangement Plan				
	202	2	Ash Dump No. 1 - Geotechnical Plan				
	203	1	Ash Dump No.1- Geotechnical Logs Sheet 1of 3				
	204	1	Ash Dump No.1- Geotechnical Logs Sheet 2of 3				
	205	2	Ash Dump No.1- Geotechnical Logs Sheet 3of 3				
	206	2	Ash Dump No. 1 - Phase 1 General Arrangement & Setting Out Coordinates				
	207	Р	Ash Dump No. 1 - Typical Overall Dump Sections				
			Earthworks - Ash Dump No. 1 & Ancillary Structures				
	208	2	Wetland / Pan Drainage Plan and Details				
	209	2	Wetland / Pan Drainage - DN110 Kabelflex Longitudinal Section				
	210	2	Footprint Site Preparation - Phase 1				
	211	2	Footprint Site Preparation - Phase 1 Details				
	213	2	Terracing of Radial Stacker - General Arrangement Plan				
	215	1	Ash Dump Dirty Dam - Construction Phase Storm Water Management GA and Details				
	216	1	Ash Dump No. 1 - Construction Phase Storm Water Management GA and Details				
	217	2	Workshop Terrace - General Arrangement & Typical Sections				
	218	2	Pump Station Terrace - General Arrangement & Typical Sections				
	_		Civil Works - HDPE Liner				
	220	2	HDPE Liner General Arrangement, Phase 1				
	221	2	Sections and Details, Phase 1				
	224	1	Drainage Above HDPE Liner - General Arrangement & Details, Phase 1				
	Civil Works - Stormwater Management System						
			Dirty Water Drains				
	231	1	Dirty Water Management - Phase 1 General Arrangement				
	232	2	Dirty Water Drains - Concrete Details				
			Ash Dump Dirty Dam				
	280	2	ADDD - General Arrangement and Setting Out Coordinates				
	281	2	ADDD - Sections and Details - Sheet 1 of 2				
	282	2	ADDD - Sections and Details - Sheet 2 of 2				
	283	2	ADDD - Inlet System - GA & Details				
	284	2	ADDD - Outlet System - GA & Details				
	285	2	ADDD - Spillway No.1 - GA & Details				
	286	2	ADDD - Spillway No.2 - GA & Details				
	287	2	ADDD - Energy Dissipator - GA & Details				
			Clean Water Drains				
	300	1	Clean Water Management - General Arrangement				
	303	2	Clean Water Drains, Sheet 1 of 6				
	304	2	Clean Water Drains, Sheet 2 of 6				
	220	1 1	Clean Water Sediment Control Dams				
<u> </u>	320	1	Clean Water Sediment Control Dam No. E1				
<u> </u>	321 322	1	Clean Water Sediment Control Dam No. E2				
		1	Clean Water Sediment Control Dam No. E3				
<u> </u>	323	1	Clean Water Sediment Control Dam No.W1				
<u> </u>	324	1	Clean Water Sediment Control Dam No. W2 Clean Water Sediment Control Dam No W3				
	325	1					
<u> </u>	326	1	Clean Water Sediment Control Dam No W4				
	327	1	Clean Water Sediment Control Dam No W5 Ash Dump No. 1 - Access Roads				
			Perimeter Access Road				
	340	2	Perimeter Access Road - General Arrangement				
	340		Access Road 3				
	370	2	Access Road 3 - General Arrangment and Setting Out Coordinates				
	370		Access flows 5 General Arrangment and Setting Out Coordinates				

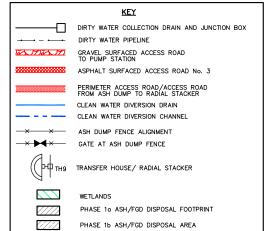
REFERENCE DRAWINGS 30300099/06-202 ASH DUMP NO. 1 - GEOTECHNICAL PLAN 30300099/06-208 WETLAND / PAN DRAINAGE PLAN AND DETAIL 30300099/06-209 WETLAND / PAN DRAINAGE - DN110 KABELFLEX LONGITUDINAL SEC 30300099/06-216 GA AND DETAILS
30300099/06-217 WORKSHOP TERRACE - GENERAL ARRANGEMENT & TYPICAL SECTIONS
30300099/06-218 PUMP STATION TERRACE - GENERAL ARRANGEMENT & TYPICAL SECTIONS
30300099/06-220 HDDE LINER GENERAL ARRANGEMENT, PHASE 1 HDPE LINER SECTIONS AND DETAILS, PHASE 1
DRAINAGE ABOVE HDPE LINER - GENERAL ARRANGEMENT & DETAILS, 30300099/06-232 ORTY WATER MANAGEMENT - GENERAL ARRANGEMENT AND SETTING OUT COORDINATES
30300099/06-232 ORTY WATER DRAINS - CONCRETE DETAILS 30300099/06-280 ADDD - GENERAL ARRANGEMENT AND SETTING OUT COORDINATES 30300099/06-281 ADDD - SECTIONS AND DETAILS - SHEET 1 OF 2 30300099/06-282 | ADDD - SECTIONS AND DETAILS - SHEET 2 OF 2 30300099/06-300 | CLEAN WATER MANAGEMENT - GENERAL ARRANGEMENT AND SETTING OUT COORDINATES

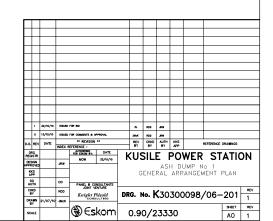
30300099/06-301 CLEAN WATER MANAGEMENT - PHASE 1 GENERAL ARRANGEMEN 30300099/06-340 PERIMETER ACCESS ROAD - GENERAL ARRANGEMENT
ACCESS ROAD 3 - GENERAL ARRANGEMENT AND SETTING OUT
COORDINATES

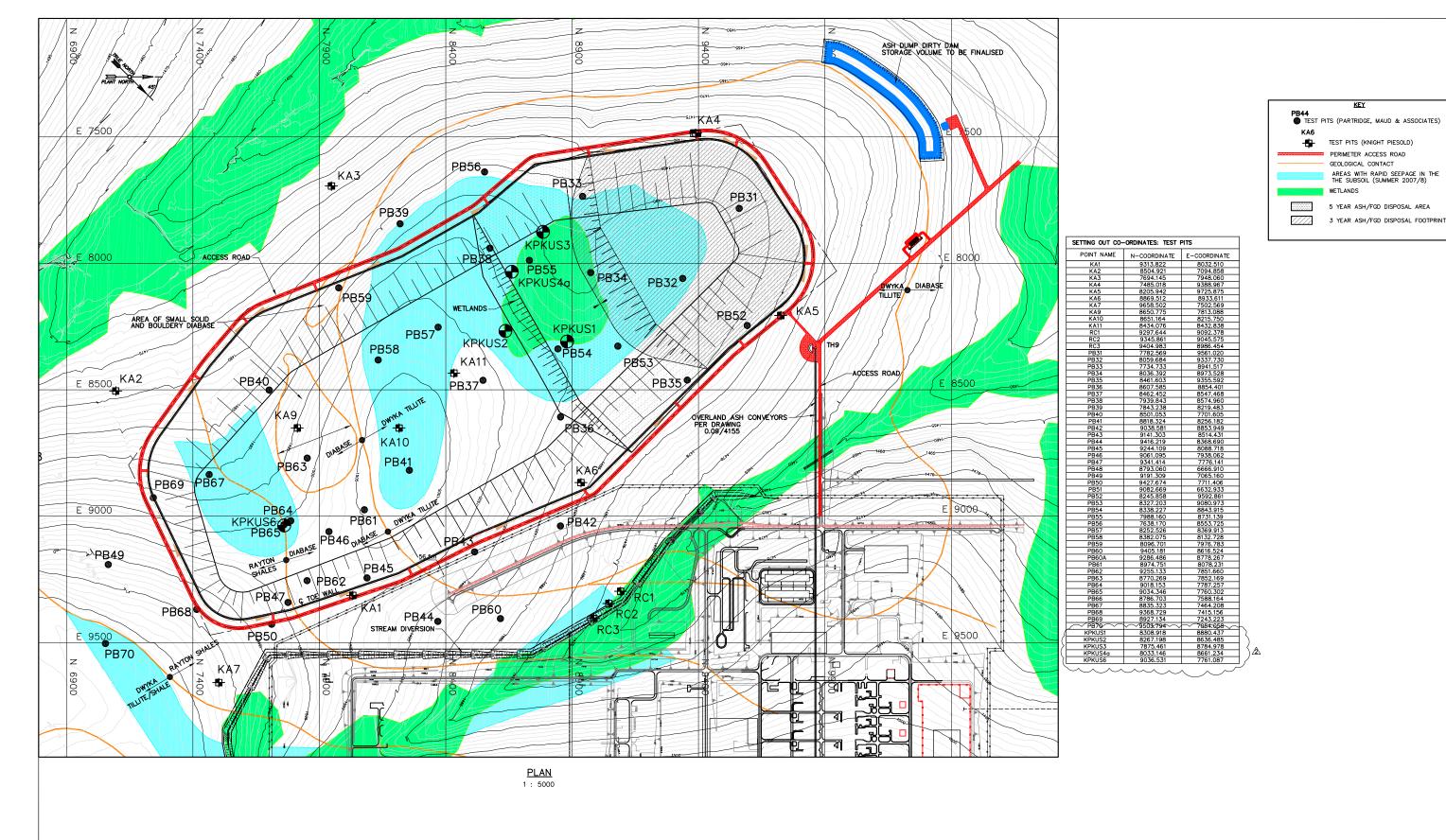
ABREVIATIONS

- INVERT LEVEL
- CENTER TO CENTER
- CENTERS
- MILIMETERS
- METERS

- METERS
- CUBIC METERS
- SQUARE METERS
- SQUARE METERS
- HECTARES
- NATURAL GRADE LEVEL
- TOP OF CONCRETE
- DRAWING
- BLACK & VEATCH
- NOT TO SCALE
- OPTIMUM MOISTURE CONTENT
- FINAL TERRACE LEVEL

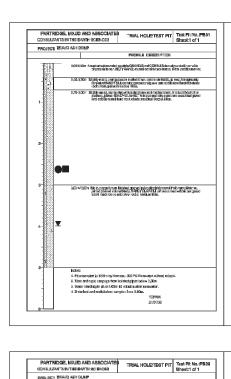

SETTING OUT CO-ORDINATES: GATES

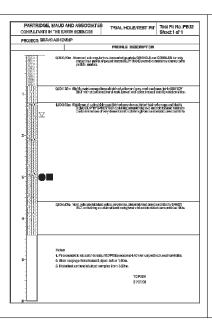

POINT NAME	N-COORDINATE	E-COORDINATE
G1	6974.949	9880.493
G2	7553.448	10707.136
G3	8856.685	9908.480

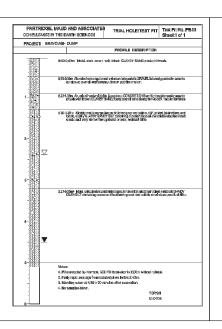

SETTING OUT CO-OR	DINATES: PERIMETER FEI	NCE
POINT NAME	N-COORDINATE	E-COORDINATE
PF1	6974.949	10005.839
PF2	7568.720	10725.650
PF3	7607.290	10693.505
PF4	8228.570	10007.842
PF5	8416.380	9911.163
PF6	8917.788	9908.480
PF7	9502.500	7903.147
PF8	9502.500	7380.007
PF9	8505.818	6921.105
PF10	7045.275	8796.921
PF11	6974.949	9323.271

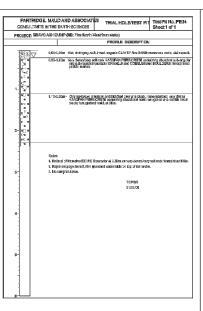
GENERAL NOTES:

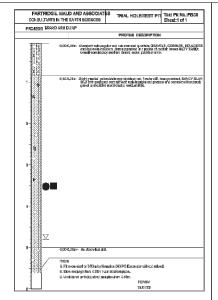
ALL DIMENSIONS GIVEN IN MILIMETERS, UNLESS OTHERWISE NOTED.
 FOR FENCE AND GATE DETAILS, REFER TO B&V DRAWINGS
OUYX-S3916, — S3916A THROUGH — S3916F, PERIMETER FENCE
AND GATE SHOWN HERE ARE OF "OUTER BARRIER" CONFIGURATION.

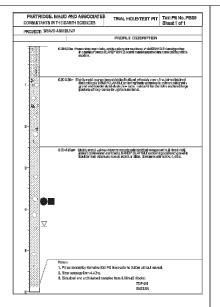


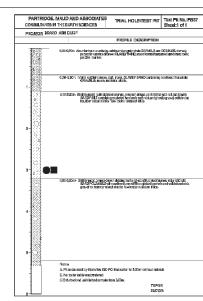

- NOTES:

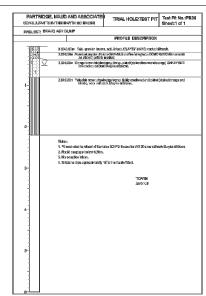

 1. GEOLOGICAL CONTACTS, AREAS OF SMALL SOLID AND BOULDERY DIABASE AND AREAS WITH RAPID SEEPAGE IN THE SUBSOIL SHOWN HEREIN ARE REFERENCED FROM A "PRELIMINARY PLAN SHOWING SURFACE GEOLOGY AND TEST PITS" BY PARTRIDGE, MAUD & ASSOCIATES (MAY 2008)

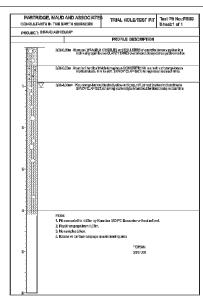

 2. GEOTECHNICAL LOGS OF TEST PITS SHOWN HEREIN ARE ILLUSTRATED ON DRAWING No. 5 K30300098/06-203 THROUGH K30300098/06-205

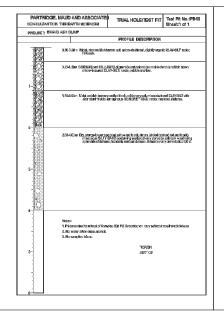

_														
_	Н		-				-	_	-	_	_	_		
			_						_	_				
_			-											
			_						_					
			-				-	_	-	\vdash		_		
			_					_	_					
	2	17/06/10	TEST PY AND KP	NOWINGS, KONCUSE, KI KUSA ACCED TO LAYO		JMcK	SIN.	an		/08-205	SHEET 3 OF	о 1 — СЕОТЕСН 3	NICAT FOGS	
	1	20/06/10	APPRO	VED FOR CONSTRUCTION	×		.wex	an	JRM		30300008 /06-204	ASH DUMP N SHEET 2 OF	o 1 - GEOTEGN	NICAL LOGS
	0	16/04/10	ISSUED FOR APPROVAL			FWR		.00		30300008 /06-203	ASH DUMP No 1 - GEOTECHNICAL LOGS			
_	REV	DATE	** REVISION **				REV	CHKD	AUTH KKS REFERENCE DRAWNGS					
		w/IF	INDEX	REFERENCE :			BY	BY	BY	APP		MEFERENCE	UKAMNUS	
REG	RG ISTR			FOR ESKIN BY:	DATE	l la	(115	SII I	FI	PO	WFR	ST	ATIC	١N (
DE	SIGN		JRW	MOW	17/06/10	. '	νυ.) I L		_			~ ' ' '	′17
_	KS			-							UMP N			
Ã	PP							(5EU I	ECH	NICAL	PLAN		
A.	Ю ЛН	20/06/10	JRW	PANEL B CO	NSUI TANTS	ł								
CHKD			JRW			l			/			/00		REV
_	IY		Knight Piésold		Dr	DRG. No. K30300098/06						-202	2	
DRAWN BY		24/3/10	JMcK	`\			<u> </u>							
•	au e		_	- Skom €skom				0.90/23272					SHEET	REV
SCALE				W C2	NOI II	. '	0.90/232/2						AO I	2

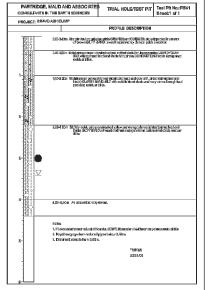


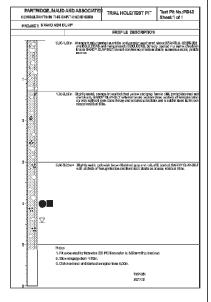


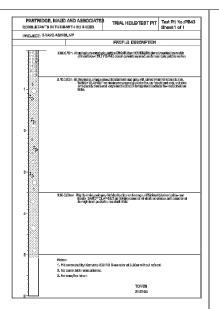


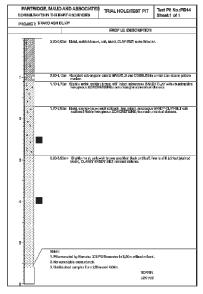


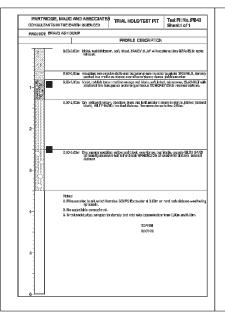


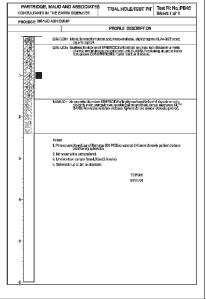


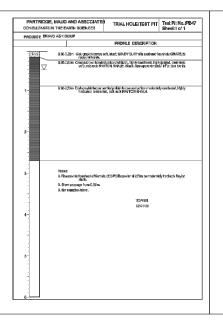


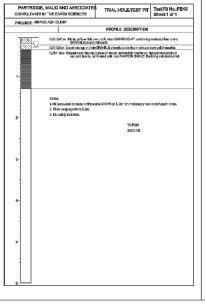


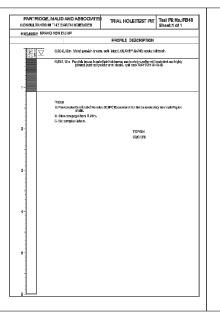


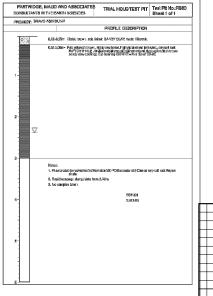


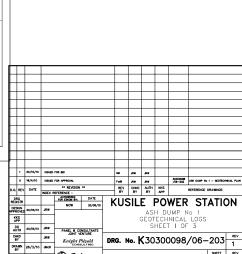


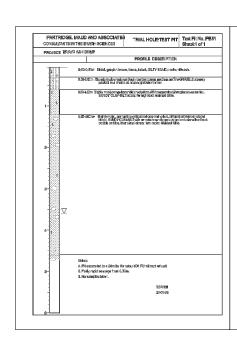


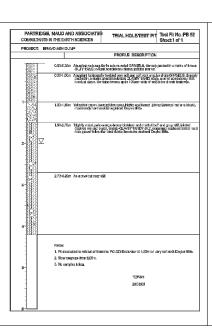


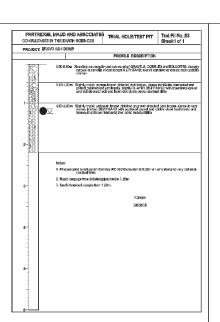


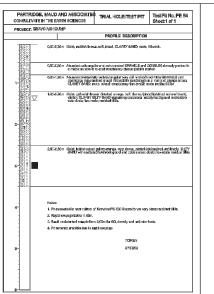


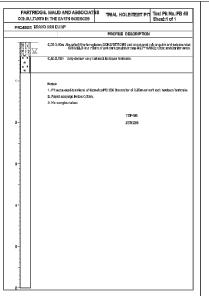


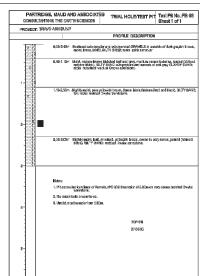


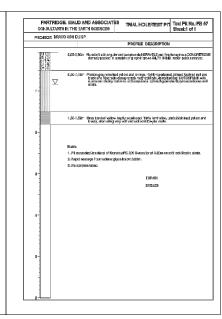


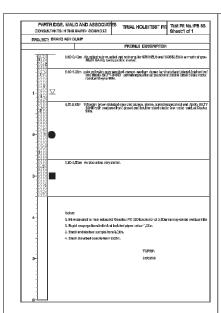


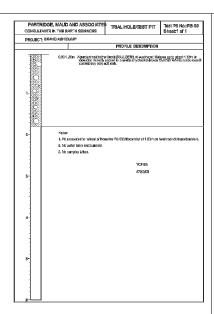


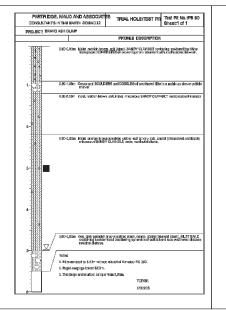

⊕ Eskom 0.90/23273

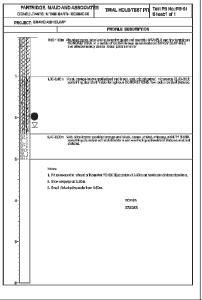


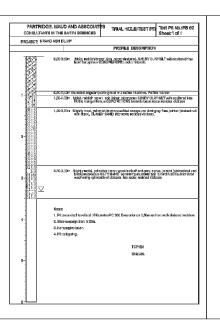


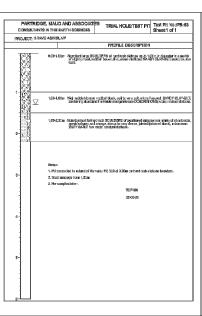


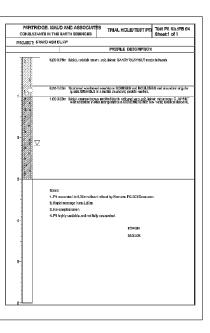


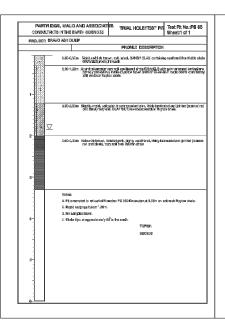


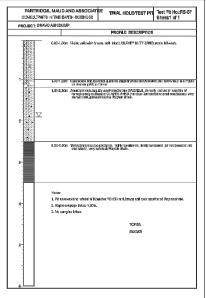


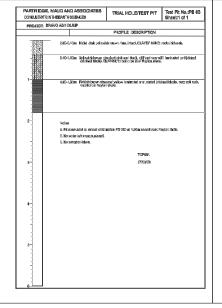


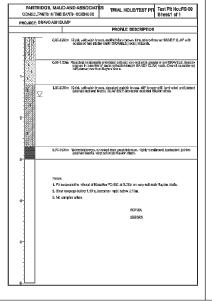


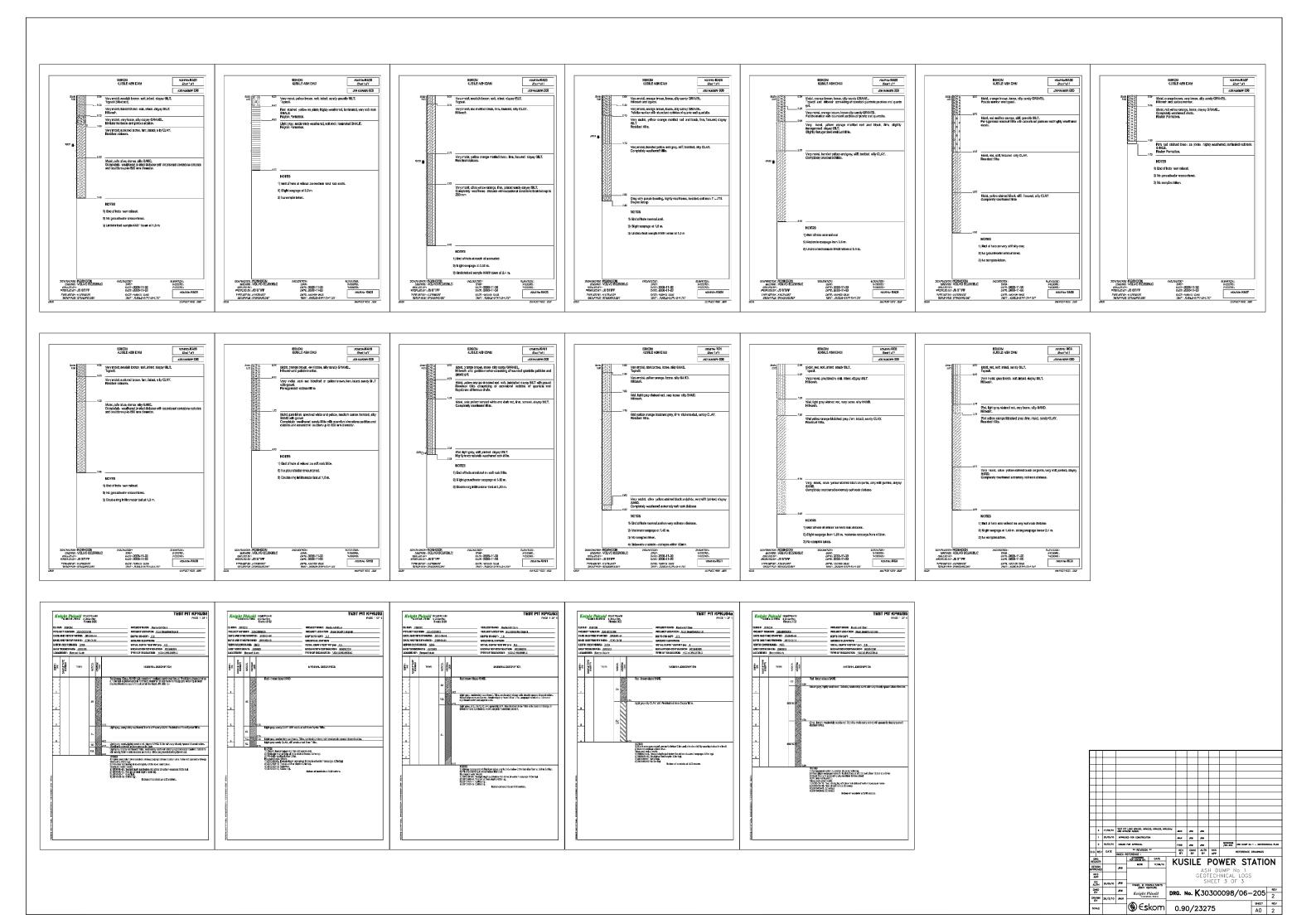


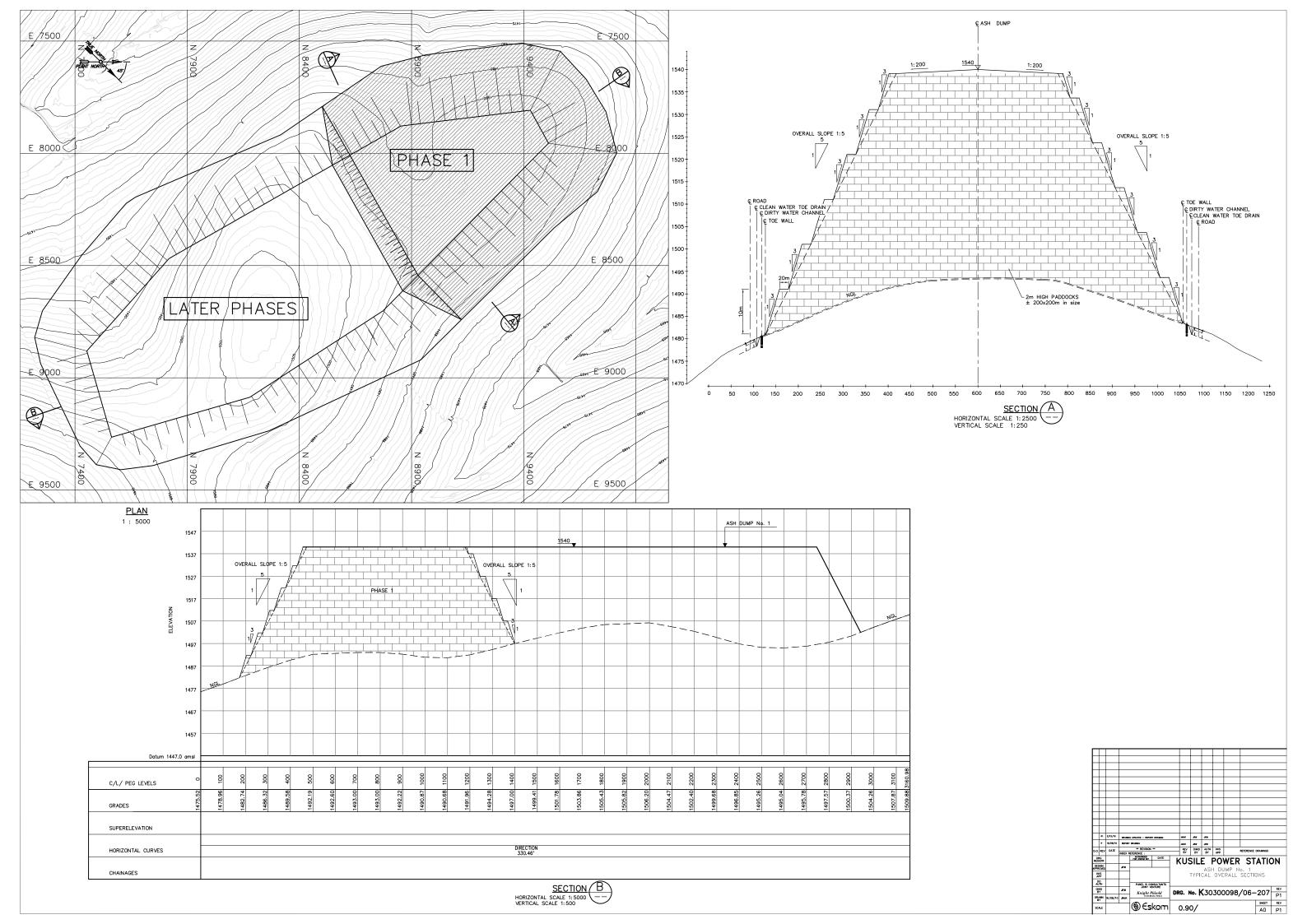


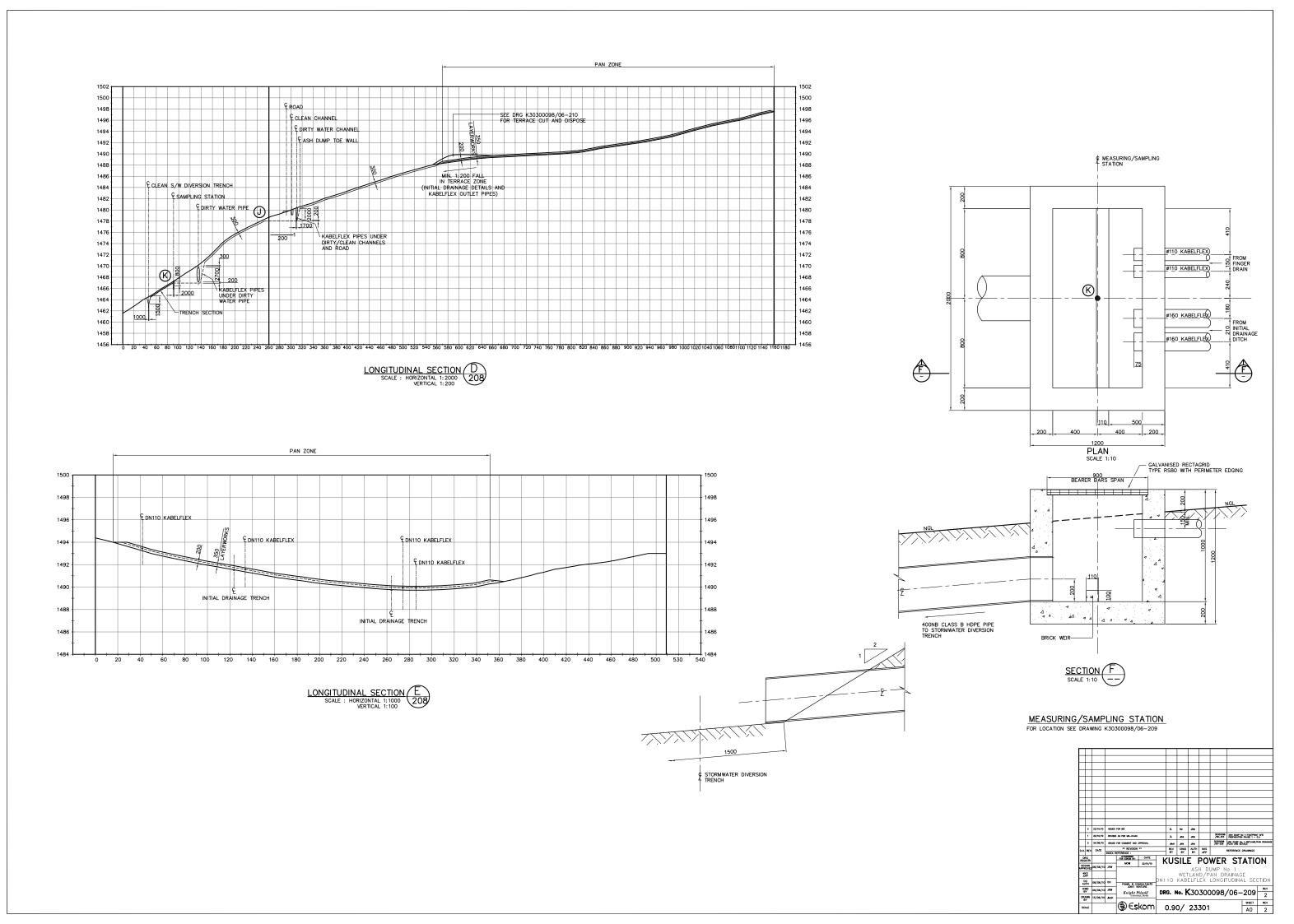








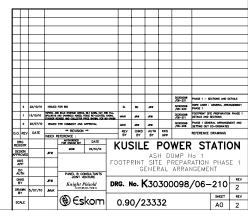


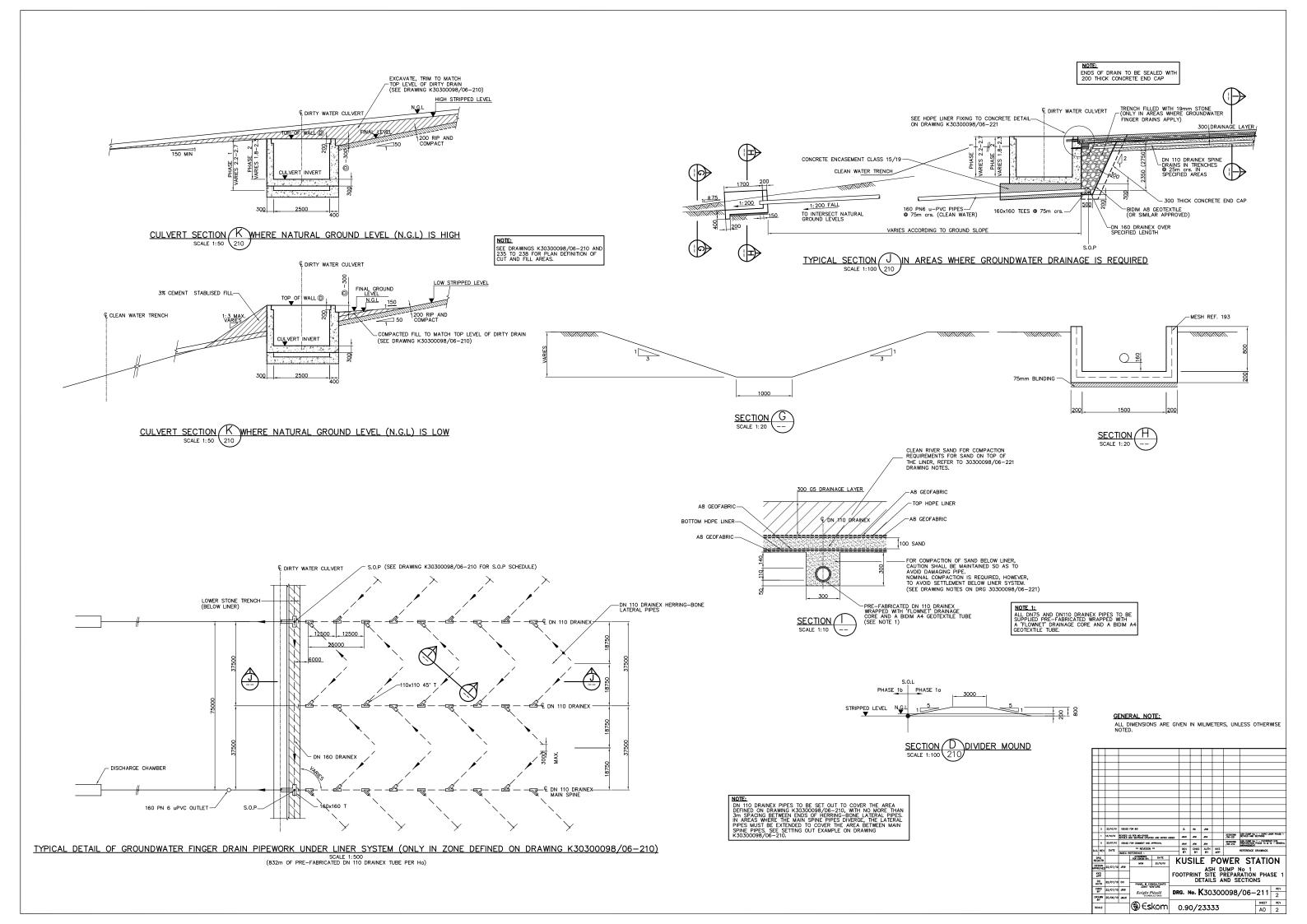

													_
_													
-	_												
+													
_													
_	,	22/10/10		FOR BD		_							
_		16/04/10		FOR APPROVAL		CM FedB	RN	RE		30300098 /06-202	ASH DUMP N	1 - GEOTECH	HCAL PLAN
D.O.	REV	DATE	INDEX 6	** REVISION **		REV	CHKD	AUTH BY	KKS APP	7.1. 2.12	REFERENCE	DRAWNGS	
DE	IRG AUSHCRESCO DATE		K	1119	SIL	FI	PO	WER	ST	ΔΤΙ	N		
DES PPR	IGN OVED	20/05/10	RW	MOW 22/10/10	• • • • • • • • • • • • • • • • • • • •				_	UMP N		, , , , ,	٠.,
K)							(NICAL			
Ą,	ÌH			PANEL B CONSULTANTS				SI	HEET	2 OF	. 3		
GH B	Υ	20/06/10	JRN	Knight Piésold	DR	G. 1	10. þ	(30	300	0098	/06-	-204	REV 1
DR/	Y	26/3/10	.McK	CONSULTING	_			-				SHEET	REV
sc	VLE.			(∰)€skom	(0.9	0/2	32	74			AO	1

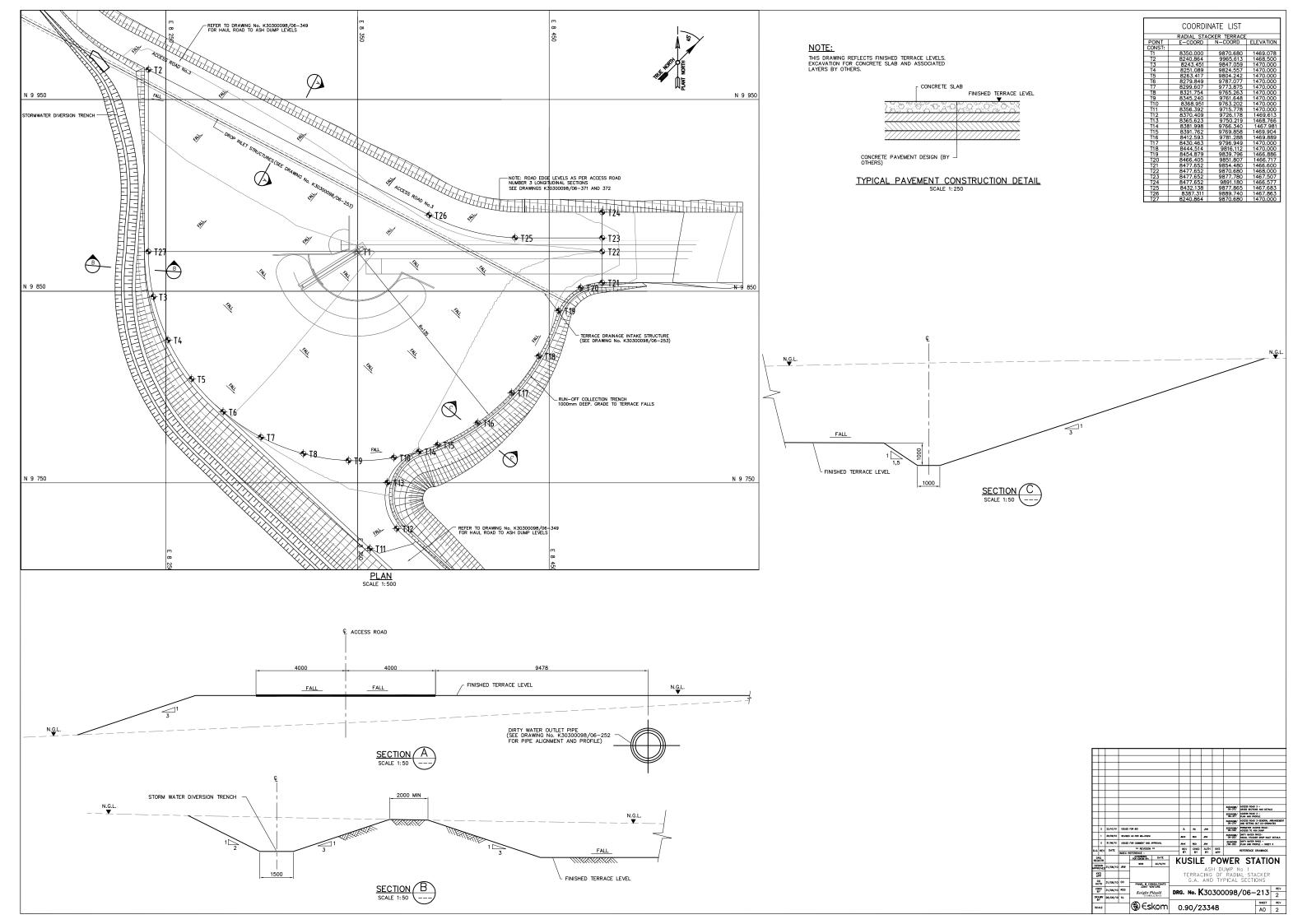


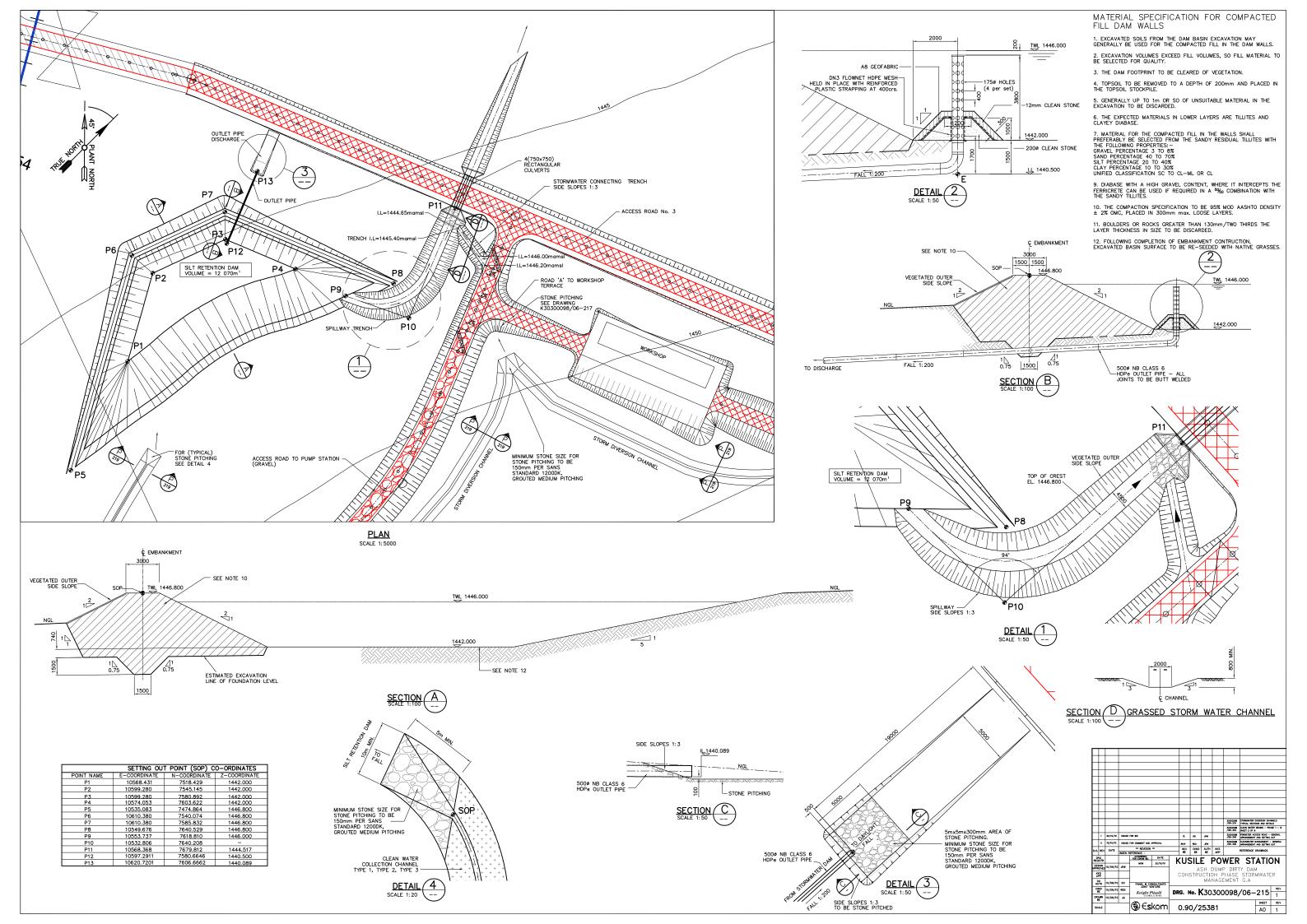
SETTING OUT CO-ORDINATES:

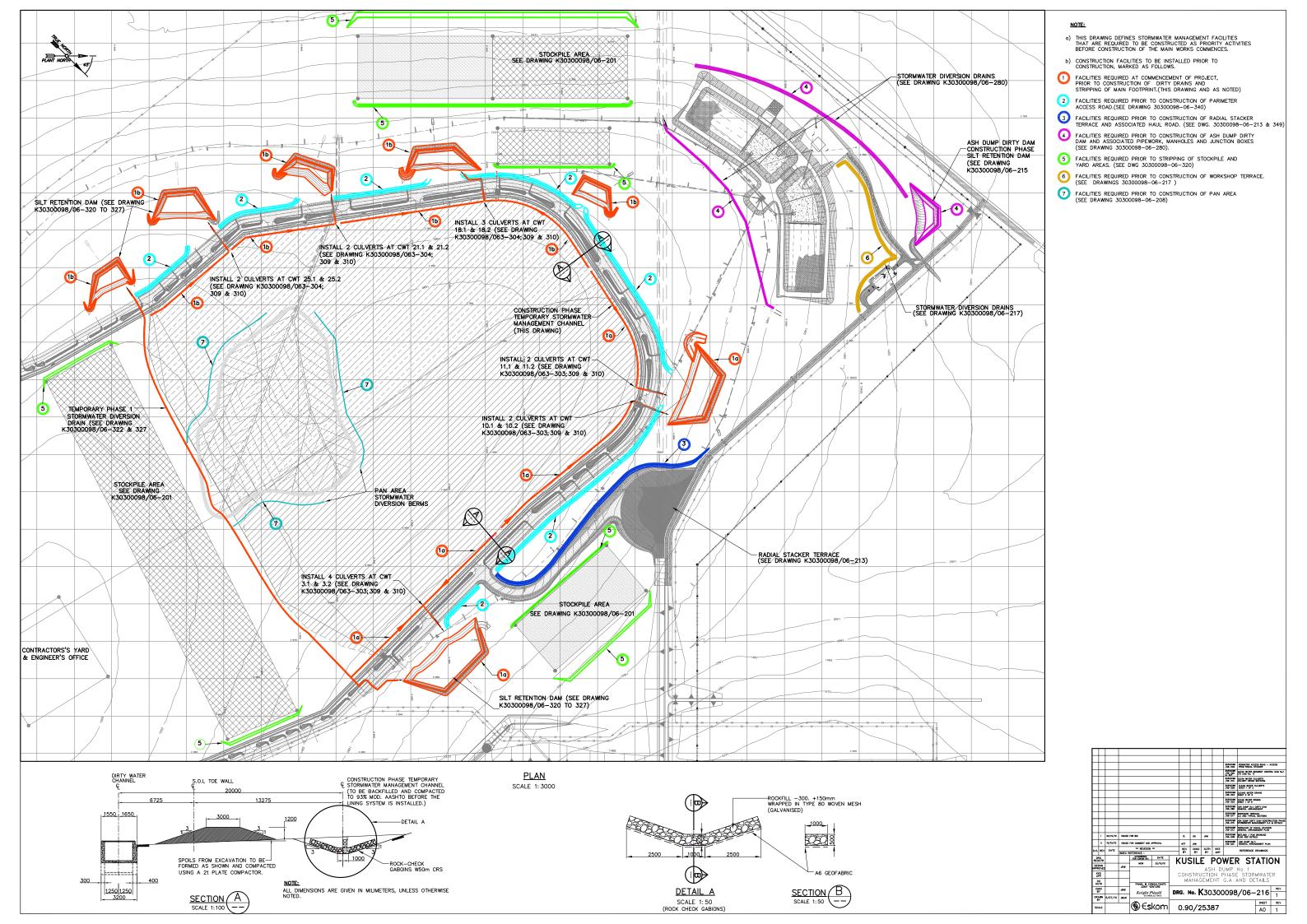
GROUNDWATER FIN	IGER DRAIN OUTLET	S.O.P
POINT NAME	N-COORDINATE	E-COORDINATE
GFD1	8736.274	9108.500
GFD2	8684.778	9163.711
GFD3	8633.281	9218.922
GFD4	8581.785	9274.133
GFD5	8530.289	9329.344
GFD6	8222.909	9661.787
GFD7	8175.676	9720.143
GFD8	8121.447	9774.108
GFD9	8050.967	9810.541
GFD10	7969.279	9823.069
GFD11	7893.810	9810.384
GFD12	7811.351	9766.589
GFD13	7748.112	9725.410
GFD14	7685.351	9684.543
GFD15	7624.296	9644.786
GFD16	7540.014	9182.914
GFD17	7551.299	9108.768
GFD18	7562.585	9034.622
GFD19	7573.870	8960.476
GFD20	7585.155	8886.330
GFD21	7604.626	8758.401
GFD22	7651.180	8698.403
GFD23	7700.071	8641.498
GFD24	7749.392	8584.091

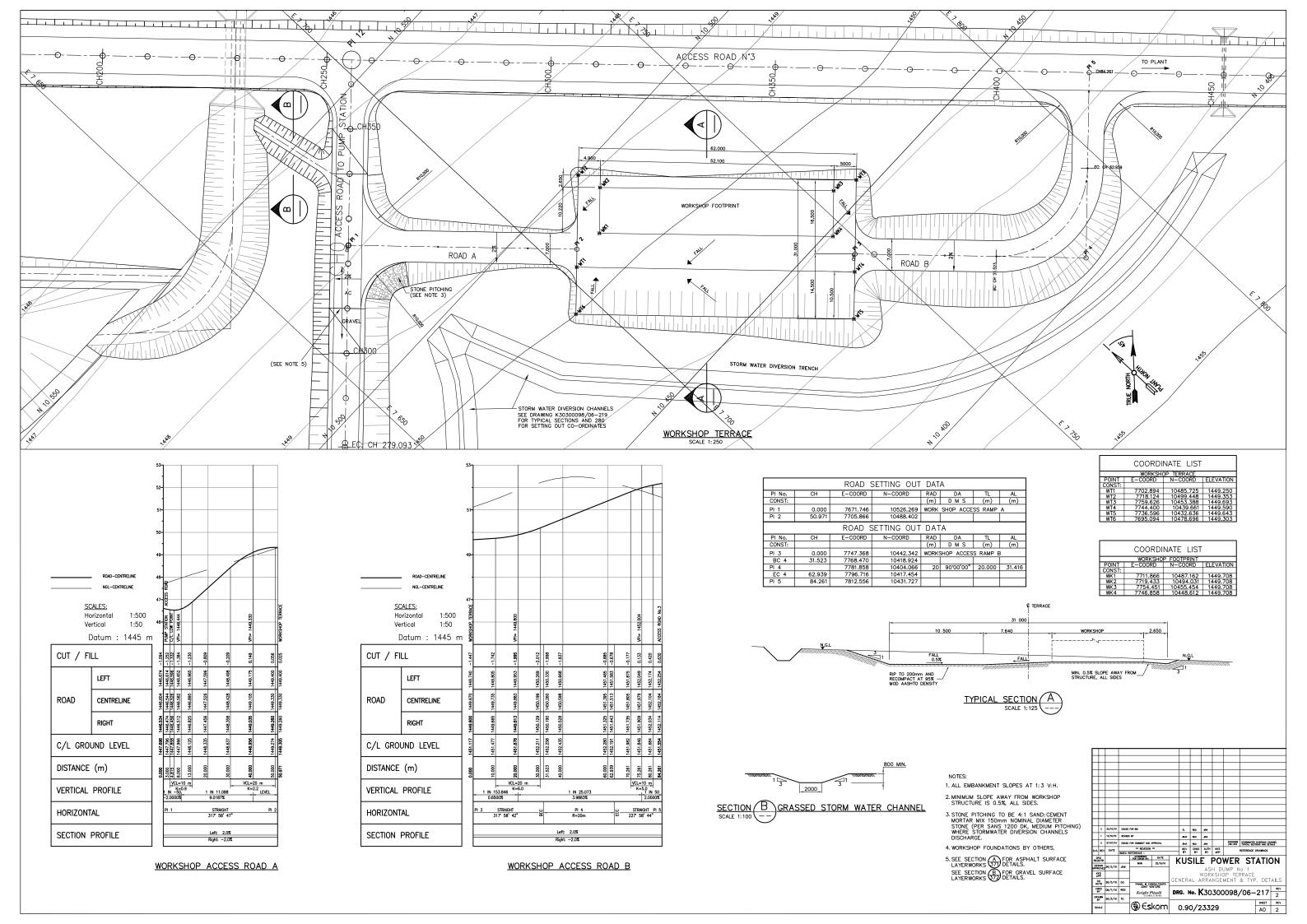

KUSILE POWER STATION
STAGE 1 CONSTRUCTION (FIVE YEAR FOOTPRINT)
CONSTRUCTION SEQUENCE IN FOOTPRINT AREA TO
MINIMISE CONSTRUCTION

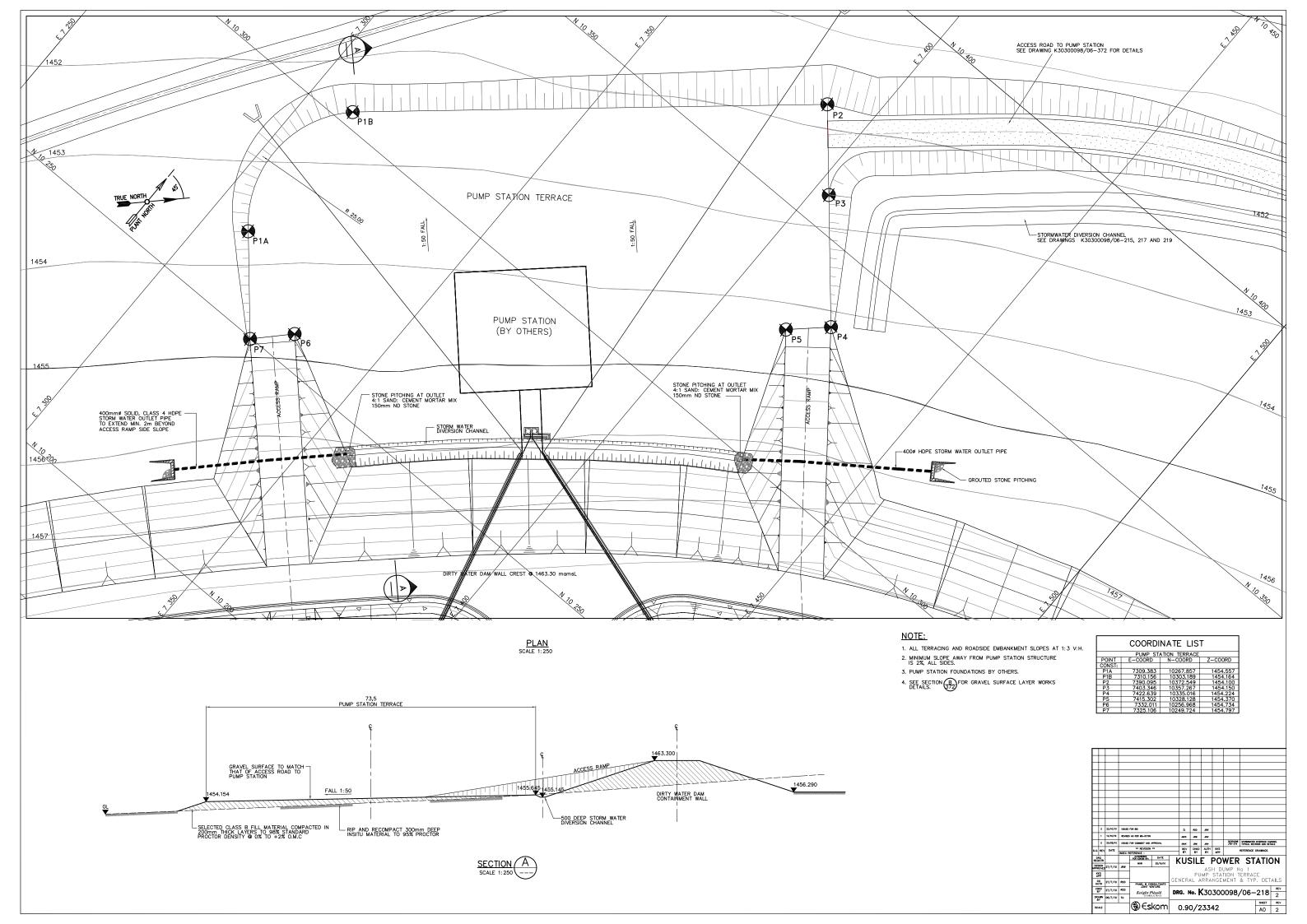

(PHASE 1A AND 1B SEPERWASELYS)TORMWATER SILT POLLUTION

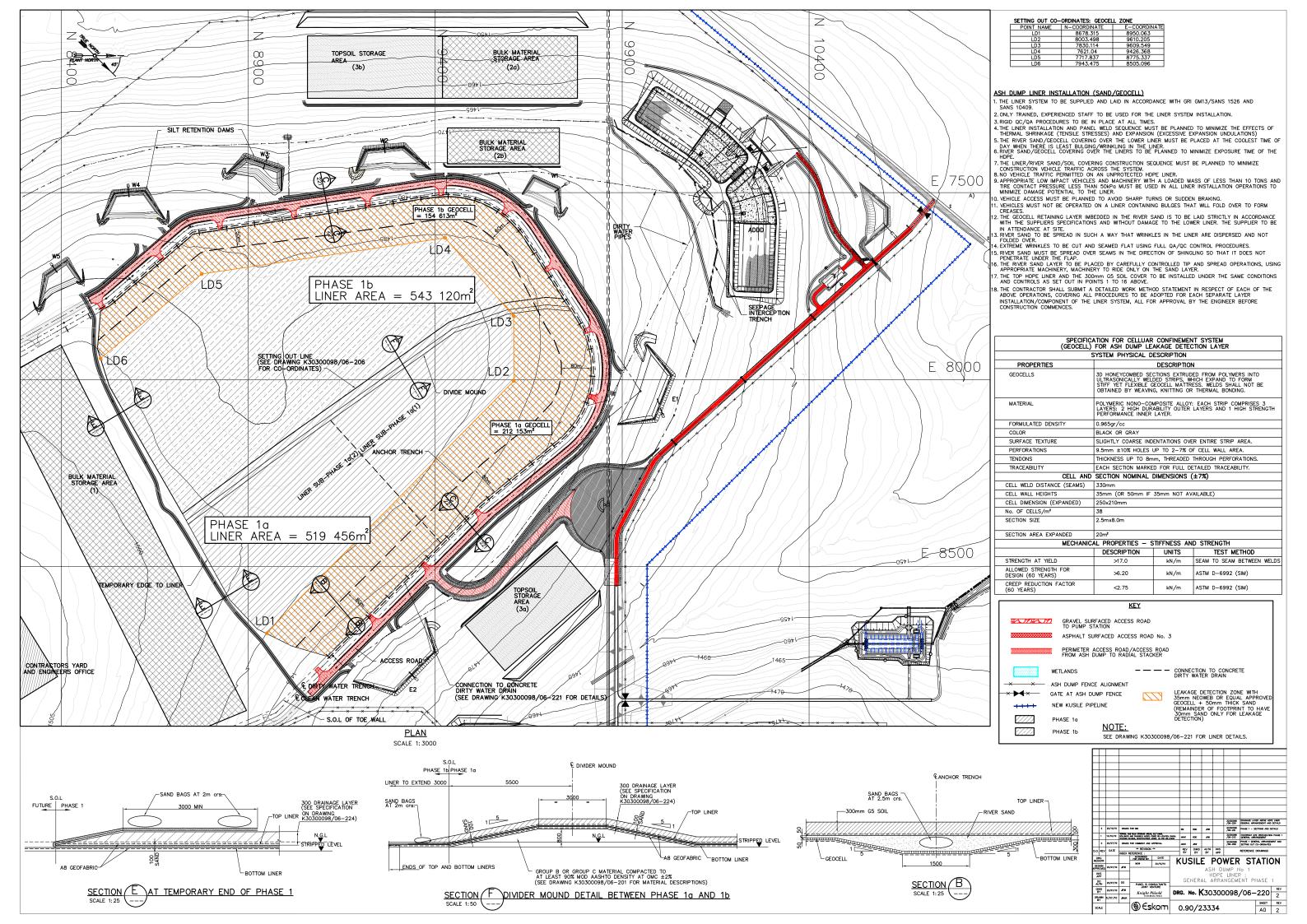

PHASE 1a AND 1b

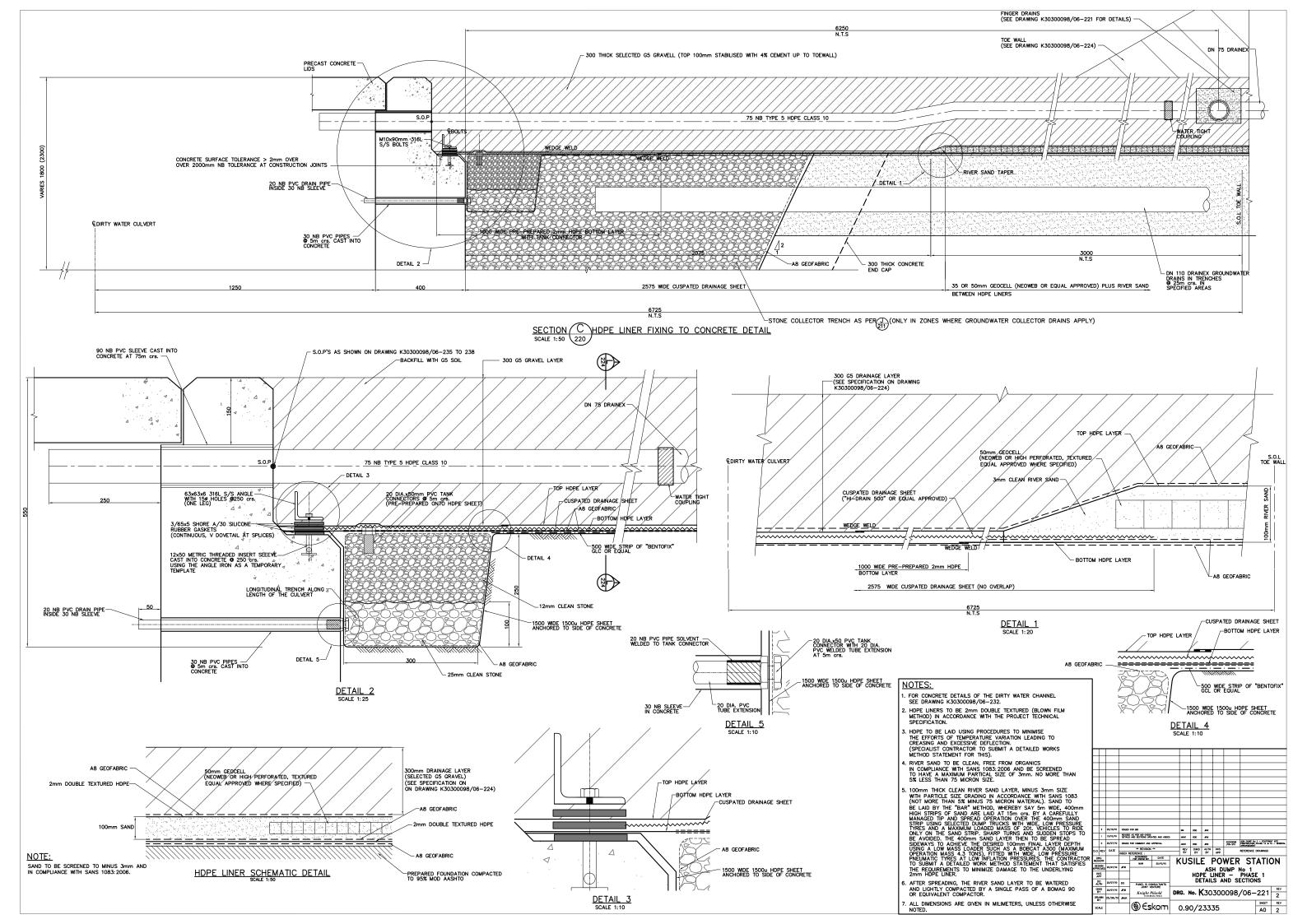

- DRAWING K30300098/06-216 DEFINES CONSTRUCTION PHASE STORMWATER AND SILT CONTROL FACILITIES THAT ARE REQUIRED TO BE CONSTRUCTED BEFORE EACH PARTICULAR SECTION OF THE MAIN WORKS COMMENCES. THE GENERAL SEQUENCE WILL THEN BE AS FOLLOWS:
- PREPARE STORMWATER DIVERSION AND CONTROL FACILITIES AT SOIL STOCKPILE AREAS AND CONTRACTORS YARD. THEN STRIP AND CLEAR.
- 3. STRIP, CLEAR AND REMOVE TOPSOIL IN FOOTPRINT AREAS OF PERIMETER
- SILI REJENTION DAMS.

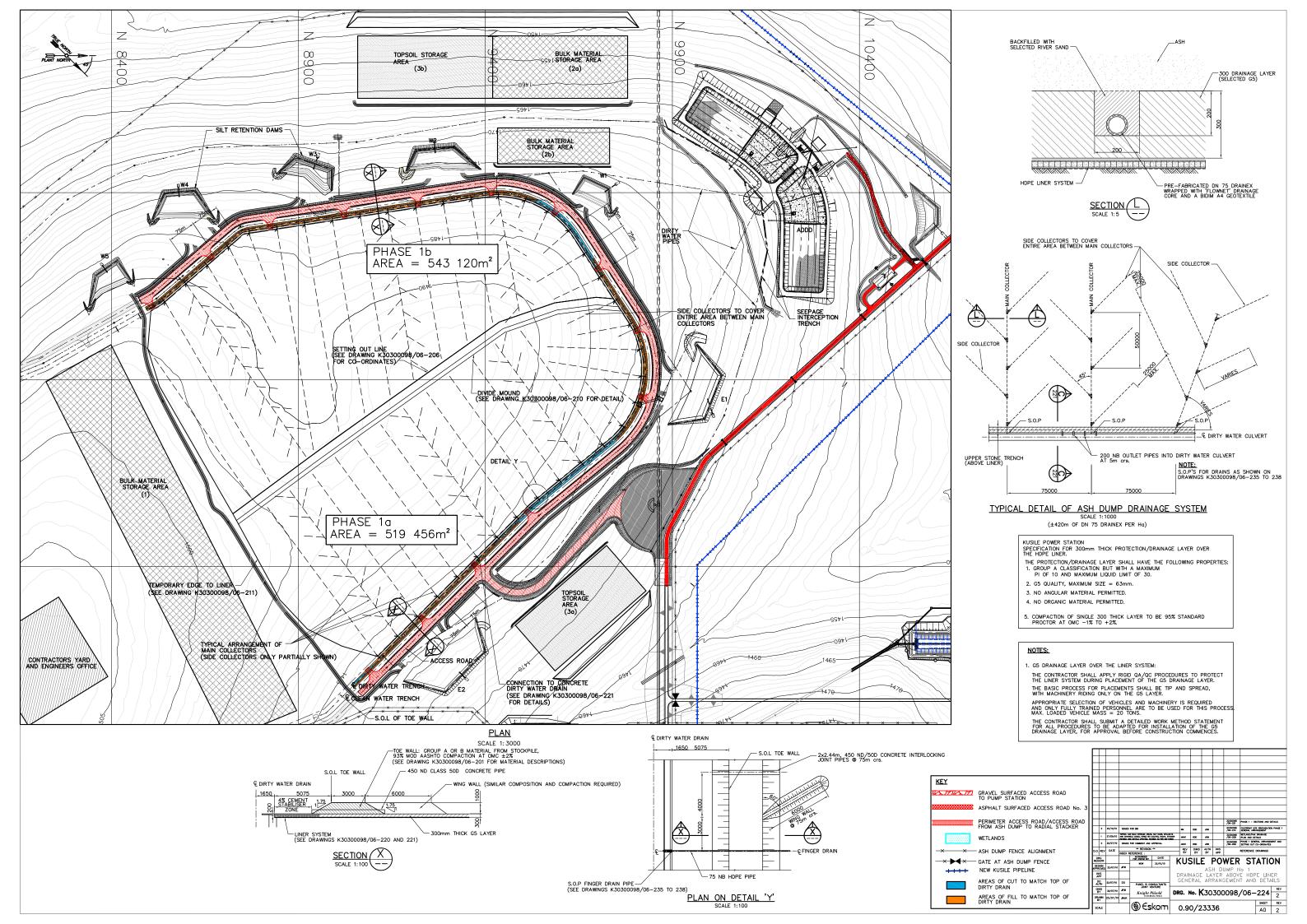

 (CONSTRUCT SILT RETENTION DAMS, INCLUDING PERFORATED OUTLET TOWERS. CONSTRUCT ASSOCIATED TEMPORARY PERIMETER STORMWATER CHANNELS TO SOUTH, EAST AND WEST OF MAIN FOOTPRINT. CONSTRUCT DEFINED CULVERTS PER DRAWING K30300098/06-216 UNDER THE PERIMETER ACCESS ROAD.
- 5. STRIP, CLEAR AND REMOVE TOPSOIL IN DIRTY DRAIN, ROAD BED AND CLEAN DRAIN AREAS, OVER 1000m LENGTHS AT A TIME, AND FORM EXTERNAL MITRE-CUT DRAINS WITH OUTLETS TO SILT RETENTION DAMS.
- S. UNDERTAKE THE SPECIFIED STRIPPING, CLEARING AND DRAINAGE AND LAYER WORKS OF THE WETLAND/PAN AREA.
- 7. EXCAVATE AND LAY GROUNDWATER PAN AREA FINGER DRAIN OUTLET PIPES.
- EXCAVATE AND CONSTRUCT THE DIRTY WATER CONCRETE CANAL IN 1000m LENGTHS AT A TIME. BACKFILL TRENCHES AFTER COMPLETION OF EACH SECTION
- CONSTRUCT PERIMETER ROAD BED AND BALANCE OF CULVERT CROSSINGS OVER 1000m LENGHTS AT A TIME.
- 10. EXCAVATE AND FORM CLEAN WATER DRAINS IN 1000m SECTIONS TOGETHER WITH CULVERTS AND CULVERT DISCHARGE TRENCHES TO SILT RETENTION DAMS.
- COVER THE DIRTY WATER DRAIN CANALS WITH THE PRECAST LIDS IMMEDIATELY ON COMPLETION TO ALLOW SILTY STORMWATER TO PASS OVER THE CANAL.
- 2. TOPSOIL REMOVAL AND FOUNDATION PREPARATION IN 0.25km² SECTIONS OF THE ASH DUMP FOOTPRINT, MAY COMMENCE AFTER COMPLETION OF STEP 4, IN TIME TO RECEIVE THE LINER SANDWICH INSTALLATION (ALSO INSTALLED IN 0.25 km² SECTIONS LAID AT A TIME). THE FOOTPRINT STRIPPING MUST NOT BE UNDERTAKEN MORE THAN 1 MONTH BEFORE THE LINER IS SCHEDULED TO BE INSTALLED.
- 13. DELIVER, TIP AND SPREAD THE 300mm G5 GRANEL POETECTION LAYER OVER THE INSTALLED LINER AS SOON AS EACH 0.25km² SECTION IS COMPLETE.
- 14. FORM THE TOE WALL TO EACH LINER PANEL SECTION, INCLUDING DRAINAGE PIPES AT 75m INTERVALS FOR STORMWATER DISCHARGE TO THE SILT RETENTION DAMS.
- 15. SIMILAR CONSTRUCTION SEQUENCES ARE REQUIRED AT THE ASH DUMP DIRTY DAM, THE RADIAL STACKER TERRACE, AND THE WORKSHOP TERRACE TO PROVIDE STORMWATER AND SLIT CONTROL FACILITIES AHEAD OF THE MAIN WORKS CONSTRUCTION (SEE DRAWING K30300098/06-216).
- 16. AFTER STEP No. 4, SUBSEQUENT STEPS CAN BE PERFORMED IN PARALLEL TO MEET THE CONSTRUCTION PROGRAM.

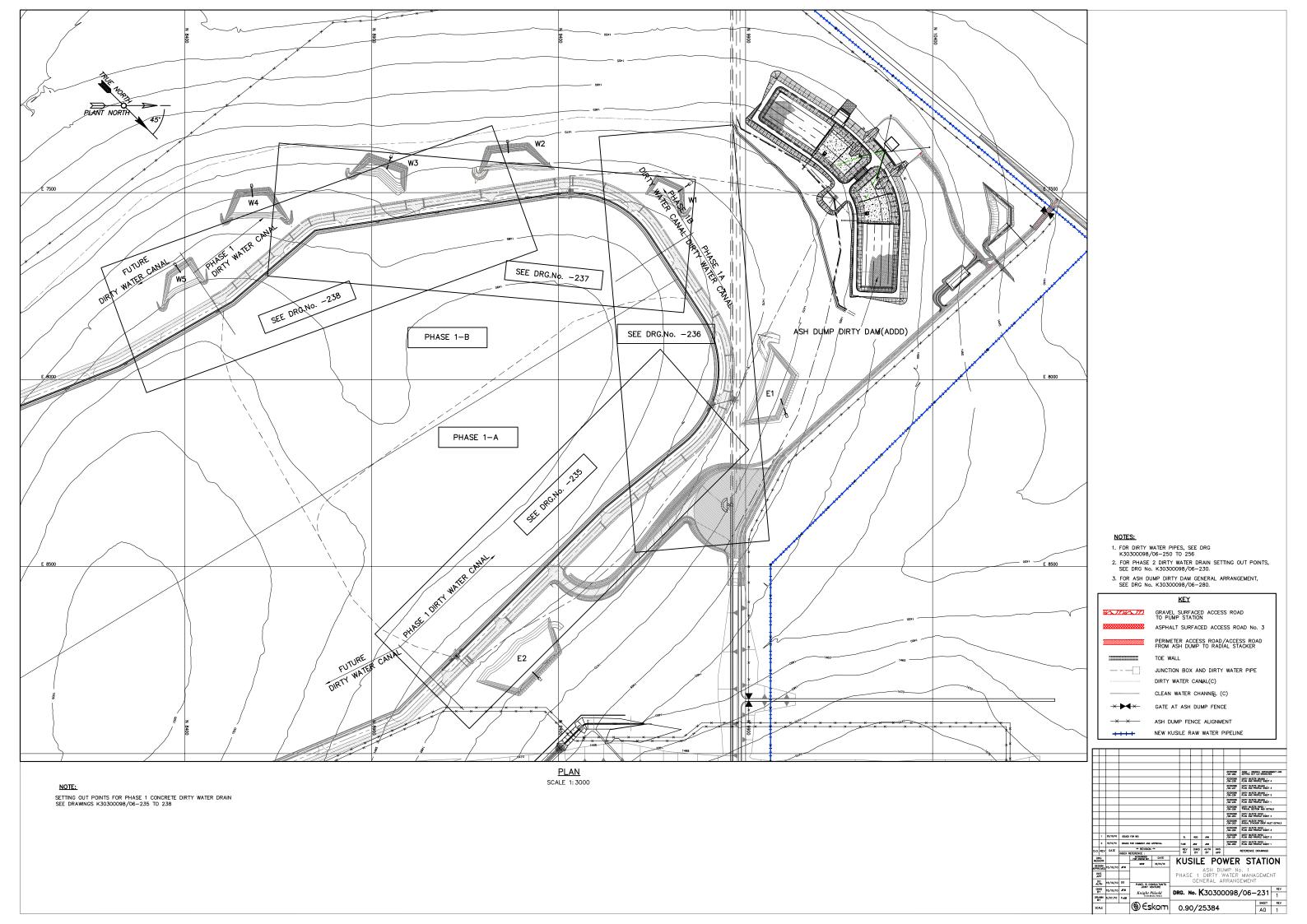


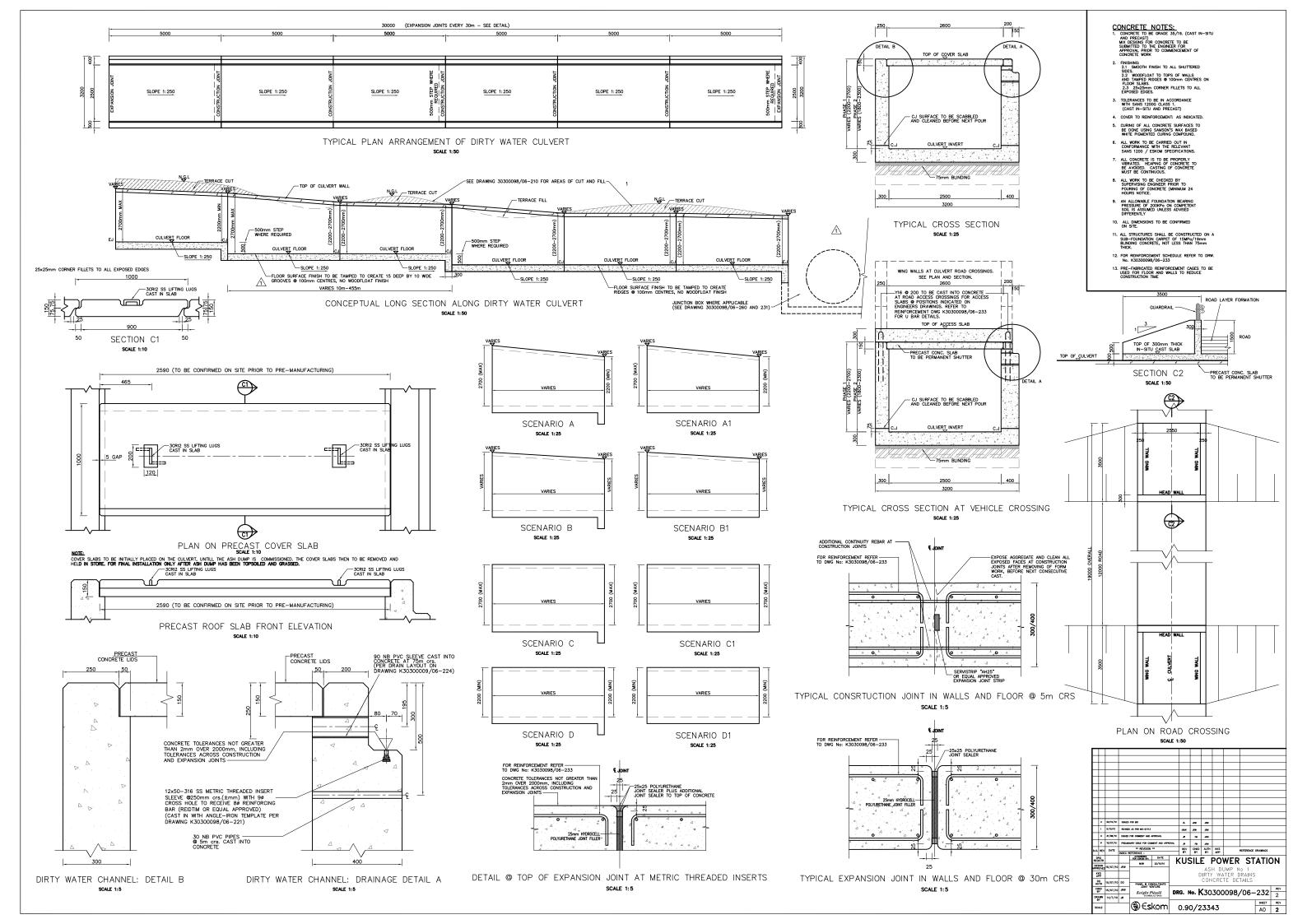


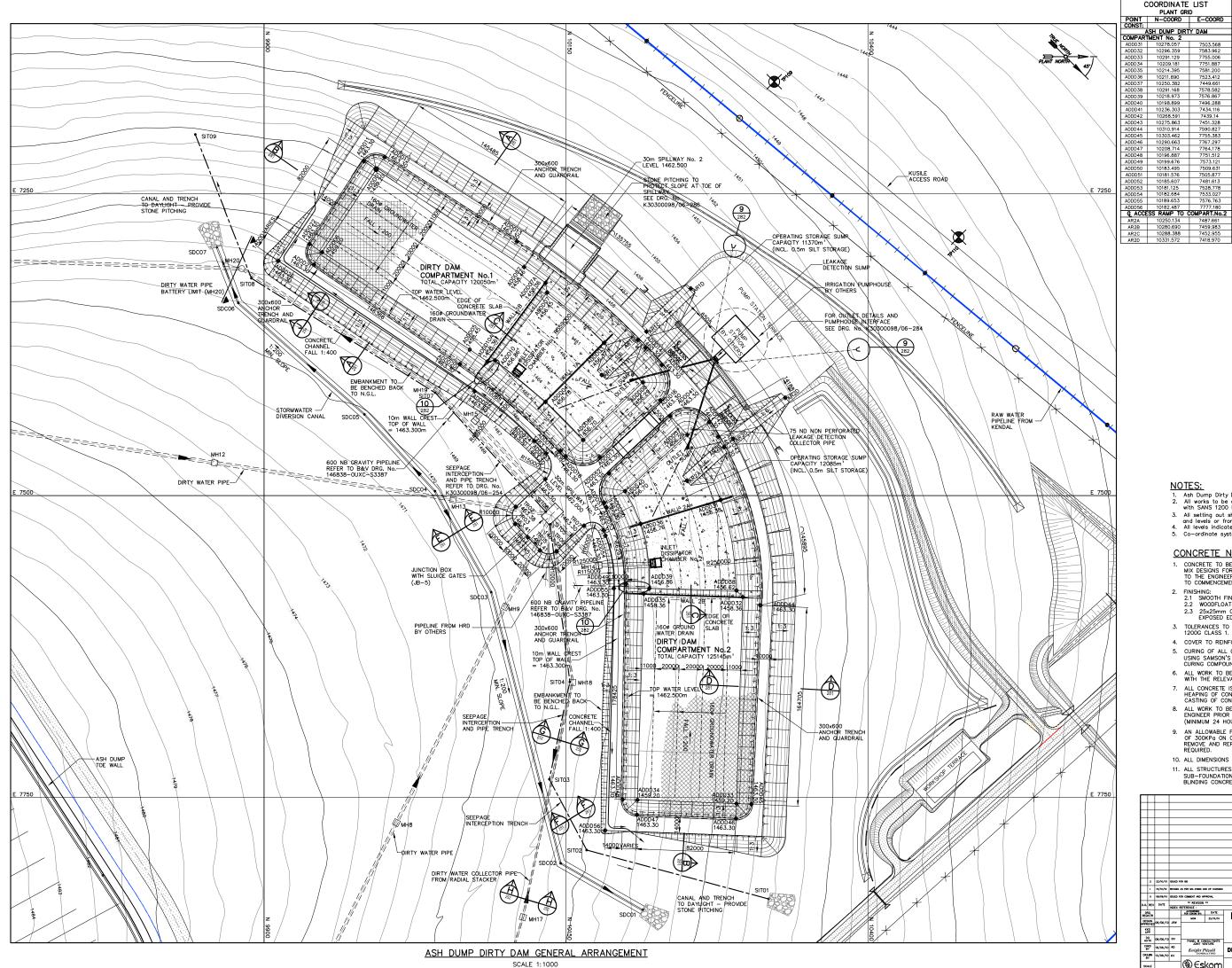












COORDINATE LIST COORDINATE LIST POINT N-COORD E-COORD
CONST: PLANT GRID
POINT N-COORD E-COORD
CONST:

ASH DUMP DIRTY DAM
COMPARTMENT No. 1 ASH DUMP DIRTY DAM
COMPARTMENT No. 2 7449.661
7576.582
7576.582
7576.6867
7496.288
7434.116
7439.14
7451.328
7590.827
7755.383
7764.178
7755.1512
7590.631
7590.877
7481.613
7592.778
7533.027
7582.778

C	OORDINATE PLANT GR	
POINT	N-COORD	E-COORD
CONST:	.,	
	SH DUMP DIRT	Y DAM
STOR	AWATER DIVERS	SION CANAL
SDC01	10213.435	7842.565
SDC02	10145.605	7804.395
SDC03	10088.042	7579.921
SDC04	10041.527	7496.380
SDC05	9983.067	7432.814
SDC06	9878.596	7340.505
SDC07	9860.899	7294.370
SEEPA	GE INTERCEPT	ON TRENCH
SIT01	10317.739	7833.873
SIT02	10167.115	7793.430
SIT03	10136.239	7734.835
SIT04	10153.192	7654.270
SIT05	10136.808	7523.825
SIT06	10133.312	7513.374
SIT07	10041.627	7414.847
SIT08	9889.440	7320.100
SIT09	9843.028	7201.058
TERR	ACE AT JUNCT	ION BOX 5
TR01	10132.908	7486.385
TR02	10108.440	7509.286
TR03	10107.973	7523.420
TR04	10118.372	7534.532
TR05	10128.473	7545.323
TR06	10142.247	7546.112
TR07	10164.964	7524.866

ADD026 9911.679 7305.725 **Q. ACCESS RAMP TO COMPART.No.1**ARIA 10179.586 7400.161

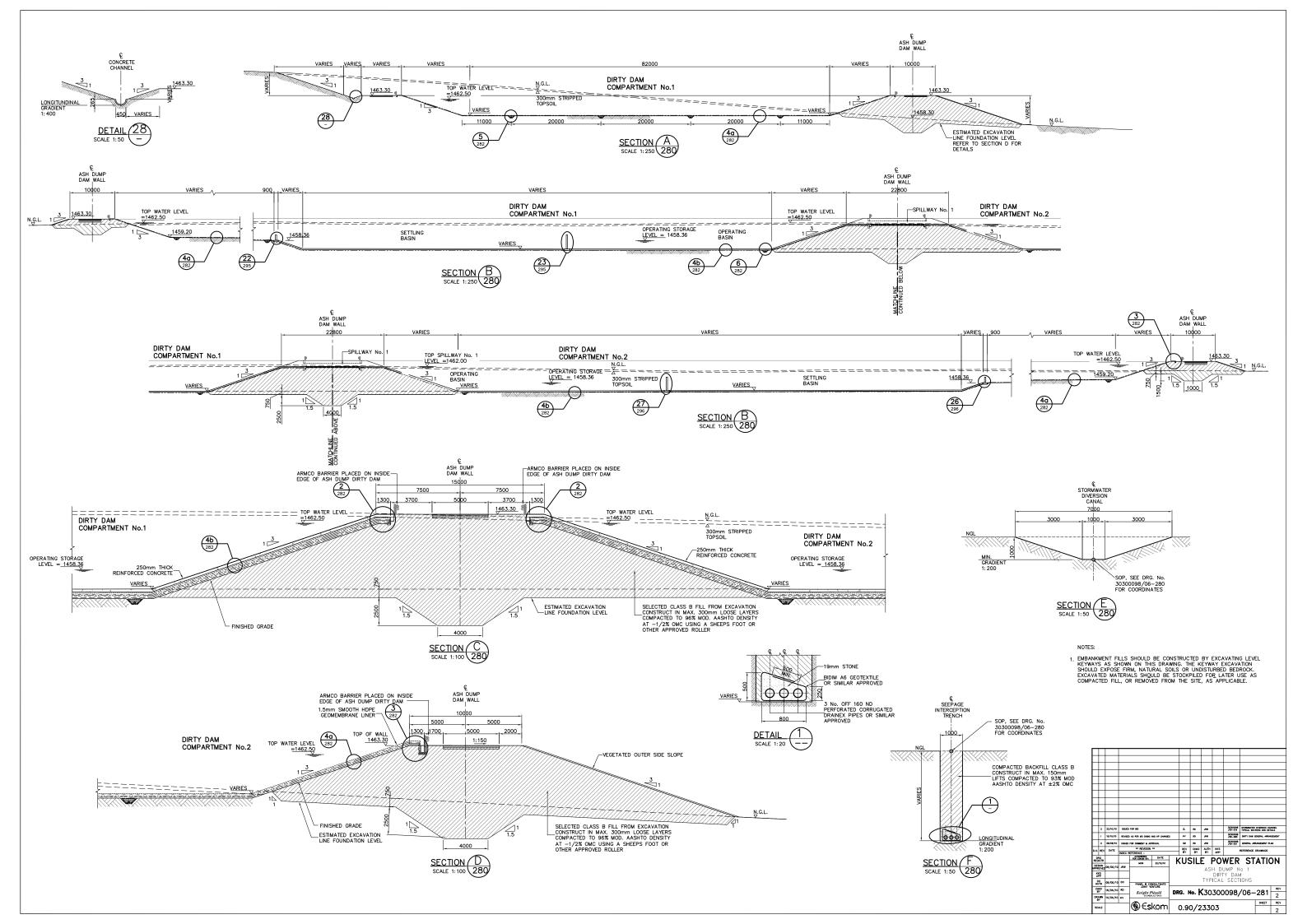
ARIB 10209.391 7371.227

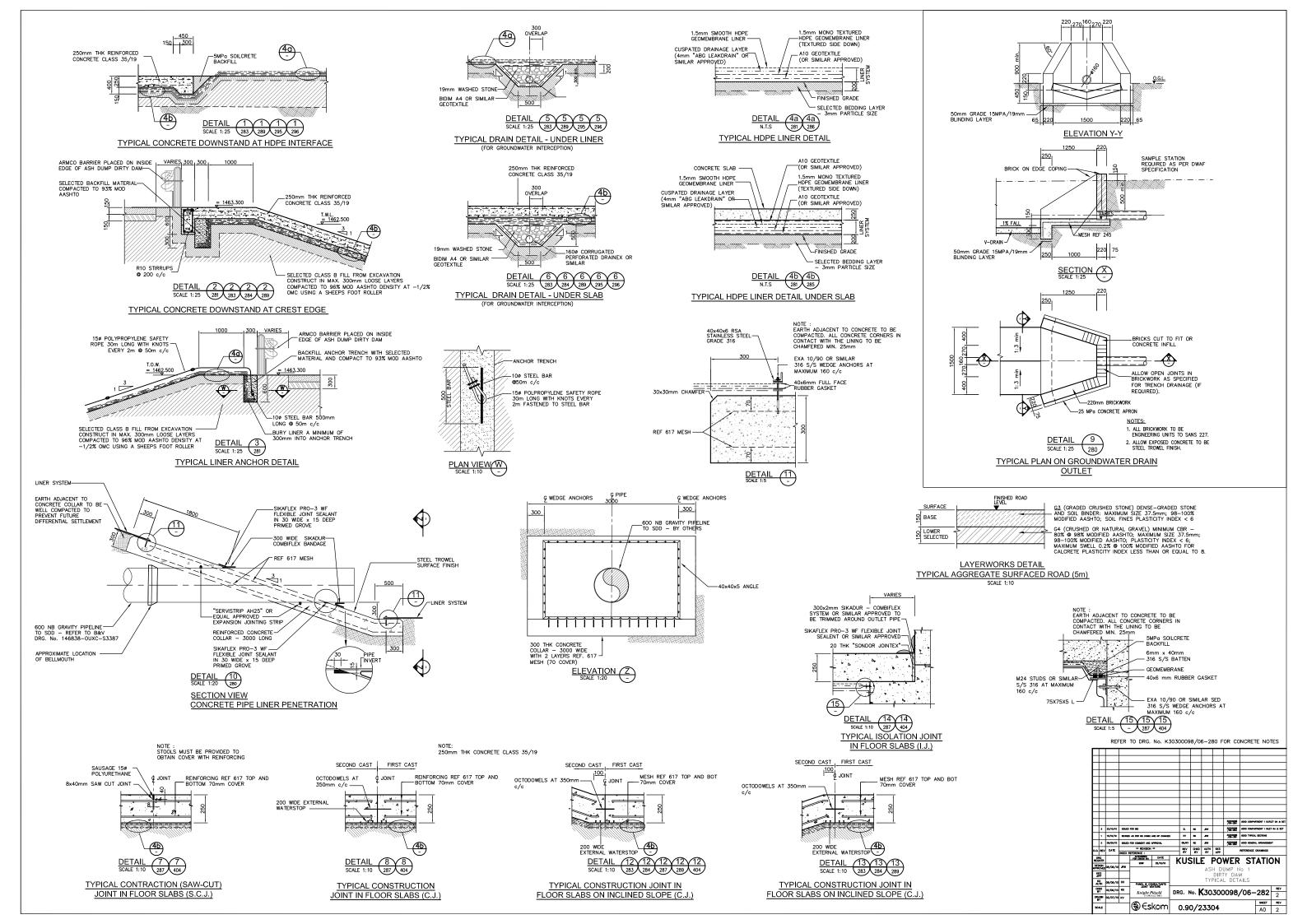
ARIC 10216.604 7364.225

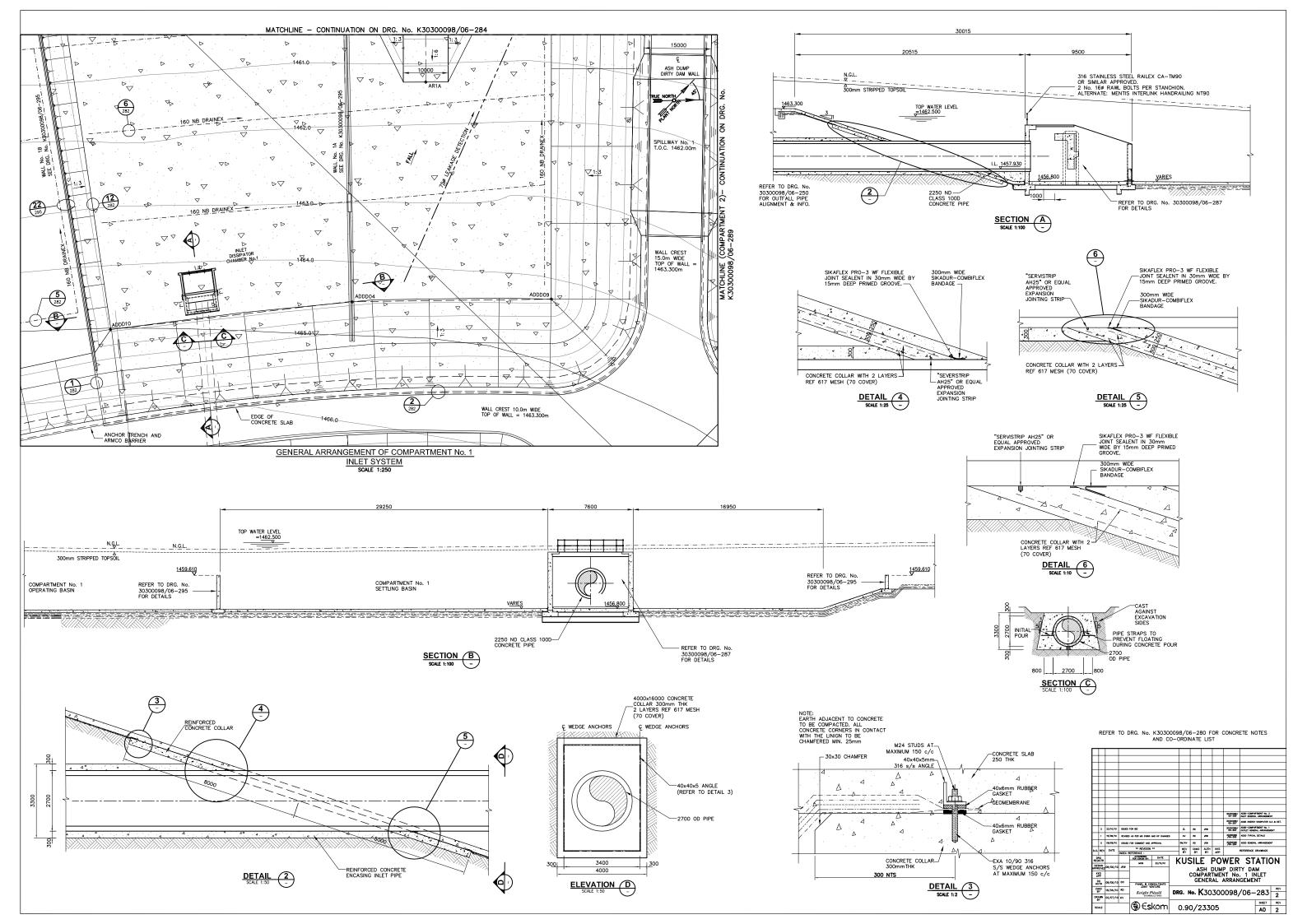
ARID 10253.346 7328.558

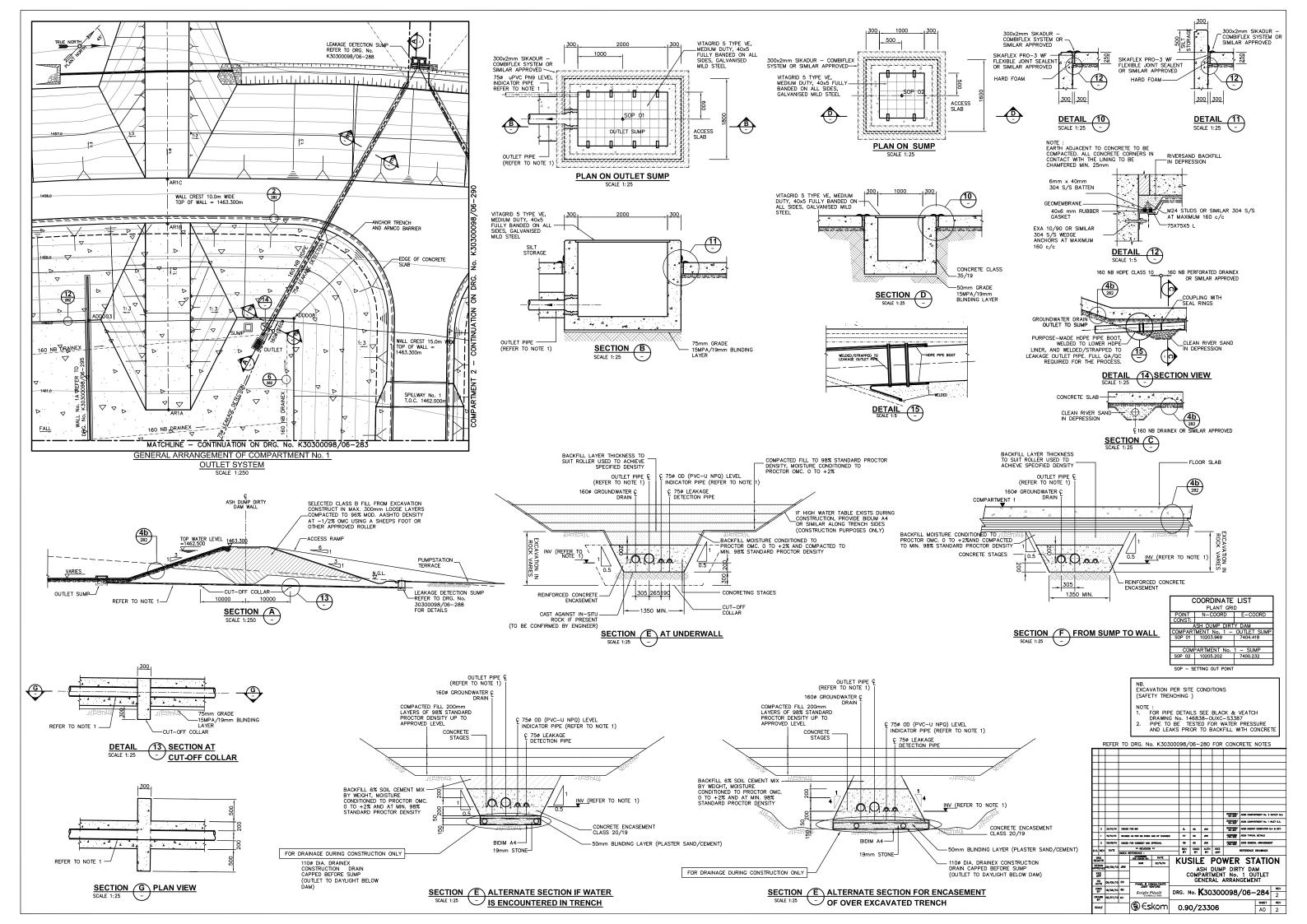
- Ash Dump Dirty Dams Contract No. 71.0202
 All works to be carried out in accordance with SANS 1200 D
- All setting out shall be from tabulated points and levels or from dimensions given.
 All levels indicated are to finished surface.
 Co-ordinate system is PLANT

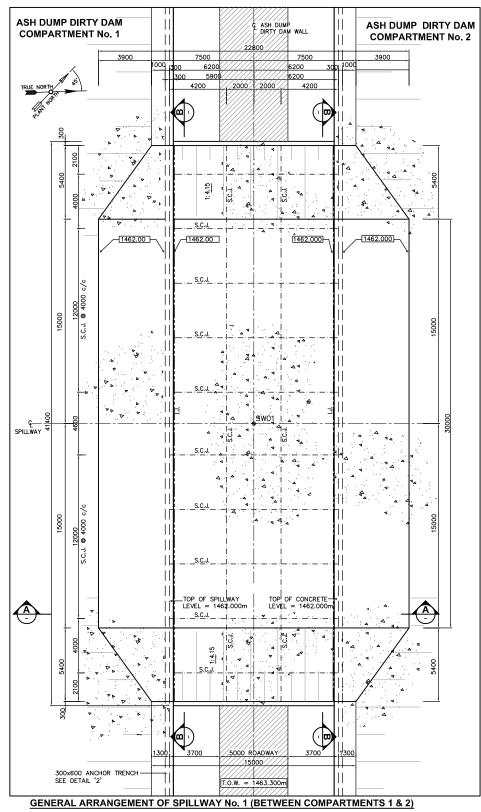
CONCRETE NOTES:

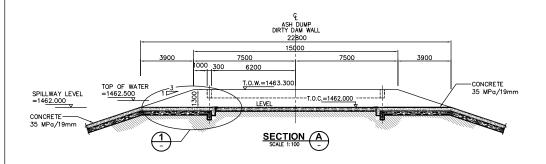

- CONCRETE TO BE GRADE 35/19.
 MIX DESIGNS FOR CONCRETE TO BE SUBMITTED TO THE ENGINEER FOR APPROVAL PRIOR TO COMMENCEMENT OF CONCRETE WORK.
- 2. FINISHING:
 2.1 SMOOTH FINISH TO ALL SHUTTERED SIDES.
 2.2 WOODFLOAT TO TOPS OF WALLS AND SLABS.
- 2.3 25x25mm CORNER FILLETS TO ALL EXPOSED EDGES. 3. TOLERANCES TO BE IN ACCORDANCE WITH SABS 1200G CLASS 1.
- 4. COVER TO REINFORCEMENT: AS INDICATED.
- 5. CURING OF ALL CONCRETE SURFACES TO BE DONE USING SAMSON'S WAX BASED WHITE PIGMENTED CURING COMPOUND OR ACCEPTABLE EQUAL.
- ALL WORK TO BE CARRIED OUT IN CONFORMANCE WITH THE RELEVANT SABS 1200 SPECIFICATIONS.
- 7. ALL CONCRETE IS TO BE PROPERLY VIBRATED. HEAPING OF CONCRETE TO BE AVOIDED. CASTING OF CONCRETE MUST BE CONTINUOUS.
- ALL WORK TO BE CHECKED BY SUPERVISING ENGINEER PRIOR TO POURING OF CONCRETE (MINIMUM 24 HOURS NOTICE).
- AN ALLOWABLE FOUNDATION BEARING PRESSURE OF 300KPa ON COMPETENT SOIL IS REQUIRED. REMOVE AND REPLACE IN-SITU MATERIAL AS REQUIRED.
- 10. ALL DIMENSIONS TO BE CONFIRMED ON SITE. ALL STRUCTURES SHALL BE CONSTRUCTED ON A SUB-FOUNDATION CARPET OF 15MPg/19mm BLINDING CONCRETE, NOT LESS THAN 75mm THICK.

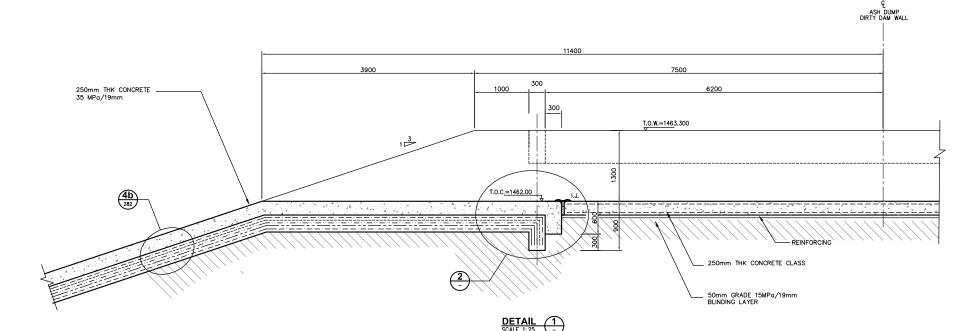

	NICH.		-	MOM	22/10/10	r	v U S	ᄓᄔ		ГU	44 ⊑ K	STATION
į	RG			FOR ESKOM BY:	DATE	L	7110	211	- 1	<u>-</u>	WED	STATION
	REV	DATE	INDEX F	** REVISION REFERENCE :	•		REV	CHKD BY	AUTH BY	KKS APP		REFERENCE DRAWINGS
	۰	08/09/10	ISSUED F	OR COMMENT AND AP			GM	RD	æ		30300008 708-201	GENERAL ARRANGEMENT PLAN
	1	15/10/10	REVISED	AS PER MS-01880 A	NO HP CHANGES		KV	RD	an		30300000 706-217	MORNISHOP TERRACE G.A.
	2	22/10/10	ISSUED F	OR 80		Z.	RD	RN		30300000 /08-218	PUMP STATION TERRACE G.A.	
									30300000 /66-381	ADDD TYPICAL SECTIONS		
											30300000 /04-282	ADDD TYPICAL DETALS
									3/32-583	ADDD COMPART, No. 1 INLET G.A.		
											3)300099	ADDD COMPART, No. 1 OUTLET G.A.
											3)300000 700-288	ADDD SPILLMAY No. 1 G.A.
											3/20-585	ADDD SPILLWAY No. 2 GA.
											3)300099	ADDD ENERGY DISSIPATOR No. 1
											30,300000	ADDD LEAKAGE DETECTION SUMP
											3/200292	ADDD COMPART, No. 1 DIVISION WALLS
											7/20022	ADDD COMPART, No. 2 DWSON WILLS
											700-464	ADDD ENDING USSPAICK NS. 2

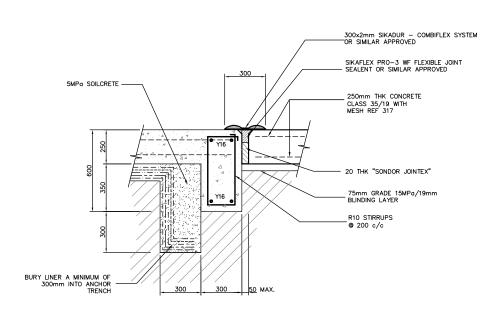

ASH DUMP No 1 DIRTY DAM GENERAL ARRANGEMENT DRG. No. K30300098/06-280 Knight Piésold

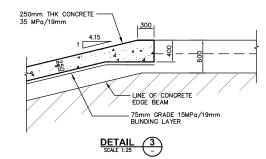

0.90/23302

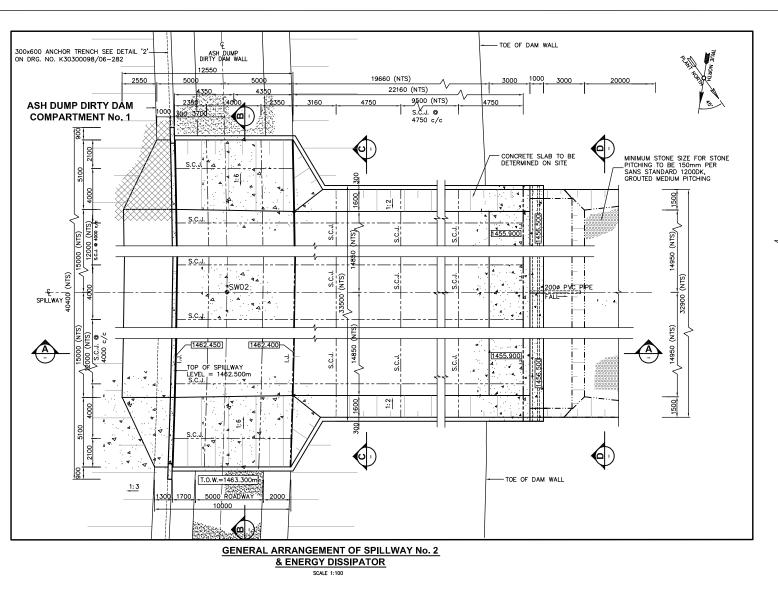

€Skom

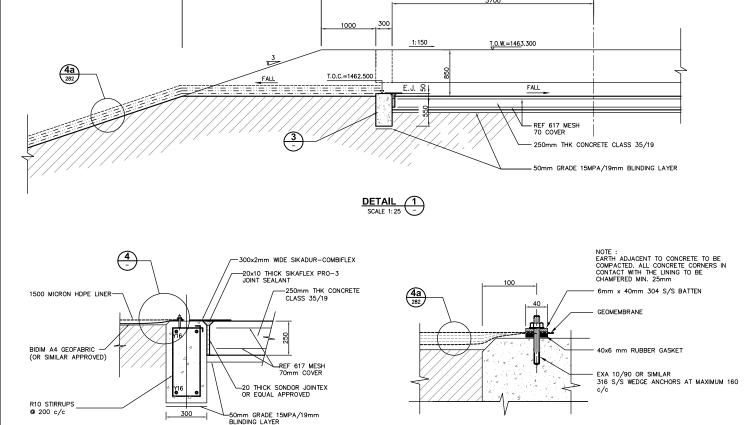


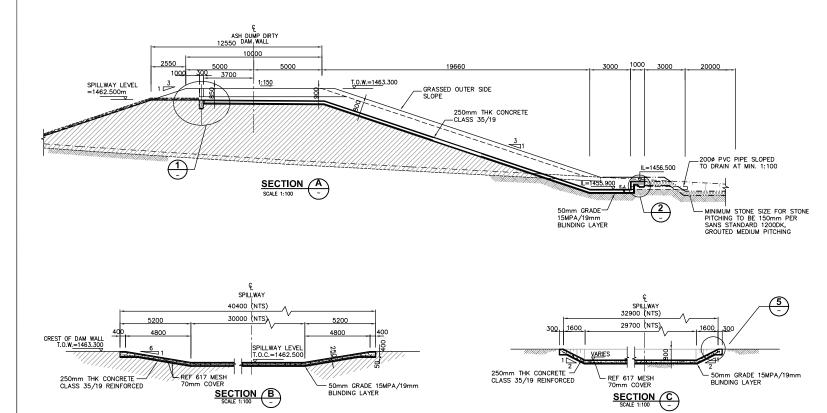


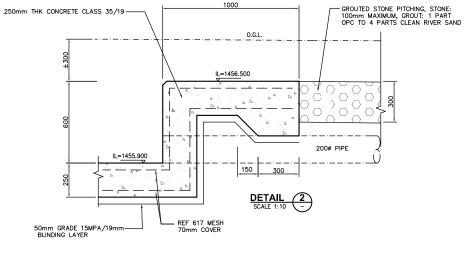




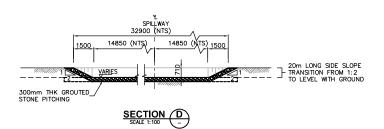


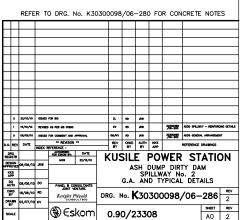

•	ତ୍ SPILL W AY	
	42000 (NTS)	
900 5400	30000 (NTS)	5400 900
CREST OF DAM WALL T.O.W.=1463.300	TOP OF WATER	300
4.15	=1462.500 T.O.C.=1462	
250mm THK CONCRETE	**************************************	250
CLASS 35/19 REINFORCED	SECTION B	50mm GRADE 15MPa/19mm BLINDING LAYER

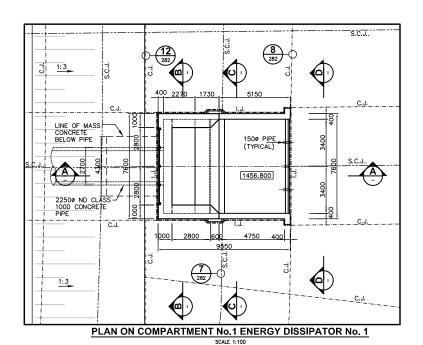

COORDINATE LIST									
	PLANT GRI	D							
POINT	N-COORD	E-COORD							
CONST:									
- 1	ASH DUMP DIRT	Y DAM							
SPILLWAY No. 1									
SW01	10208.218	7450.143							

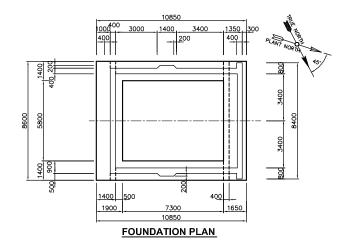

REFER TO DRG. No. K30300098/06-280 FOR CONCRETE NOTES

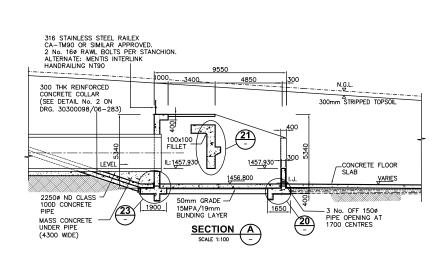
_	_	_	_						_						
	Г														
	Г									\Box					
	Г														
	L														
	L														
┖	1	22/10/10	ISSUED	FOR BID			a.	RD .	au			ACCO SPILLERY - RENFORCING DETAIL			
	1	15/10/10	REVISE	AS PER NS CORRO		KV	R0	**		782°288					
	۰	08/09/10	ISSUED	FOR COMMENT AND			GM/KV	RD .	æ		%2-356	ADDD GENERA	NT		
D.O.	REV	DATE	INDEX 6	** REVISION REFERENCE :		REV CHKD AUTH KKS REFERENCE DRAWINGS									
00	RC ISTR		inutX	FOR ESKIN BY:	DATE	L	/110	211.1	- 1	ח	WED	CT	ATI/	M	
		08/06/10	JRW	MOM	22/10/10	ľ	KUSILE POWER STATION ASH DUMP DIRTY DAM								
к	APP AUTH O			İ				Α.	SP	PILLW	AY N	o. 1	M		
-		08/06/10	D00		AUTH TANTO			G.A.			YPICAL		AILS		
Q		18/08/10	RD	PANEL B CC JOINT VI	Τ.			/70	700	0098	/00	00E	REV		
ľ	WN	02/07/10	κv	Knight I	Tesold OLTING	ייט	. r	10.	\ 30	300	יספטנ	/ UB-	·260	2	
Ë	_	<u> </u>	l	AN C.	أحصممأ			- /-					SHEET	REV	
30	N.E	ı		⊤@ Eskom			0.9	1/2	. 5.31	n 7			A0	2	

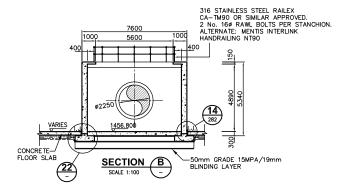


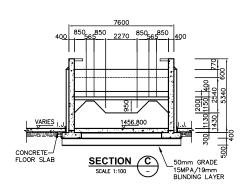

DETAIL 3 SCALE 1:10 -

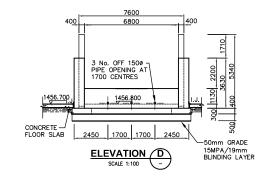


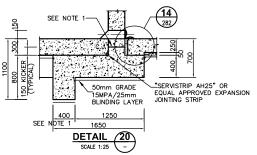


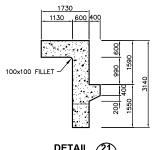

DETAIL 4 SCALE 1: 2.5 © ASH DUMP DIRTY DAM WALL

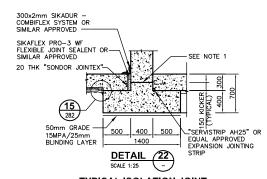

(COORDINATE	LIST							
PLANT GRID									
POINT	N-COORD	E-COORD							
CONST:									
	ASH DUMP DIRT	Y DAM							
SPILLWAY No. 2									
SW02	10145.929	7310.541							

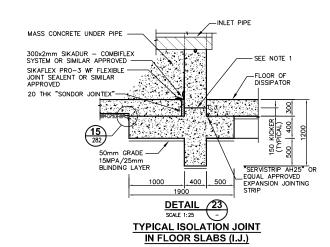




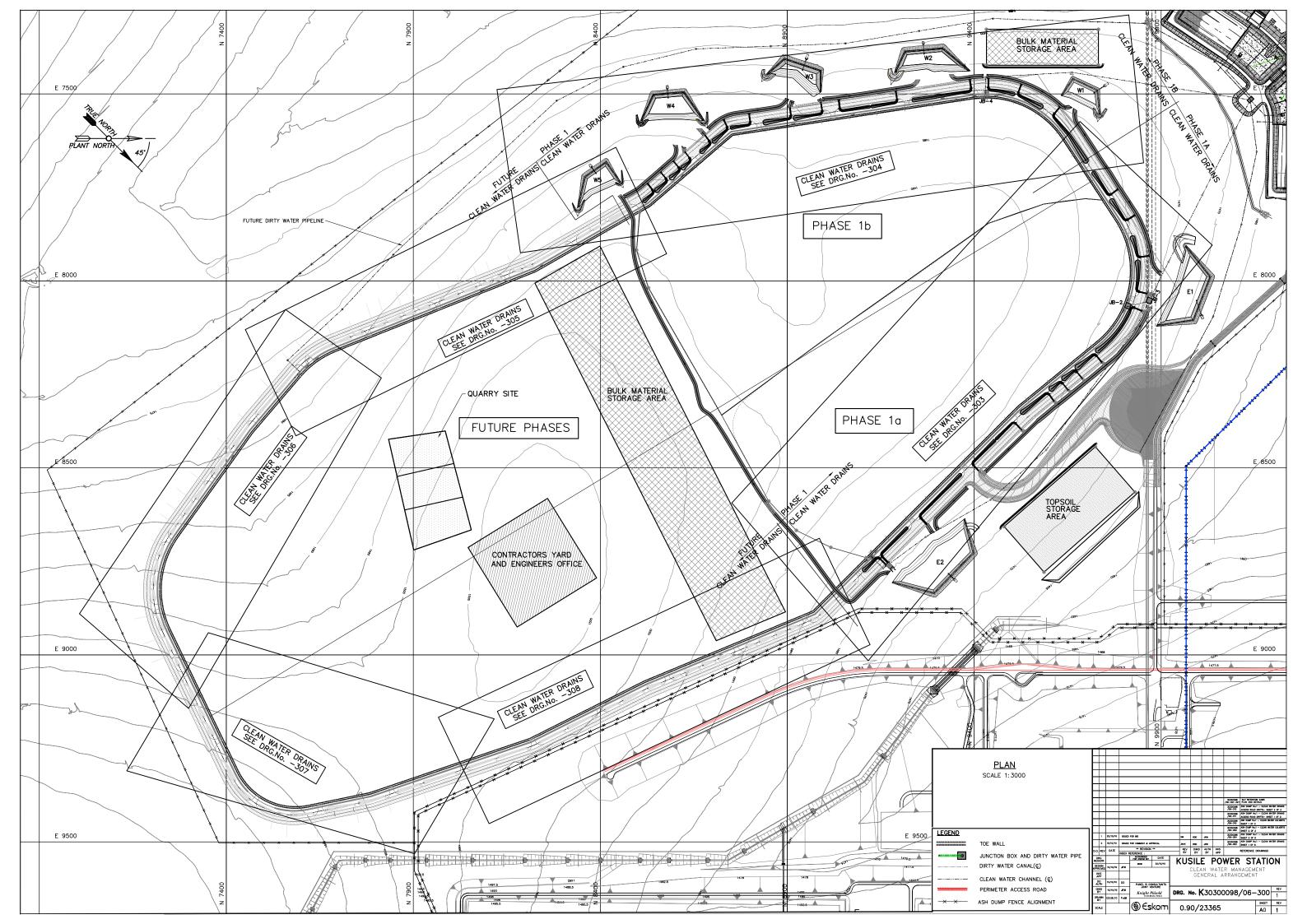


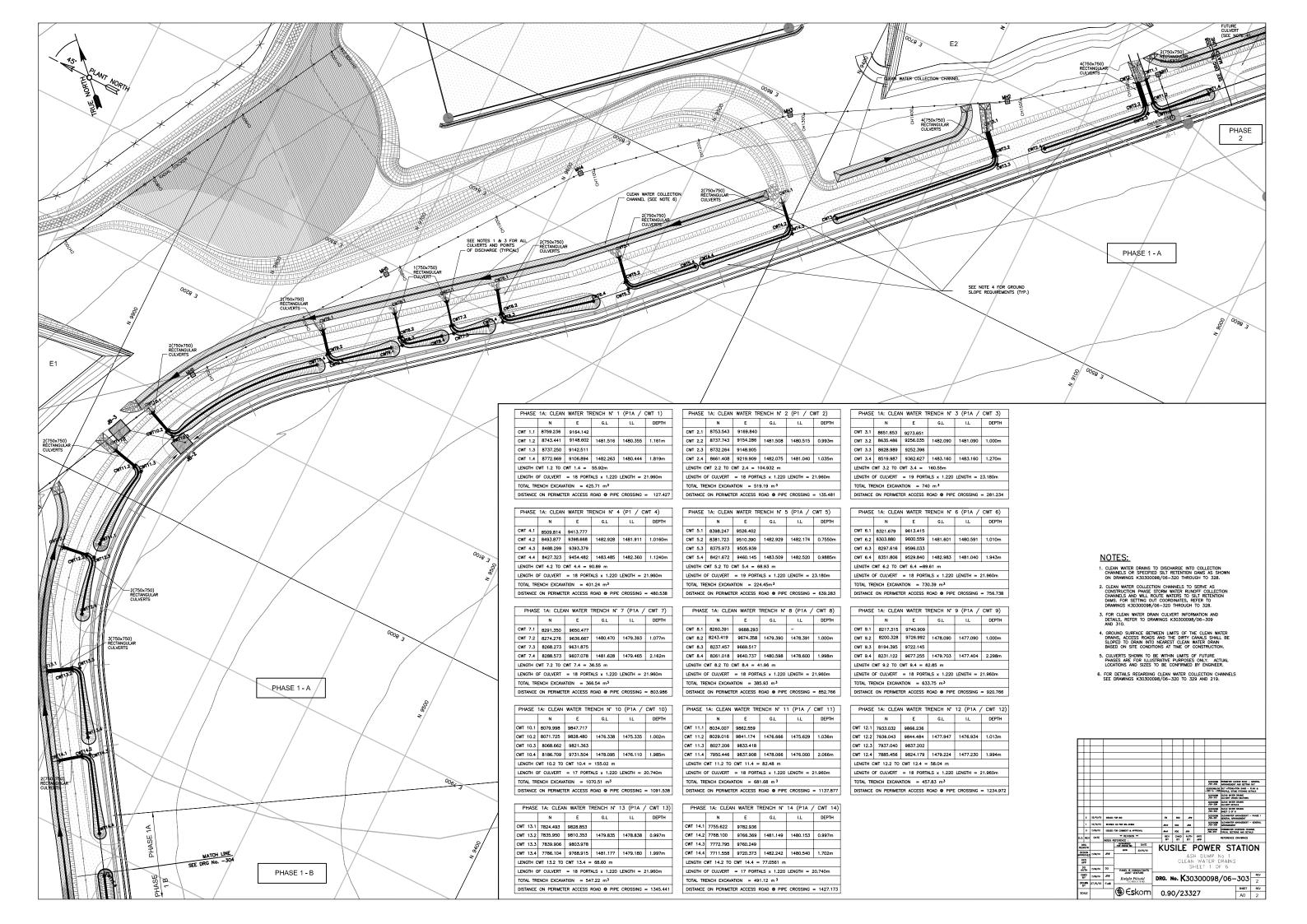




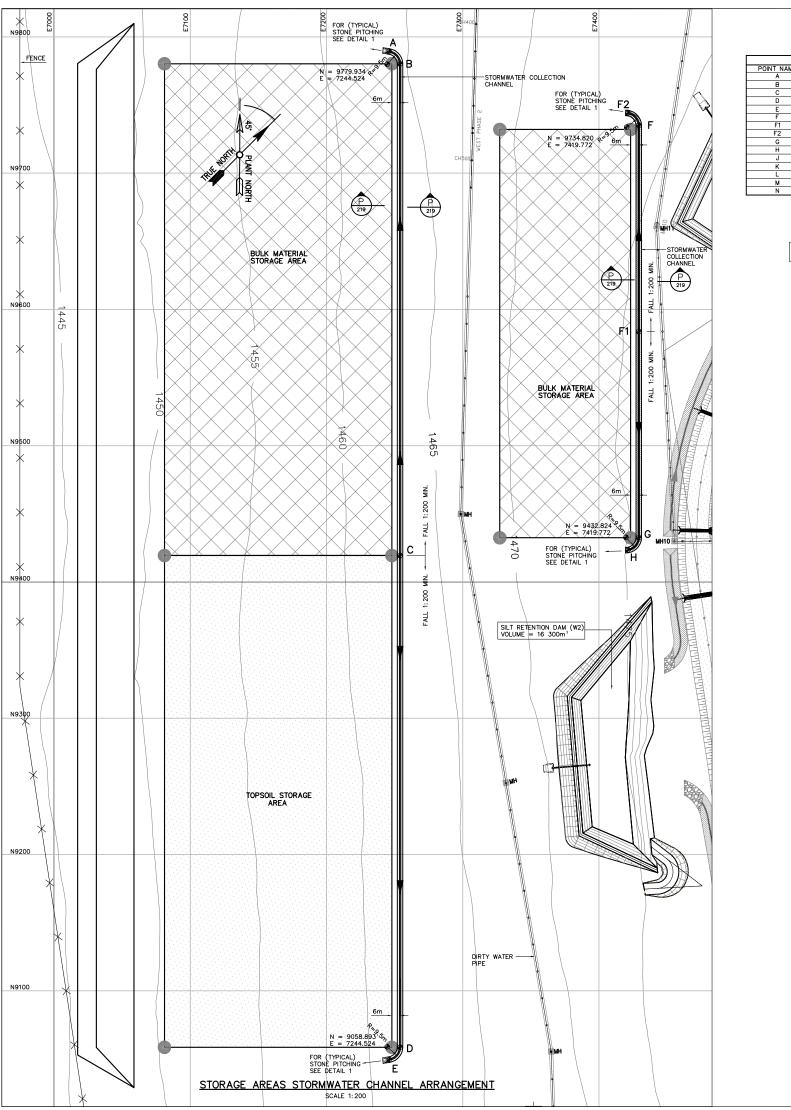

TYPICAL ISOLATION JOINT IN FLOOR SLABS (I.J.)

DETAIL 21 SCALE 1:50 -

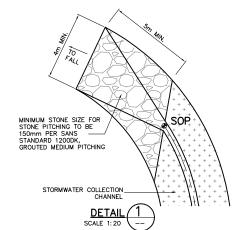

TYPICAL ISOLATION JOINT IN FLOOR SLABS (I.J.)



NOTE:
1. CONSTRUCTION JOINT SURFACES TO BE SCABBLED AND CLEANED BEFORE NEXT LIFT IS CAST.


REFER TO DRG. No. K30300098/06-280 FOR CONCRETE NOTES

П														
Г														
П	Г													
	Г													
Т														
Т	Г													
Г	2	22/10/10	ISSUED	FOR BID			2	JRW	.81		30300098/ 05-250	DRTY WATER	R PIPES - SHE	ET 1
	1	15/10/10	REVISED	AS PER MS 01890	AND NP CHANGE	ES	KV	JRW	æ		30300098/ 06-292	ENERGY DISS	SPATOR 1 -RE	ONF. DETAILS
	۰	08/09/10	ISSUED I	FOR COMMENT AND	APPROVAL		KV	RE	æ		30300098/ 08-280	ASH DUMP (DIRTY DAN - 1	iA.
0.0.	REV	DATE		# REVISION			REV	CHIKD	AUTH	APP		REFERENCE	DRAWNGS	
_	RG	_	INDEX F	EFERENCE :	DATE	_								
	ISTR			FOR ESHOW BY:	22/10/10	l k	(US	SIL	ΕI	PO	WER	ST	`ATI()N
DE	SIGN NOVED	18/08/10	æ		22/10/10	١.			_	_	P DIR			• • •
K	KS PP			i		co	MPAR	TMEN	IT N	D.1	ENERG	Y DISS	PATOR	No.1
-	0	18/06/10	no								IGEMEI			
	JTH MCD	10/00/10	30	PANEL B COI	ISULTANTS INTURE	⊢								REV
ů			RE	Knight I	Piésold	DR	IG. I	10. k	(30	300	0098	/06-	-287	2
DR	AMN	28/06/10	KV	CON	SULTING	_					,		_	_
-	ALE	1:1		(₹)€s	kom	١,	٠ مر)/2	Z Z (10			SHEET	REV
Ĺ				Z	NOTH.		J.9C	<i>,,</i> 2	550	<i>,</i> =			A0	2


PHASE 1B: CLEAN WATER TRENCH N° 15 (P1B / CWT 15) PHASE 1B: CLEAN WATER TRENCH N° 16 (P1B / CWT 16	PHASE 1B: CLEAN WATER TRENCH N° 17 (P1B / CWT 17)
N E G.L I.L DEPTH N E G.L I.L DEPTH	N E G.L I.L DEPTH
CWT 15.1 7536.128 9628.044 CWT 16.1 7474.925 9525.677	CWT 17.1 7459.679 9437.953 PHASES
CWT 15.2 7552.106 9614.820 1480.505 1479.503 1.002m CWT 16.2 7495.481 9517.951 1478.655 1477.660 0.995m CWT 15.3 7558.431 9609.564 CWT 15.3 7558.431 9609.564	CWT 17.2 7481.636 9437.572 1478.132 1477.097 1.036m
CWT 15.4 7678.641 9699.123 1482.314 1480.285 2.029m CWT 16.4 7533.121 9577.595 1480.138 1478.030 2.108m	
LENGTH CWT 15.2 TO CWT 15.4 = 156.54m LENGTH CWT 16.2 TO CWT 16.4 = 73.94 m	LENGTH CWT 17.2 TO CWT 17.4 = 72.64 m
LENGTH OF CULVERT = 17 PORTALS x 1.220 LENGTH = 20.740m TOTAL TRENCH EXCAVATION = 1561.18 m ³ LENGTH OF CULVERT = 18 PORTALS x 1.220 LENGTH = 21.960m TOTAL TRENCH EXCAVATION = 695.12 m ³	LENGTH OF CULVERT = 18 PORTALS x 1.220 LENGTH = 21.960m TOTAL TRENCH EXCAVATION = 434.9184 m ³
DISTANCE ON PERIMETER ACCESS ROAD • PIPE CROSSING = 1693.439	DISTANCE ON PERIMETER ACCESS ROAD © PIPE CROSSING = 1895.516
PHASE 1B: CLEAN WATER TRENCH N° 18 (1B / CWT 18) PHASE 1B: CLEAN WATER TRENCH N° 19 (P1B / CWT 1	9) PHASE 1B: CLEAN WATER TRENCH N° 20 (P1B / CWT 20)
N E G.L I.L DEPTH N E G.L I.L DEPTH	
CWT 18.1 7462.895 9388.126 CWT 19.1 7493.127 9190.258	CWT 20.1 7516,842 9037,746
CWT 18.2 7484.607 9391.419 1478.295 1477.282 1.0120m CWT 19.2 7514.865 9193.376 1479.558 1478.556 1.002m CWT 18.3 7492.194 9392.597 CWT 19.3 7522.350 9194.468	CWT 20.3 7545 690 9041 057
CWT 18.4 7515.800 9237.499 1479.556 1478.090 1.466m CWT 19.4 7532.573 9127.296 1480.147 1478.920 1.227m	
LENGTH CWT 18.2 TO CWT 18.4 =161.431 m LENGTH CWT 19.2 TO CWT 19.4 = 72.573 m	LENGTH CWT 20.2 TO CWT 20.4 = 82.937 m
LENGTH OF CULVERT = 18 PORTALS x 1.220 LENGTH = 21.960m TOTAL TRENCH EXCAVATION = 1020.08 m ³ TOTAL TRENCH EXCAVATION = 353.06 m ³	LENGTH OF CULVERT = 18 PORTALS x 1.220 LENGTH = 21.960m TOTAL TRENCH EXCAVATION = 352.30 m ³
DISTANCE ON PERIMETER ACCESS ROAD © PIPE CROSSING = 1945.795 DISTANCE ON PERIMETER ACCESS ROAD © PIPE CROSSING = 2143.79	
	//CHI27.3.(C) CULVERT
PHASE 1B: CLEAN WATER TRENCH N° 21 (P1B / CWT 21)	
CWT 21.1 7522.298 8989.747 CWT 22.1 7536.131 8906.943	CWT 23.1 7553.945 8798.008
CWT 21.2 7545.216 8993.224 1479.223 1478.227 0.996m CWT 22.2 7557.911 8909.747 1480.836 1479.837 0.999m	CWT 23.2 7574.484 8800.886 1482.543 1481.543 1.000m
CWT 21.3 7552.802 8994.390 CWT 21.4 7563.736 8922.554 1480.612 1478.610 2.002m CWT 22.4 7575.702 8841.231 1482.278 1480.210 2.068m	CWT 23.3 7592.084 8802.001 17550.7590 RECIANGULAR CULVERT CULV
LENGTH CWT 21.2 TO CWT 21.4 =77.224 m LENGTH CWT 22.2 TO CWT 22.4 = 74.674 m	LENGTH CWT 23.2 TO CWT 23.4 = 55.628 m
LENGTH OF CULVERT = 19 PORTALS x 1.220 LENGTH = 23.180m LENGTH OF CULVERT = 18 PORTALS x 1.220 LENGTH = 21.960m	LENGTH OF CULVERT = 17 PORTALS x 1.220 LENGTH = 20.740m (1/50x750) RECTANOULAR
TOTAL TRENCH EXCAVATION = 450.48 m ³ DISTANCE ON PERIMETER ACCESS ROAD © PIPE CROSSING = 2430.43 DISTANCE ON PERIMETER ACCESS ROAD © PIPE CROSSING = 2430.43	TOTAL TRENOT EXCHANGE
PHASE 1B: CLEAN WATER TRENCH N° 24 (P1B / CWT 24)	I DETAIL OF THE CONTROL OF THE CONTR
N E G.L I.L DEPTH N E G.L I.L DEPTH CWT 24.1 7569.975 8730.280 CWT 25.1 7609.393 8679.326	CWT 26.1 7654.945 8626.304
CWT 24.2 7588.648 8739.276 1483.187 1482.249 0.938m CWT 25.2 7626.145 8691.553 1484.591 1483.586 1.005m	
CWT 24.3 7593.338 8741.597 CWT 24.4 7624.982 8704.766 1484.505 1482.510 1.999m CWT 25.3 7632.427 8696.099 CWT 25.4 7653.201 8671.920 1485.616 1483.770 1.846m	CWT 26.3 7677.541 8643.591 CWT 26.4 7696.233 8621.834 1487.859 1485.860 1.999m
LENGTH CWT 24.2 TO CWT 24.4 =52.270 m LENGTH CWT 25.2 TO CWT 25.4 = 37.062 m	LENGTH CWT 26.2 TO CWT 26.4 = 33.6901 m
LENGTH OF CULVERT = 17 PORTALS x 1.220 LENGTH = 20.740m LENGTH OF CULVERT = 17 PORTALS x 1.220 LENGTH = 20.740m	LENGTH OF CULVERT = 17 PORTALS x 1,220 LENGTH = 20,740m
TOTAL TRENCH EXCAVATION = 390.40 m ³ DISTANCE ON PERIMETER ACCESS ROAD © PIPE CROSSING = 2607.245 TOTAL TRENCH EXCAVATION = 264.30 m ³ DISTANCE ON PERIMETER ACCESS ROAD © PIPE CROSSING = 2669.9	TOTAL TRENCH EXCAVATION = 263.50 m ³ DISTANCE ON PERIMETER ACCESS ROAD © PIPE CROSSING = 2739.561
PHASE 1B: CLEAN WATER TRENCH N° 27 (P1B / CWT 27) PHASE 1B: CLEAN WATER TRENCH N° 28 (P1B / CWT 27)	
N E G.L I.L DEPTH N E G.L I.L DEPTH	N E G.L I.L DEPTH CWT 29.1 7740,289 8526,934 W123.2 CULVERT
CWT 27.2 7696.438 8609.811 1488.016 1487.010 1.006m CWT 28.2 7725.942 8575.468 1489.582 1488.594 0.989m	
CWT 27.3 7702.253 8614.827 CWT 28.3 7731.829 8580.403	CWT 29.3 7762.792 8544.365 2(750.750) RECTANGULAR CULERT
CWT 27.3 7702.253 8614.827 CWT 27.4 7722.602 8591.143 1489.334 1487.188 2.147m CWT 28.3 7731.829 8580.403 CWT 27.4 7722.602 8591.143 1489.334 1487.188 2.147m LENGTH CWT 27.2 TO CWT 27.4 = 35.790 m LENGTH CWT 28.2 TO CWT 28.4 = 43.216 m	CM1 29.3 1762.792 8544.365
CWT 27.4 7722.602 8591.143 1489.334 1487.188 2.147m	CMT 22-4 7785.189 8518.297 1491.571 1489.950 1.621m LENGTH CWT 22-2 TO CWT 29-4 = 39.328 m LENGTH OF CULVERT = 17 PORTALS x 1.220 LENGTH = 20.740m
CWT 27.4 7722.602 8591.143 1489.334 1487.188 2.147m LENGTH CWT 27.2 TO CWT 27.4 = 35.790 m LENGTH OF CULVERT = 17 PORTALS x 1.220 LENGTH = 20.740m TOTAL TRENCH EXCAVATION = 328.88 m ³ CWT 28.4 7756.949 8551.166 1490.806 1488.810 1.996m LENGTH CWT 28.2 TO CWT 28.4 = 43.216 m LENGTH OF CULVERT = 17 PORTALS x 1.220 LENGTH = 20.740m TOTAL TRENCH EXCAVATION = 349.55 m ³	CWI 29.4 7762.792 8054-3053 CWI 29.4 7765.189 8518.297 1491.571 1489.950 1.621m LENGTH CWI 29.2 TO CWI 29.4 = 39.328 m LENGTH OF CULVERT = 17 PORTALS x 1.220 LENGTH = 20.740m TOTAL TRENCH EXCAVATION = 239.80 m ³
CWT 27.4 7722.602 8591.143 1489.334 1487.188 2.147m	CMT 29.4 7785.189 8518.297 1491.571 1489.950 1.621m LENGTH CWT 29.2 TO CWT 29.4 = 39.328 m LENGTH OF CULVERT = 17 PORTALS x 1.220 LENGTH = 20.740m TOTAL TRENCH EXCAVATION = 239.60 m ³ DISTANCE ON PERIMETER ACCESS ROAD ® PIPE CROSSING = 2870.493
CWT 27.4 7722.602 8591.143 1489.334 1487.188 2.147m LENGTH CWT 27.2 TO CWT 27.4 = 35.790 m LENGTH OF CULVERT = 17 PORTALS x 1.220 LENGTH = 20.740m TOTAL TRENCH EXCAVATION = 328.88 m ³ CWT 28.4 7756.949 8551.166 1490.806 1488.810 1.996m LENGTH CWT 28.2 TO CWT 28.4 = 43.216 m LENGTH OF CULVERT = 17 PORTALS x 1.220 LENGTH = 20.740m TOTAL TRENCH EXCAVATION = 349.55 m ³	CMT 29.4 7785.189 8518.297 1491.571 1489.950 1.621m
CWT 27.4 7722.602 8591.143 1489.334 1487.188 2.147m LENGTH CWT 27.2 TO CWT 27.4 = 35.790 m LENGTH OF CULVERT = 17 PORTALS x 1.220 LENGTH = 20.740m TOTAL TRENCH EXCAVATION = 328.88 m ³ CWT 28.4 7756.949 8551.166 1490.806 1488.810 1.996m LENGTH CWT 28.2 TO CWT 28.4 = 43.216 m LENGTH OF CULVERT = 17 PORTALS x 1.220 LENGTH = 20.740m TOTAL TRENCH EXCAVATION = 349.55 m ³	CMT 29.4 7785.189 8518.297 1491.571 1489.950 1.621m LENGTH CWT 29.2 TO CWT 29.4 = 39.328 m LENGTH OF CULVERT = 17 PORTALS x 1.220 LENGTH = 20.740m TOTAL TRENCH EXCAVATION = 239.80 m ³ DISTANCE ON PERIMETER ACCESS ROAD © PIPE CROSSING = 2870.493
CWT 27.4 7722.602 8591.143 1489.334 1487.188 2.147m LENGTH CWT 27.2 TO CWT 27.4 = 35.790 m LENGTH OF CULVERT = 17 PORTALS x 1.220 LENGTH = 20.740m TOTAL TRENCH EXCAVATION = 328.88 m³ DISTANCE ON PERIMETER ACCESS ROAD © PIPE CROSSING = 2778.485 CWT 28.4 7756.949 8551.166 1490.806 1488.810 1.996m LENGTH OF CULVERT = 17 PORTALS x 1.220 LENGTH = 20.740m TOTAL TRENCH EXCAVATION = 349.55 m³ DISTANCE ON PERIMETER ACCESS ROAD © PIPE CROSSING = 2778.485	CMT 29.4 7785.189 8518.297 1491.571 1489.950 1.621m LENGTH CWT 29.2 TO CWT 29.4 = 39.328 m LENGTH OF CULVERT = 17 PORTALS x 1.220 LENGTH = 20.740m TOTAL TRENCH EXCAVATION = 239.60 m ³ DISTANCE ON PERIMETER ACCESS ROAD @ PIPE CROSSING = 2870.493
CWT 27.4 7722.602 8591.143 1489.334 1487.188 2.147m LENGTH CWT 27.2 TO CWT 27.4 = 35.790 m LENGTH OF CULVERT = 17 PORTALS x 1.220 LENGTH = 20.740m TOTAL TRENCH EXCAVATION = 328.88 m³ DISTANCE ON PERIMETER ACCESS ROAD © PIPE CROSSING = 2778.485 CWT 28.4 7756.949 8551.166 1490.806 1488.810 1.996m LENGTH OF CULVERT = 17 PORTALS x 1.220 LENGTH = 20.740m TOTAL TRENCH EXCAVATION = 349.55 m³ DISTANCE ON PERIMETER ACCESS ROAD © PIPE CROSSING = 2778.485	CMT 29.3 7785.198 5518.297 1491.571 1489.950 1.621m LENGTH CWT 29.2 TO CWT 29.4 = 39.328 m LENGTH OF CULVERT = 17 PORTALS x 1.220 LENGTH = 20.740m TOTAL TRENCH EXCANATION = 239.60 m³ DISTANCE ON PERIMETER ACCESS ROAD @ PIPE CROSSING = 2870.493 27/50.750) RECTANGULAR CULVERT RECTANGULAR CULVERT CMT 29.4 7385.198 CMT 29.2 7385.198 CMT 29.2 7385.198 CMT 29.2 7385.198 CMT 29.2 7385.750 RECTANGULAR CULVERTS CMT 29.4 7385.198 CMT 29.2 7385.198 CMT 29.2 7385.750 CMT 29.4 7385.198 CMT 29.2 7385.750 CMT 29.4 7385.198 CMT 29.2 7385.198 CMT 29.2 7385.750 CMT 29.4 7385.198 CMT 29.2 7385.198 CM
CWT 27.4 7722.602 8591.143 1489.334 1487.188 2.147m LENGTH CWT 27.2 TO CWT 27.4 = 35.790 m LENGTH OF CULVERT = 17 PORTALS x 1.220 LENGTH = 20.740m TOTAL TRENCH EXCAVATION = 328.88 m³ DISTANCE ON PERIMETER ACCESS ROAD © PIPE CROSSING = 2778.485 CWT 28.4 7756.949 8551.166 1490.806 1488.810 1.996m LENGTH OF CULVERT = 17 PORTALS x 1.220 LENGTH = 20.740m TOTAL TRENCH EXCAVATION = 349.55 m³ DISTANCE ON PERIMETER ACCESS ROAD © PIPE CROSSING = 2778.485	CWI 23.4 7785.18 894.297 1491.571 1489.950 1.621m LENGTH CWI 29.2 TO CWIT 29.4 = 39.328 m LENGTH CRIT CRIT CRIT CRIT CRIT CRIT CRIT CRIT
CWT 27.4 7722.602 8591.143 1489.334 1487.188 2.147m LENGTH CWT 27.2 TO CWT 27.4 = 35.790 m LENGTH OF CULVERT = 17 PORTALS x 1.220 LENGTH = 20.740m TOTAL TRENCH EXCAVATION = 328.88 m³ DISTANCE ON PERIMETER ACCESS ROAD © PIPE CROSSING = 2778.485 CWT 28.4 7756.949 8551.166 1490.806 1488.810 1.996m LENGTH OF CULVERT = 17 PORTALS x 1.220 LENGTH = 20.740m TOTAL TRENCH EXCAVATION = 349.55 m³ DISTANCE ON PERIMETER ACCESS ROAD © PIPE CROSSING = 2778.485	CWT 29 4 7785.189 8518.297 1491.571 1489.950 1.621m
CWT 27.4 7722.602 8591.143 1489.334 1487.188 2.147m LENGTH CWT 27.2 TO CWT 27.4 = 35.790 m LENGTH OF CULVERT = 17 PORTALS x 1.220 LENGTH = 20.740m TOTAL TRENCH EXCAVATION = 328.88 m³ DISTANCE ON PERIMETER ACCESS ROAD © PIPE CROSSING = 2778.485 CWT 28.4 7756.949 8551.166 1490.806 1488.810 1.996m LENGTH OF CULVERT = 17 PORTALS x 1.220 LENGTH = 20.740m TOTAL TRENCH EXCAVATION = 349.55 m³ DISTANCE ON PERIMETER ACCESS ROAD © PIPE CROSSING = 2778.485	CMT 23.4 7785.189 5518.237 1491.571 1489.950 1.621m LENGTH CWT 29.2 TO CWT 29.4 = 39.328 m LENGTH CWT 29.2 TO CWT 29.4 = 39.328 m CULVERI = 17 PORTAL \$x 1.220 LENGTH = 20.740m TIDTAL TRENCH EDWARDLESK *1.220 LENGTH = 20.740m TIDTAL TRENCH EDWARDLESK *1.220 LENGTH = 20.740m DISTANCE ON PERMETER ACCESS ROAD @ PIPE CROSSING = 2870.493 DISTANCE ON PERMETER ACCESS ROAD @ PIPE CROSSING = 2870.493 ON TO COLVERS ON TO COL
CWT 27.4 7722.602 8591.143 1489.334 1487.188 2.147m LENGTH CWT 27.2 TO CWT 27.4 = 35.790 m LENGTH OF CULVERT = 17 PORTALS x 1.220 LENGTH = 20.740m TOTAL TRENCH EXCAVATION = 328.88 m³ DISTANCE ON PERIMETER ACCESS ROAD © PIPE CROSSING = 2778.485 CWT 28.4 7756.949 8551.166 1490.806 1488.810 1.996m LENGTH OF CULVERT = 17 PORTALS x 1.220 LENGTH = 20.740m TOTAL TRENCH EXCAVATION = 349.55 m³ DISTANCE ON PERIMETER ACCESS ROAD © PIPE CROSSING = 2778.485	CMT 23.4 7785.189 5518.237 1491.571 1489.950 1.621m LENGTH CWT 29.2 TO CWT 29.4 = 39.328 m LENGTH CWT 29.2 TO CWT 29.4 = 39.328 m CULVERI = 17 PORTAL \$x 1.220 LENGTH = 20.740m TIDTAL TRENCH EDWARDLESK *1.220 LENGTH = 20.740m TIDTAL TRENCH EDWARDLESK *1.220 LENGTH = 20.740m DISTANCE ON PERMETER ACCESS ROAD @ PIPE CROSSING = 2870.493 DISTANCE ON PERMETER ACCESS ROAD @ PIPE CROSSING = 2870.493 ON TO COLVERS ON TO COL
CWT 27.4 7722.602 8591.143 1489.334 1487.188 2.147m LENGTH CWT 27.2 TO CWT 27.4 = 35.790 m LENGTH OF CULVERT = 17 PORTALS x 1.220 LENGTH = 20.740m TOTAL TRENCH EXCAVATION = 328.88 m³ DISTANCE ON PERIMETER ACCESS ROAD © PIPE CROSSING = 2778.485 CWT 28.4 7756.949 8551.166 1490.806 1488.810 1.996m LENGTH OF CULVERT = 17 PORTALS x 1.220 LENGTH = 20.740m TOTAL TRENCH EXCAVATION = 349.55 m³ DISTANCE ON PERIMETER ACCESS ROAD © PIPE CROSSING = 2778.485	CWI 23.4 7785.18 894.297 1491.571 1489.950 1.621m LENGTH CWI 29.2 TO CWIT 29.4 = 39.328 m LENGTH CRIT CRIT CRIT CRIT CRIT CRIT CRIT CRIT
CWT 27.4 7722.602 8591.143 1489.334 1487.188 2.147m LENGTH CWT 27.2 TO CWT 27.4 = 35.790 m LENGTH OF CULVERT = 17 PORTALS x 1.220 LENGTH = 20.740m TOTAL TRENCH EXCAVATION = 328.88 m³ DISTANCE ON PERIMETER ACCESS ROAD © PIPE CROSSING = 2778.485 CWT 28.4 7756.949 8551.166 1490.806 1488.810 1.996m LENGTH OF CULVERT = 17 PORTALS x 1.220 LENGTH = 20.740m TOTAL TRENCH EXCAVATION = 349.55 m³ DISTANCE ON PERIMETER ACCESS ROAD © PIPE CROSSING = 2778.485	Miles 1782-1785-189 1814-1771 1499-950 1.621m
CWT 27.4 7722.602 8591.143 1489.334 1487.188 2.147m LENGTH CWT 27.2 TO CWT 27.4 = 35.790 m LENGTH OF CULVERT = 17 PORTALS x 1.220 LENGTH = 20.740m TOTAL TRENCH EXCAVATION = 328.88 m³ DISTANCE ON PERIMETER ACCESS ROAD © PIPE CROSSING = 2778.485 CWT 28.4 7756.949 8551.166 1490.806 1488.810 1.996m LENGTH OF CULVERT = 17 PORTALS x 1.220 LENGTH = 20.740m TOTAL TRENCH EXCAVATION = 349.55 m³ DISTANCE ON PERIMETER ACCESS ROAD © PIPE CROSSING = 2778.485	Contract Traching Seast 1491.571 1489.950 1621 m
CWT 27.4 7722.602 8591.143 1489.334 1487.188 2.147m LENGTH CWT 27.2 TO CWT 27.4 = 35.790 m LENGTH OF CULVERT = 17 PORTALS x 1.220 LENGTH = 20.740m TOTAL TRENCH EXCAVATION = 328.88 m³ DISTANCE ON PERIMETER ACCESS ROAD © PIPE CROSSING = 2778.485 CWT 28.4 7756.949 8551.166 1490.806 1488.810 1.996m LENGTH OF CULVERT = 17 PORTALS x 1.220 LENGTH = 20.740m TOTAL TRENCH EXCAVATION = 349.55 m³ DISTANCE ON PERIMETER ACCESS ROAD © PIPE CROSSING = 2778.485	NOTES:
CWT 27.4 7722.802 8591.143 1489.334 1487.188 2.147m LENGTH CWT 27.2 TO CWT 27.4 = 355.790 m LENGTH CWT 27.2 TO CWT 27.4 = 355.790 m LENGTH CWT 27.2 TO CWT 27.4 = 355.790 m LENGTH CWT 28.4 7756.949 8551.166 1490.800 1488.810 1.996m LENGTH CWT 28.2 TO CWT 28.4 = 43.216 m LENGTH CWT 28.4 TO CWT 28.4 = 43.216 m LENGTH CWT 28.4 TO CWT 28.4 = 43.216 m LENGTH CWT 28.4 TO CWT 28.4 TO CWT 28.4 = 43.216 m LENGTH CWT 28.4 TO CWT	Control Cont
CWT 27.4 7722.802 8591.143 1489.334 1487.188 2.147m LENGTH CWT 27.2 TO CWT 27.4 = 355.790 m LENGTH CWT 27.2 TO CWT 27.4 = 355.790 m LENGTH CWT 27.2 TO CWT 27.4 = 355.790 m LENGTH CWT 28.4 7756.949 8551.166 1490.800 1488.810 1.996m LENGTH CWT 28.2 TO CWT 28.4 = 43.216 m LENGTH CWT 28.4 TO CWT 28.4 = 43.216 m LENGTH CWT 28.4 TO CWT 28.4 = 43.216 m LENGTH CWT 28.4 TO CWT 28.4 TO CWT 28.4 = 43.216 m LENGTH CWT 28.4 TO CWT	NOTES: Control 1/10/2/12 1/10/2/2 1/10/2/2 1/10/2/2 1/10/2/2 1/10/2/2 1/10/2/2 1/10
CWT 27.4 7722.602 8591.143 1489.334 1487.188 2.147m LENGTH CWT 27.2 TO CWT 27.4 = 355.790 m LENGTH CWT 27.2 TO CWT 27.4 = 355.790 m LENGTH CWT 27.2 TO CWT 27.4 = 355.790 m LENGTH CWT 28.4 7756.949 8551.166 1490.808 1488.810 1.996m LENGTH CWT 28.2 TO CWT 28.4 = 43.216 m LENGTH CWT 28.4 TO CWT 28.4 = 43.216 m LENGTH CWT 28.2 TO CWT 28.4 = 43.216 m LENGTH CWT 28.2 TO CWT 28.4 = 43.216 m LENGTH CWT 28.2 TO CWT 28.4 = 43.216 m LENGTH CWT 28.2 TO CWT 28.4 = 43.216 m LENGTH CWT 28.2 TO CWT 28.4 = 43.216 m LENGTH CWT 28.2 TO CWT 28.4 = 43.216 m LENGTH CWT 28.4 TO CWT 28.4 = 43.216 m LENGTH CWT 28.4 TO CWT 28.4 = 43.216 m LENGTH CWT 28.4 TO CWT 28.4 = 43.216 m LENGTH CWT 28.4 TO CWT 28.4 = 43.216 m LENGTH CWT 28.4 TO CWT 28.4 = 43.216 m LENGTH CWT 28.4 TO CWT 28.4 TO CWT 28.4 = 43.216 m LENGTH CWT 28.4 TO CWT 28.4 TO CWT 28.4 = 43.216 m LENGTH CWT 28.4 TO	NOTES: 1705.159 8018.027 1491.027 1
CWT 27.4 7722.602 8591.143 1489.334 1487.188 2.147m LENGTH CWT 27.2 TO CWT 27.4 = 355.790 m LENGTH CWT 27.2 TO CWT 27.4 = 355.790 m LENGTH OF CULVERT = 17 PORTALS x 1.220 LENGTH = 20.740m TOTAL TRENCH EXCAVATION = 328.88 m³ DISTANCE ON PERIMETER ACCESS ROAD • PIPE CROSSING = 2778.485 PHASE 1 - A CWT 28.4 7756.949 8551.166 1490.800 1488.810 1.996m LENGTH CWT 28.2 TO CWT 28.4 = 43.216 m LENGTH OF CULVERT = 17 PORTALS x 1.220 LENGTH = 20.740m TOTAL TRENCH EXCAVATION = 349.55 m³ DISTANCE ON PERIMETER ACCESS ROAD • PIPE CROSSING = 2778.485	Ora 26 765-70 1912-7
CWT 27.4 7722.602 8591.143 1489.334 1487.188 2.147m LENGTH CWT 27.2 TO CWT 27.4 = 355.790 m LENGTH CWT 27.2 TO CWT 27.4 = 355.790 m LENGTH OF CULVERT = 17 PORTALS x 1.220 LENGTH = 20.740m TOTAL TRENCH EXCAVATION = 328.88 m³ DISTANCE ON PERIMETER ACCESS ROAD • PIPE CROSSING = 2778.485 PHASE 1 - A CWT 28.4 7756.949 8551.166 1490.800 1488.810 1.996m LENGTH CWT 28.2 TO CWT 28.4 = 43.216 m LENGTH OF CULVERT = 17 PORTALS x 1.220 LENGTH = 20.740m TOTAL TRENCH EXCAVATION = 349.55 m³ DISTANCE ON PERIMETER ACCESS ROAD • PIPE CROSSING = 2778.485	NOTES: Control 1/2
CWT 27.4 7722.602 8591.143 1489.334 1487.188 2.147m LENGTH CWT 27.2 TO CWT 27.4 = 355.790 m LENGTH CWT 27.2 TO CWT 27.4 = 355.790 m LENGTH CWT 27.2 TO CWT 27.4 = 355.790 m LENGTH CWT 28.4 7756.949 8551.166 1490.800 1488.810 1.996m LENGTH CWT 28.2 TO CWT 28.4 = 43.216 m LENGTH CWT 28.4 TO CWT 28.4 = 43.216 m LENGTH CWT 28.4 TO CWT 28.4 = 43.216 m LENGTH CWT 28.4 TO CWT 28.4 = 43.216 m LENGTH CWT 28.4 TO CWT 28.4 = 43.216 m LENGTH CWT 28.4 TO CWT 28.4 = 43.216 m LENGTH CWT 28.4 TO CWT 28.4 = 43.216 m LENGTH CWT 28.4 TO CWT	## COLUMN 10 (1997) 1998 1
CWT 27.4 7722.602 8591.143 1489.334 1487.188 2.147m LENGTH CWT 27.2 TO CWT 27.4 = 355.790 m LENGTH CWT 27.2 TO CWT 27.4 = 355.790 m LENGTH CWT 28.4 7756.949 8551.166 1490.800 1488.810 1.996m LENGTH CWT 28.2 TO CWT 28.4 = 43.216 m LENGTH CWT 28.4 TO CWT 28.4 = 43.216 m LENGTH CWT 28.4 TO CWT 28.4 = 43.216 m LENGTH CWT 28.4 TO CWT 28.4 TO CWT 28.4 = 43.216 m LENGTH CWT 28.4 TO CWT	## COLUMN 10 (1997) 1998 1
CWT 27.4 7722.602 8591.143 1489.334 1487.188 2.147m LENGTH OF CULVERT = 17 PORTALS x 1.220 LENGTH = 20.740m TOTAL TRENCH EXCAVATION = 328.88 m³ DISTANCE ON PERMETER ACCESS ROAD ● PIPE CROSSING = 2778.485 PHASE 1 - A PHASE 1 - A	## COLUMN 10 (1997) 1998 1
CWT 27.4 7722.602 8591.143 1489.334 1487.188 2.147m LENGTH CWT 27.2 TO CWT 27.4 = 355.790 m LENGTH CWT 27.2 TO CWT 27.4 = 355.790 m LENGTH CWT 27.2 TO CWT 27.4 = 355.790 m LENGTH CWT 28.4 7756.949 8551.166 1490.800 1488.810 1.996m LENGTH CWT 28.2 TO CWT 28.4 = 43.216 m LENGTH CWT 28.4 TO CWT 28.4 = 43.216 m LENGTH CWT 28.4 TO CWT 28.4 = 43.216 m LENGTH CWT 28.4 TO CWT 28.4 = 43.216 m LENGTH CWT 28.4 TO CWT 28.4 = 43.216 m LENGTH CWT 28.4 TO CWT 28.4 = 43.216 m LENGTH CWT 28.4 TO CWT 28.4 = 43.216 m LENGTH CWT 28.4 TO CWT	Second S
CMT 27.4 7722.602 8591.143 1489.334 1487.188 2.147m LENGTH OW 27.2 10 CWT 27.4 = 35.790 m LENGTH OF CULVERT = 17 PORTALS × 1.220 LENGTH = 20.740m TOTAL TRENCH EXCANATION = 328.88 m³ DISTANCE ON PERIMETER ACCESS ROAD • PIPE CROSSING = 2778.485 PHASE 1 - A PHASE 1 - A PHASE 7/8	10 cm 10 c
CMT 27.4 7722.602 8591.143 1489.334 1487.188 2.147m LENGTH OW 27.2 10 CWT 27.4 = 35.790 m LENGTH OF CULVERT = 17 PORTALS × 1.220 LENGTH = 20.740m TOTAL TRENCH EXCANATION = 328.88 m³ DISTANCE ON PERIMETER ACCESS ROAD • PIPE CROSSING = 2778.485 PHASE 1 - A PHASE 1 - A PHASE 7/8	10 10 10 10 10 10 10 10
ONT 27.4 7722.602 8591.143 1489.334 1487.188 2.147m LENCH ONT 27.2 TO CVIT 27.4 -35.790 m LENCH OF CULVERT = 17 PORTALS x 1.220 LENCTH = 20.740m TOTAL TRENCH EXCAVATION = 328.88 m³ DISTANCE ON PERIMETER ACCESS ROAD • PIPE CROSSING = 2778.485 PHASE 1 - A PHASE	NOTES 1990
ONT 27.4 7722.602 8591.143 1489.334 1487.188 2.147m LENGTH ONT 27.2 TO CNT 27.4 = 35.790 m LENGTH ONT 28.2 TO CNT 27.4 = 35.790 m LENGTH ONT 28.2 TO CNT 28.4 = 43.216 m TOTAL TRENCH EXCANATION = 328.88 m ³ DISTANCE ON PERIMETER ACCESS ROAD • PIPE CROSSING = 2778.485 PHASE 1 - A	Company Comp
CMT 27.4 7722.602 8591.143 1489.334 1487.188 2.147m LENCH OF CULVERT = 17 PORTALS x 1.220 LENGTH = 20.740m TOTAL TRENCH EXCAVATION = 328.88 m³ DISTANCE ON PERMETER ACCESS ROAD • PIPE CROSSING = 2778.485 PHASE 1 - A PHASE 1 - A PHASE 1 - A CMT 28.4 7758.849 8551.166 1490.806 1488.810 1.996m LENGTH OF CULVERT = 17 PORTALS x 1.220 LENGTH = 20.740m TOTAL TRENCH EXCAVATION = 349.55 m³ DISTANCE ON PERMETER ACCESS ROAD • PIPE CROSSING = 2778.485 PHASE 1 - A PHASE 1 - A 2(750x750) RECTANDULAR CULVERTS	NOTE
ONT 27.4 7722.802 \$591.143 1459.334 1467.188 2.147m LENGTH OVER 27.2 TO OVER 27.4 = 357.90 m LENGTH OVER 27.2 TO OVER 27.4 = 357.90 m TOTAL TREACH EXCANTION = 328.88 m³ DISTANCE ON PERMETER ACCESS ROAD © PIPE CROSSING = 2778.485 PHASE 1 - A PHASE 1 -	NOTES Company
ONT 27.4 7722.802 8591.143 1489.334 1487.188 2.147m LENCH OUT 27.2 TO CWT 27.4 = 55.790 m LENCH OUT 27.2 TO CWT 27.4 = 55.790 m TOTAL TRENCH EXCANTION = 328.88 m ⁻³ DISTANCE ON PERIMETER ACCESS ROAD • PIPE CROSSING = 2778.485 PHASE 1 - A PHASE 1 - A PHASE 7.6 PHASE 7.7 PHASE 7.6 PHASE 7.7 PHASE 7.6 PHASE 7.6 PHASE 7.6 PHASE 7.7 PHASE 7.6 PHASE 7.6 PHASE 7.7 PHASE 7.6 PHASE 7.7 PHASE 7.6 PHASE 7.7 PHASE 7.6 PHASE 7.7 PHASE 7.6 PHASE 7.6 PHASE 7.7 PHASE 7.6 PHASE 7.7 PHASE 7.6 PHASE 7.7 PHASE	NOTES. 1. Some in the control of th
CMT 27.4 7722.802 8591.143 1489.334 1487.188 2.147m LENCH OF CULVERT = 17 PORTIALS x 1.220 LENGTH = 20.740m TOTAL TREACH EXCANATION = 328.88 m³ DISTANCE ON PERMETER ACCESS ROAD © PIPE CROSSING = 2778.485 PHASE 1 - A PHASE 1	NOTES The property 1
CMT 27.4 7722.802 8591.143 1489.334 1487.188 2.147m LENCH OF CULVERT = 17 PORTIALS x 1.220 LENGTH = 20.740m TOTAL TREACH EXCANATION = 328.88 m³ DISTANCE ON PERMETER ACCESS ROAD © PIPE CROSSING = 2778.485 PHASE 1 - A PHASE 1	State Tricks State Sta
CMT 27.4 7722.802 8591.143 1489.334 1487.188 2.147m LENCH OF CULVERT = 17 PORTIALS x 1.220 LENGTH = 20.740m TOTAL TREACH EXCANATION = 328.88 m³ DISTANCE ON PERMETER ACCESS ROAD © PIPE CROSSING = 2778.485 PHASE 1 - A PHASE 1	SOURCE S

SETT	ING OUT POINT ((SOP) CO-ORDINA	ATES
POINT NAME	N-COORDINATE	E-COORDINATE	Z-COORDINATE
Α	9789.319	7245.996	1462.750
В	9780.270	7254.018	1462.750
С	9419.414	7254.018	1463.500
D	9058.558	7254.018	1461.700
Ε	9049.508	7245.996	1461.700
F	9735.065	7429.266	1474.400
F1	9583.777	7429.265	1464.500
F2	9744.115	7421.244	1474.300
G	9432.488	7429.266	1474.300
Н	9423.439	7421.244	1474.200
J	9726.191	8434.824	1473.600
K	9722.279	8437.030	1473.675
L	9597.985	8545.546	1474.500
М	9473.690	8654.063	1473.675
N	9469.563	8662.511	1473.600

FOR KEYPLAN SEE DRG 30300098/06 301 CLEAN WATER MANAGEMENT PHASE 1 GA AND SETTING OUT

FOR CO-ORDINATES SEE DRG 30300098/06 206 PHASE 1 G.A AND SETTING OUT CO-ORDINATES

MATERIAL SPECIFICATION FOR COMPACTED FILL DAM WALLS

1. EXCAVATED SOILS FROM THE DAM BASIN EXCAVATION MAY GENERALLY BE USED FOR THE COMPACTED FILL IN THE DAM WALLS.

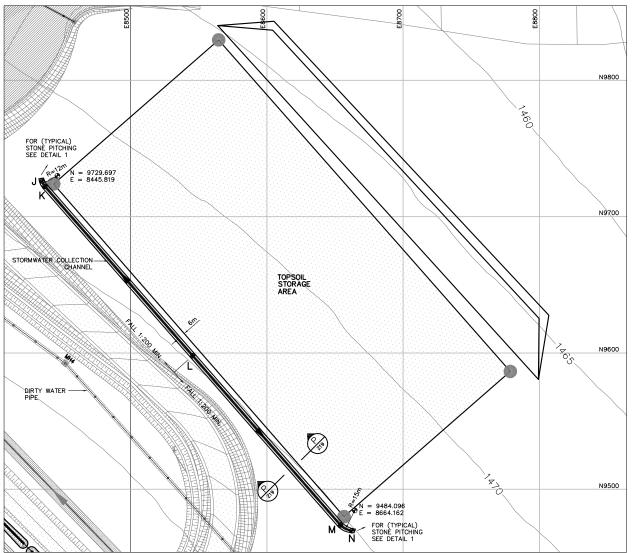
2. EXCAVATION VOLUMES EXCEED FILL VOLUMES, SO FILL MATERIAL TO BE SELECTED FOR QUALITY.

3. THE DAM FOOTPRINT TO BE CLEARED OF VEGETATION.

4. TOPSOIL TO BE REMOVED TO A DEPTH OF 200mm AND PLACED IN THE TOPSOIL STOCKPILE.

5. GENERALLY UP TO 1m OR SO OF UNSUITABLE MATERIAL IN THE EXCAVATION TO BE DISCARDED.

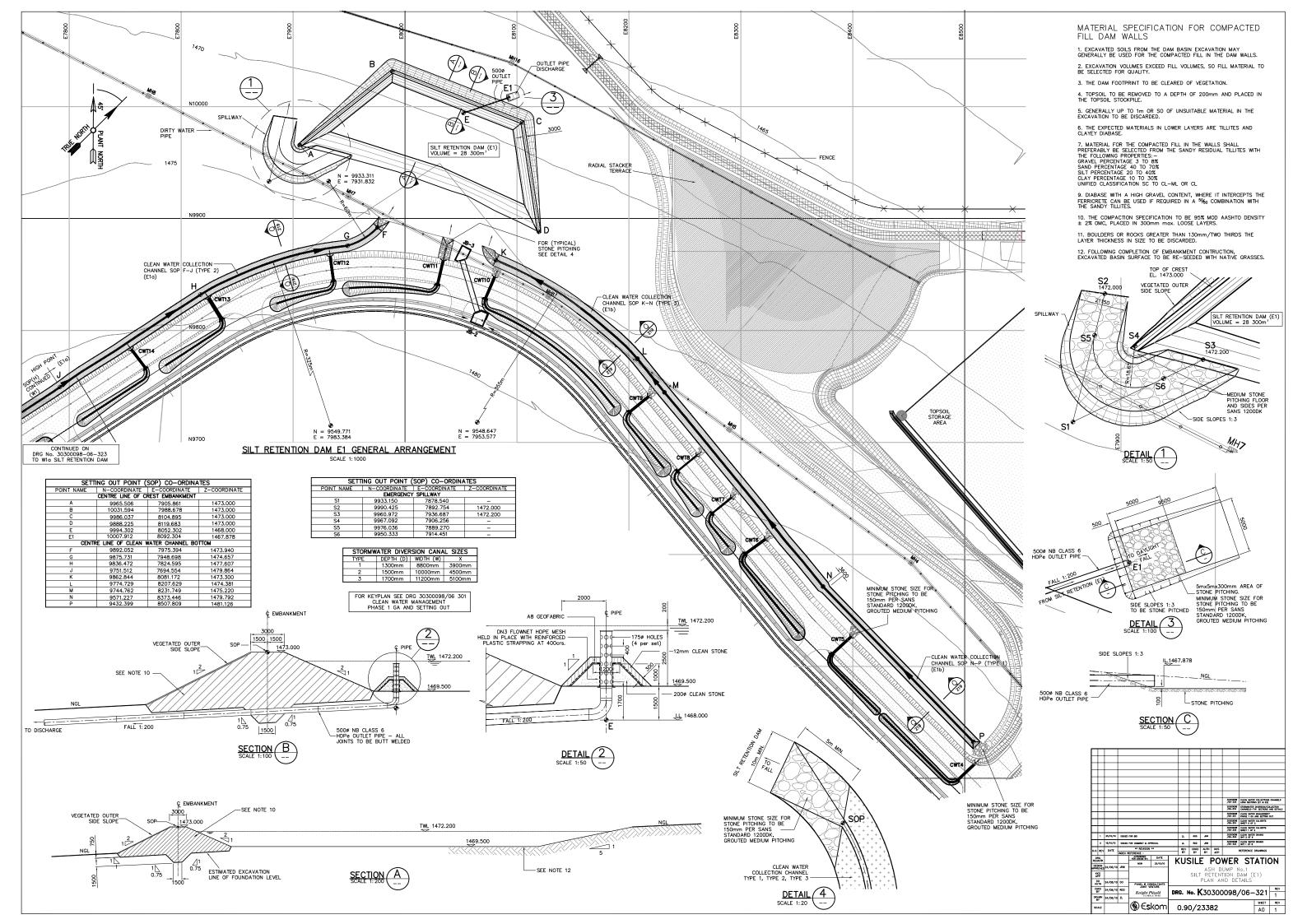
6. THE EXPECTED MATERIALS IN LOWER LAYERS ARE TILLITES AND CLAYEY DIABASE.

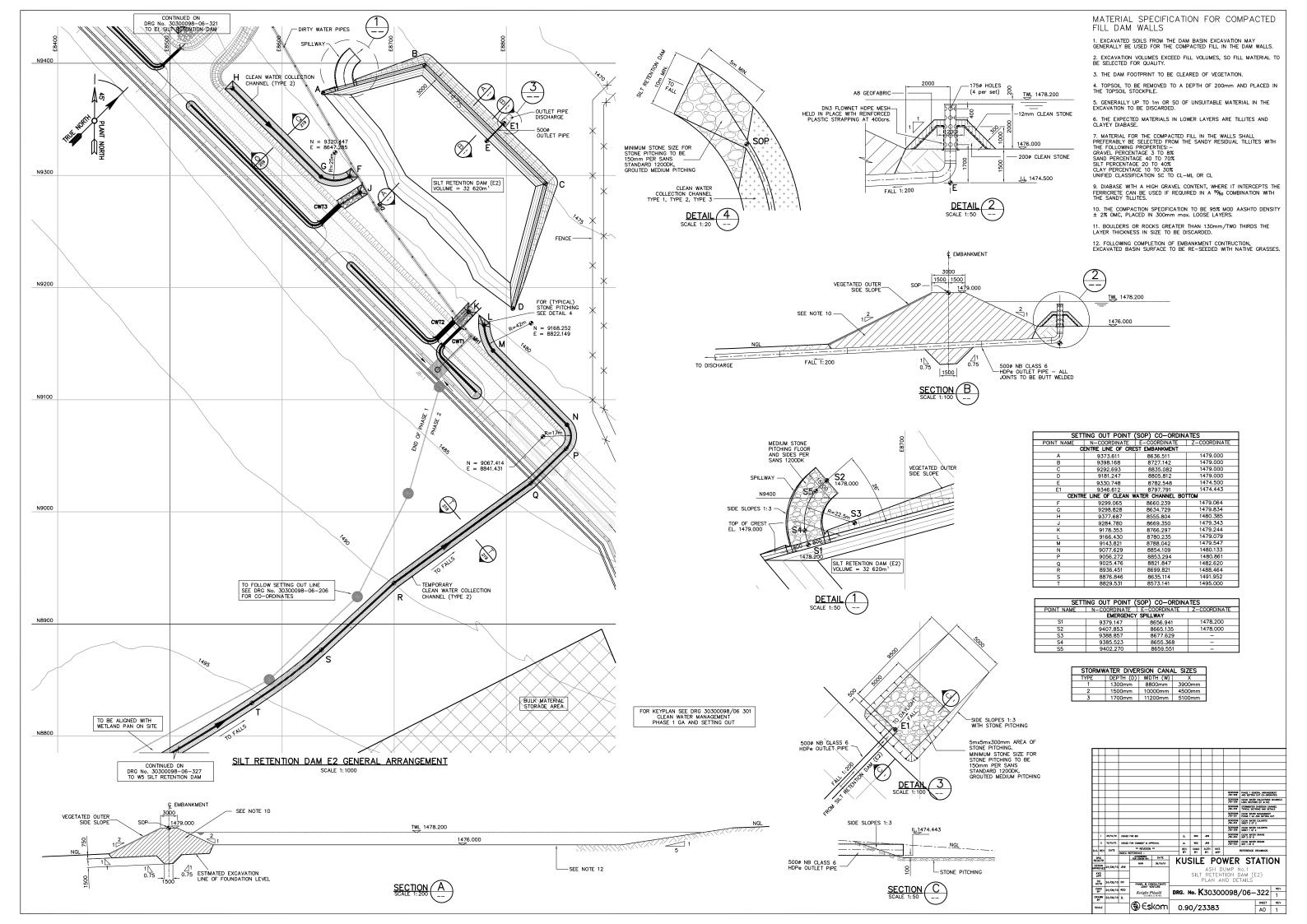

7. MATERIAL FOR THE COMPACTED FILL IN THE WALLS SHALL PREFERABLY BE SELECTED FROM THE SANDY RESIDUAL TILLITES WITH THE FOLLOWING PROPERTIES:—
GRAVEL PERCENTAGE 3 TO 8% SAND PERCENTAGE 40 TO 70% SILT PERCENTAGE 40 TO 40% CLAY PERCENTAGE 10 TO 30% UNIFIED CLASSIFICATION SC TO CL—ML OR CL

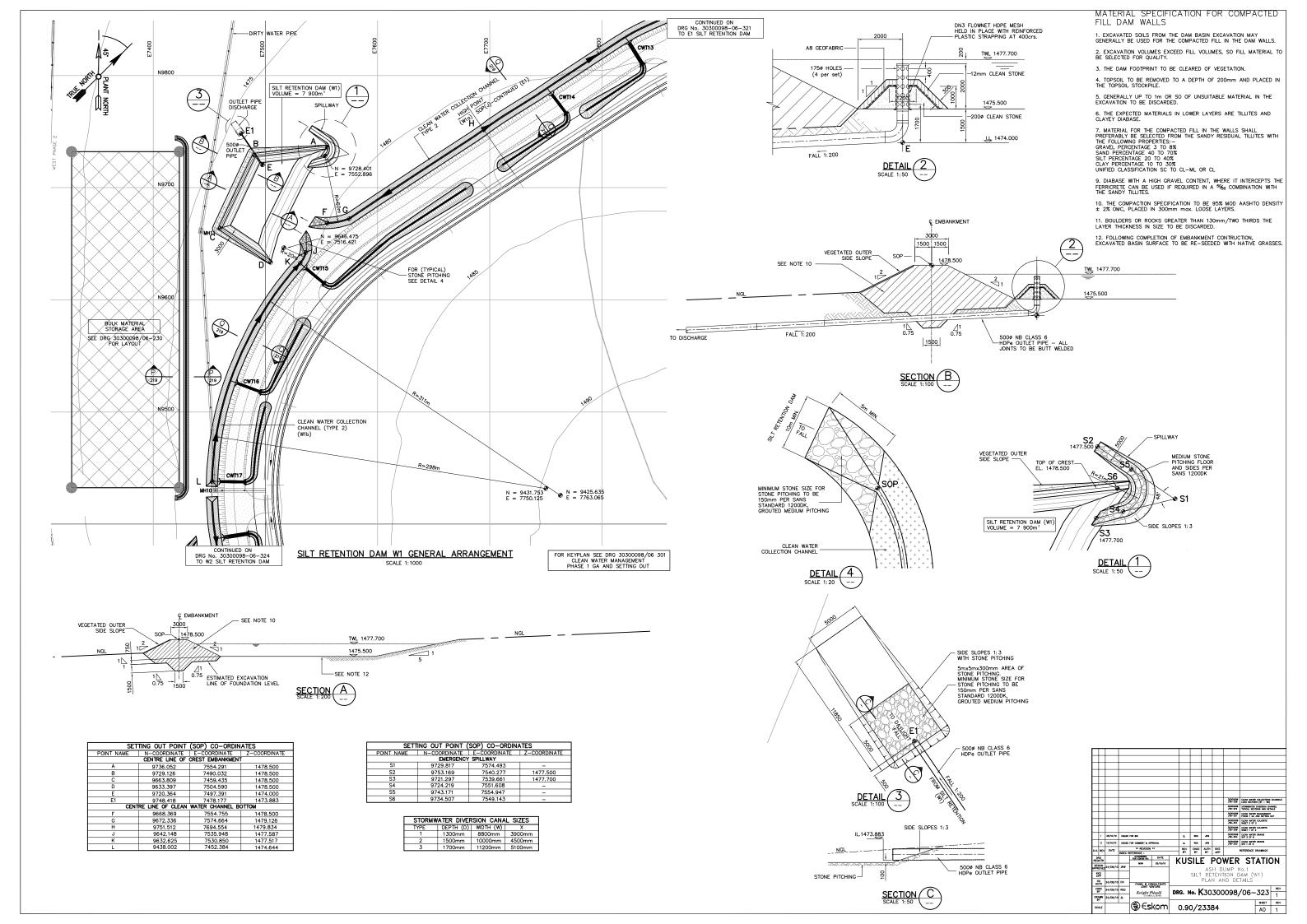
9. DIABASE WITH A HIGH GRAVEL CONTENT, WHERE IT INTERCEPTS THE FERRICRETE CAN BE USED IF REQUIRED IN A $^5\%_{0}$ COMBINATION WITH THE SANDY TILLITES.

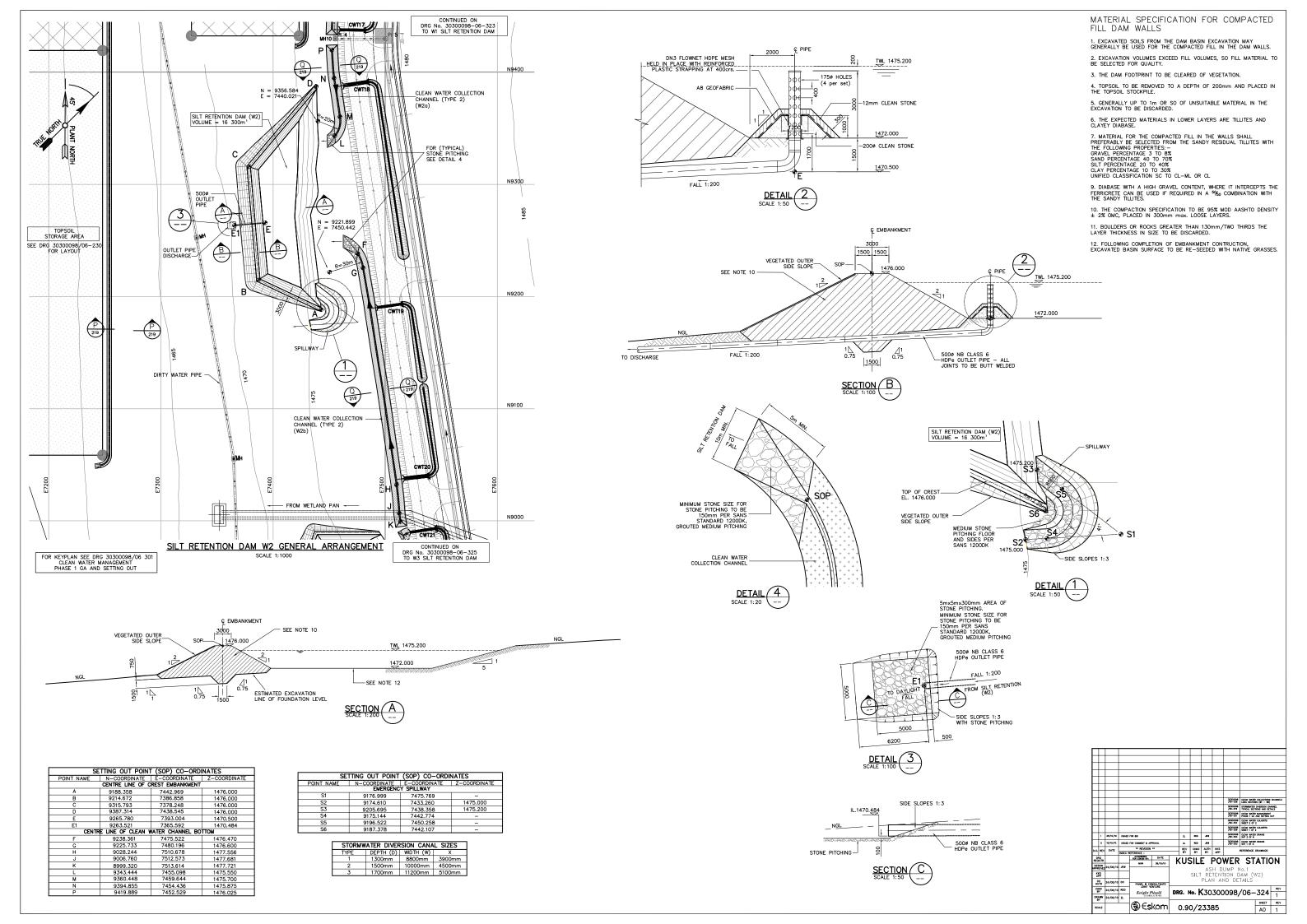
10. THE COMPACTION SPECIFICATION TO BE 95% MOD AASHTO DENSITY \pm 2% OMC, PLACED IN 300mm max. LOOSE LAYERS.

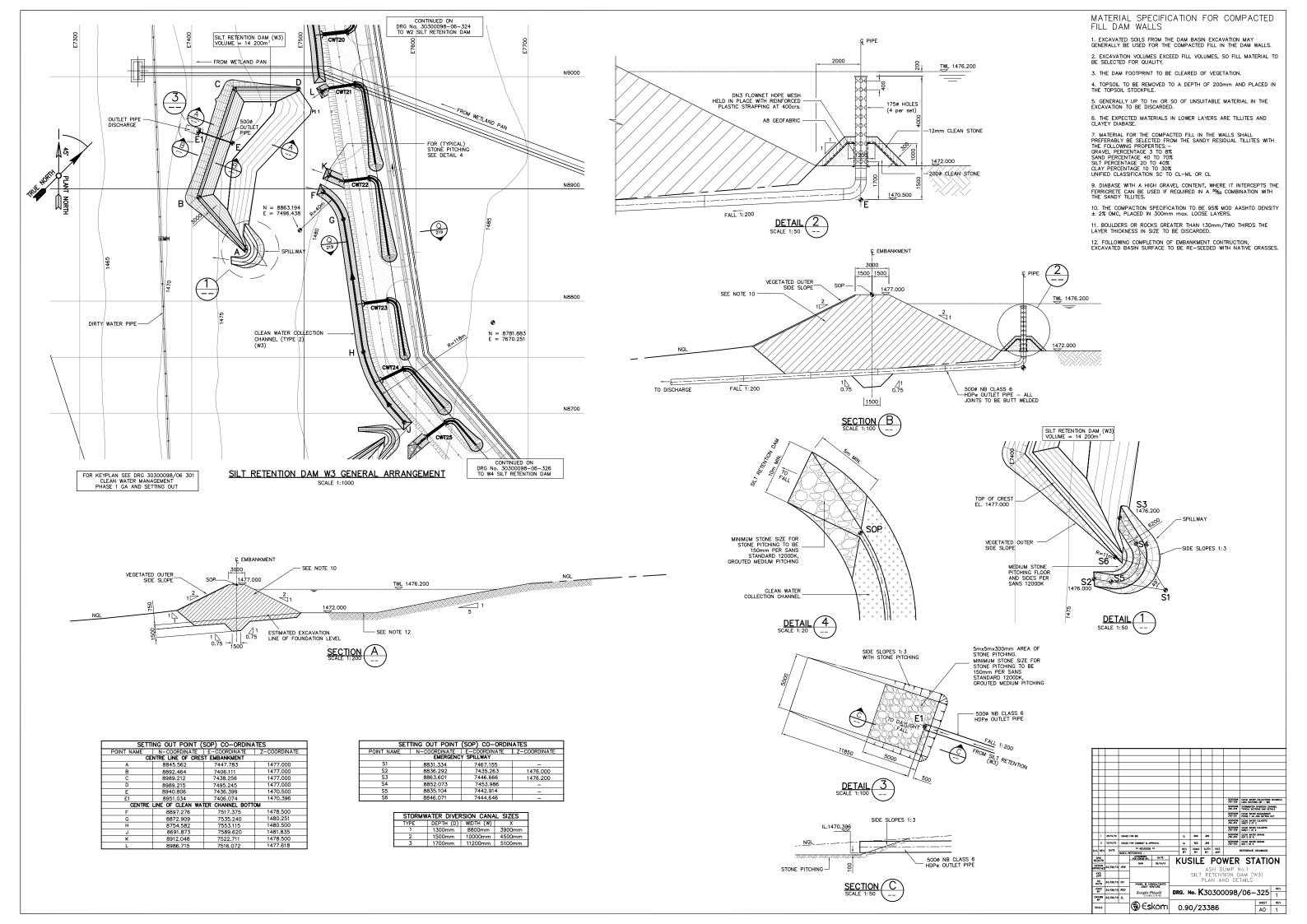
11. BOULDERS OR ROCKS GREATER THAN 130 mm/TWO THIRDS THE LAYER THICKNESS IN SIZE TO BE DISCARDED.

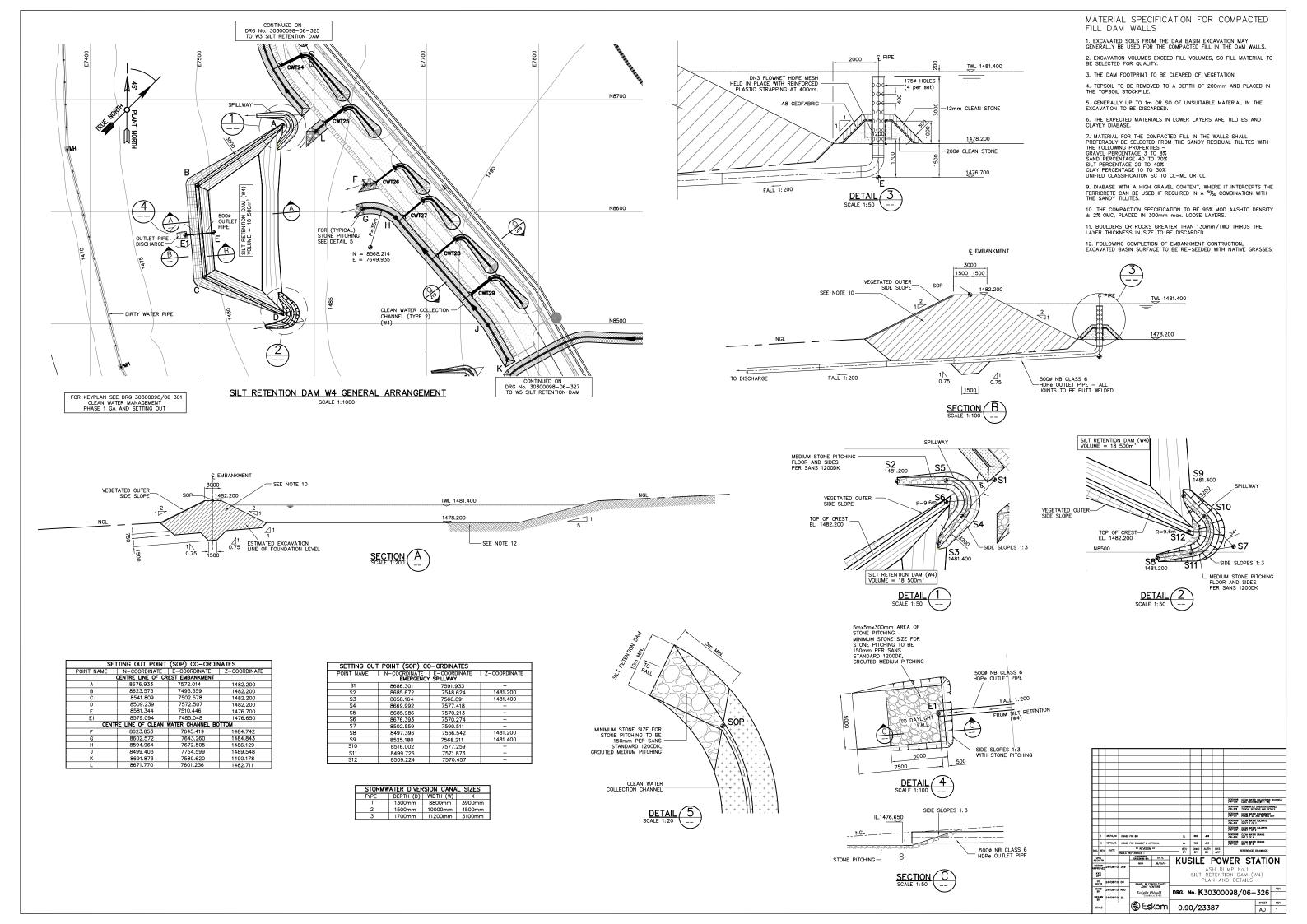

12. FOLLOWING COMPLETION OF EMBANKMENT CONTRUCTION, EXCAVATED BASIN SURFACE TO BE RE-SEEDED WITH NATIVE GRASSES.

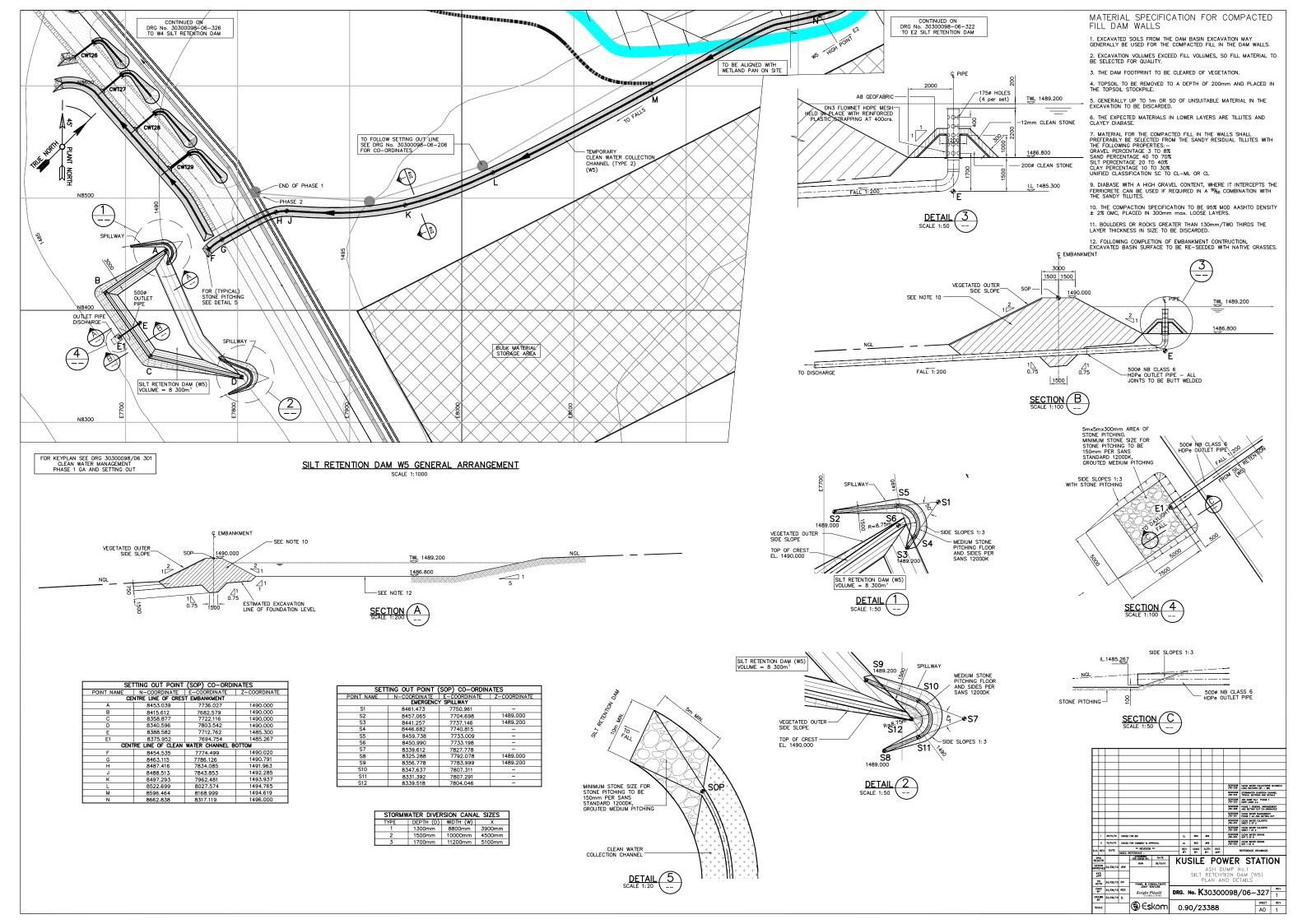


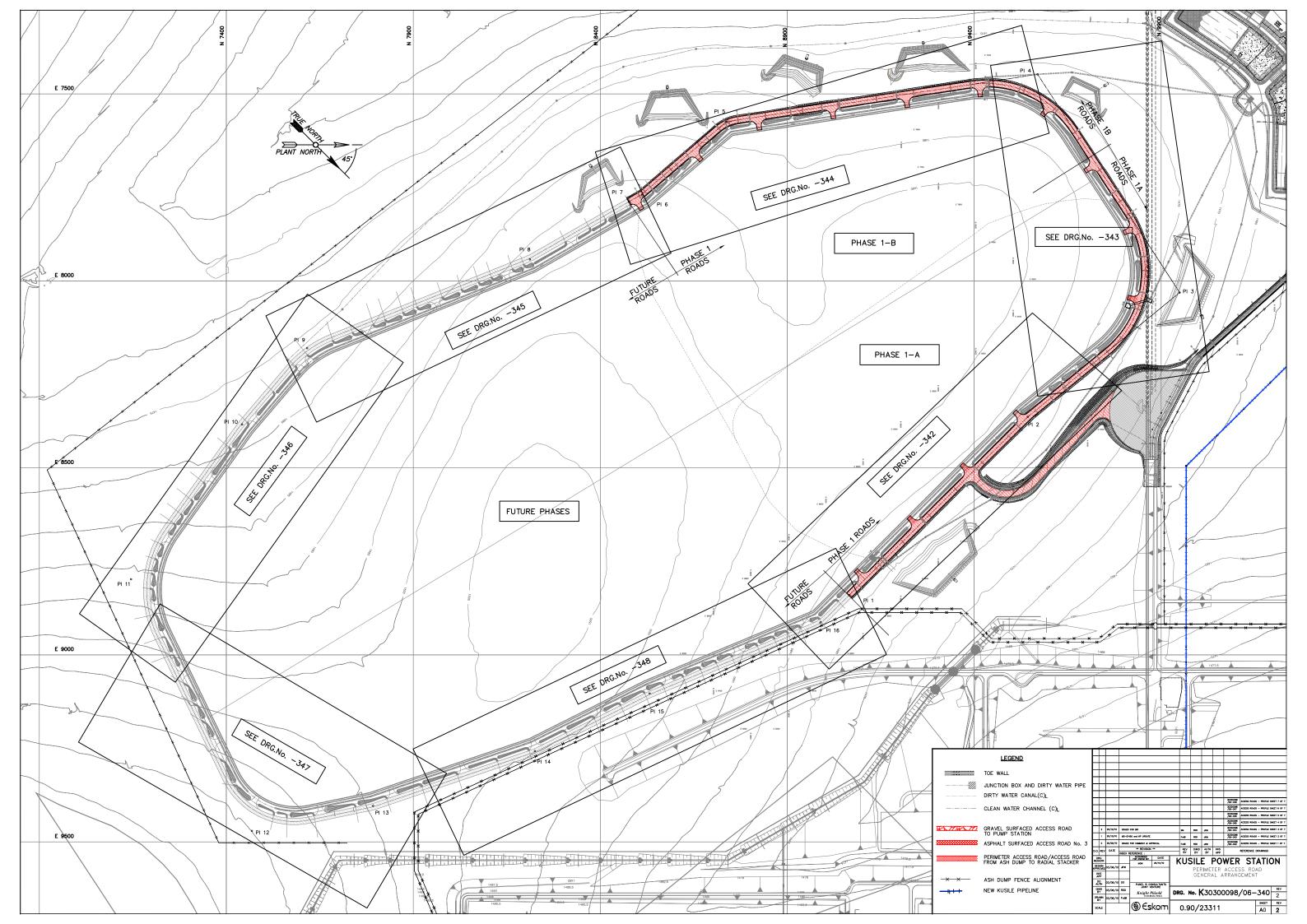

STORAGE AREAS STORMWATER CHANNEL ARRANGEMENT

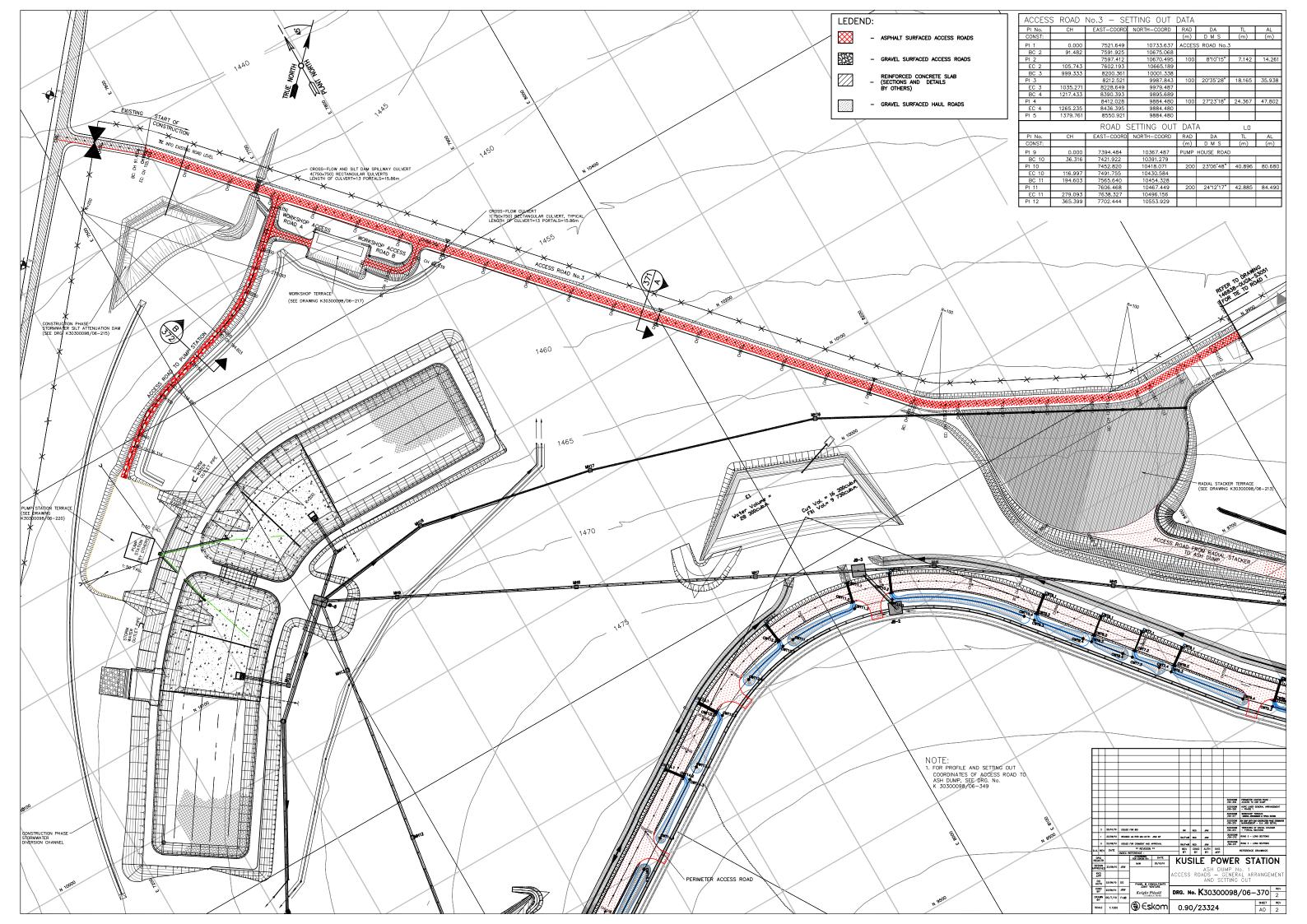

SCALE 1:200

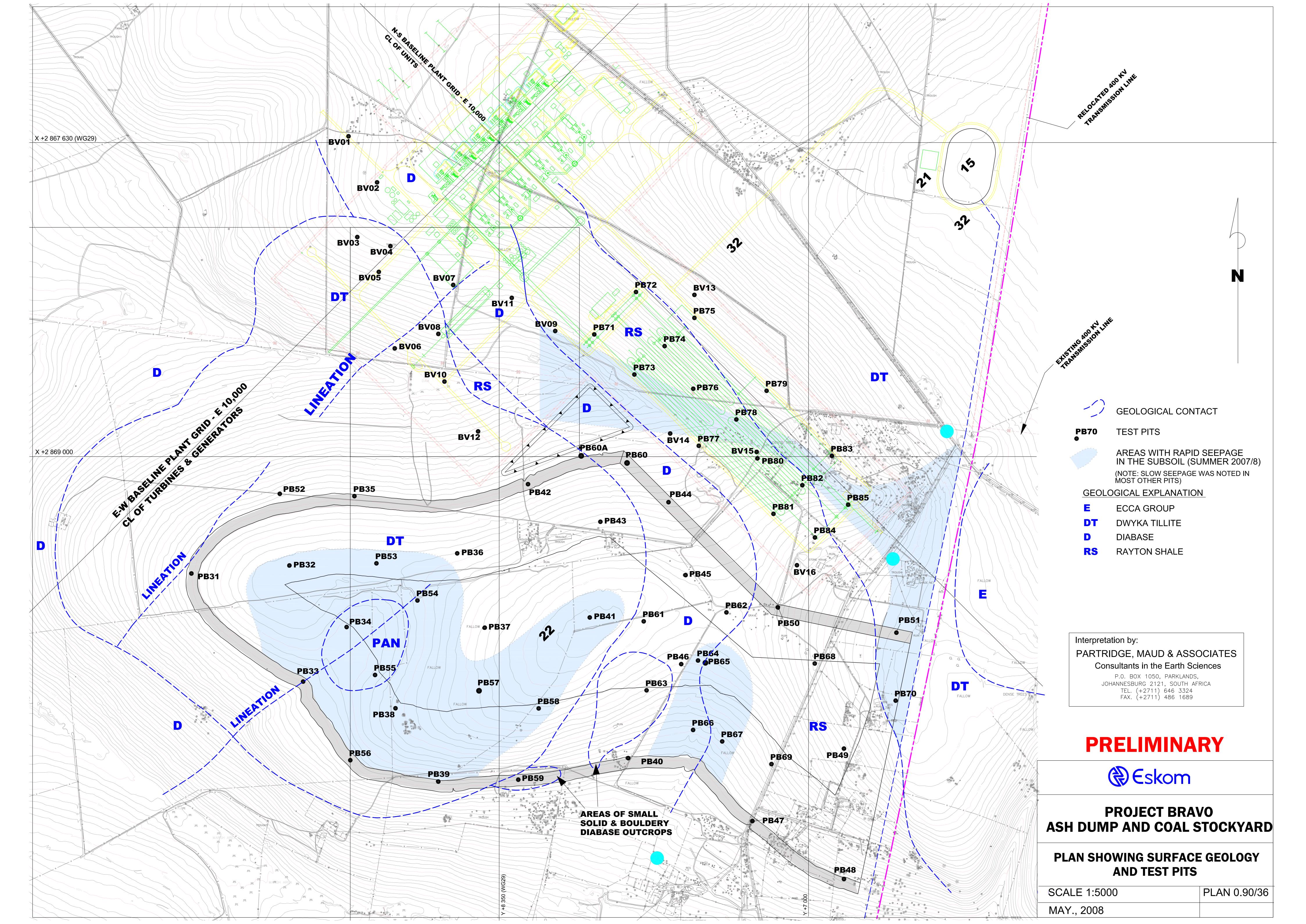

								1						
								J						
	_													-
П														-
														_
											30300086 /06-219	TYPICAL SE	R DIVERSION ON CTIONS AND DET	TA
											30300088 /06-208	AND SETTIN	MERAL APRANO G OUT CO-ORD	ĸ
											30300088 /04-301	PHASE 1 G	AND SETTING	å
											30300086 /06-310	96EF 2 0		
								_	_	_	30300086 /06-309 30300086	SHEET I OF		_
	1	25/10/10		FOR BID			ZL.	800	JRM	_	/04-304	SHT 2 OF G		_
	۰	15/10/10	ISSUED	FOR COMMENT &			21.	DHKD	AUTH	KKS	30300086 /06-303	set tor e		_
0.0.	REV	DATE	INDEX F	REFERENCE :			REV	BY	BY	APP		REFERENCE	DRAWINGS	
DF	IG STR			FOR ESHON SY:	DATE	k	(11)	SILI	F	PΩ	WFR	_ ST	ATIO	Ē
DES	IGN OVED	24/08/10	JRW	MOW	25/10/10	١.		O.L.		_	UMP N		A	•
K	s			1					LK N	идте	RIAL :	STORA		
ş	D TH	24/08/10	00	PANEL B.C	ONSULTANTS	-	ST	OCKE	ILE	DIV	ERSIO	4 CHA	NNELS	ŝ
CH B	KD	24/08/10	RDD	JOINT	VENTURE	-	_	N- L	770	700	0098,	/ne	700	Ī
DR/	WN	24/08/10	za.	Knight	Presola BULTING	UR	.	но. Г	\ 30	300	JU96,	/ 00-	-320	l
Ť	_	_		ΔD €	kom	Π.	^ ^	0 /0	77	01			SHEET	Į
SCA	V.E.			CA C	NOTT	Ι'	0.9	0/2	.55	וס			A0	I











APPENDIX 1A

ASH DUMP GEOLOGY AND SUB-SURFACE WATER DEPTH PROFILE

APPENDIX 2

ASH PRODUCTION SCHEDULES

Kusile Power Station: Waste Production ASH/FGD PRODUCTION SCHEDULE

<u>Unit</u>	Input	<u>Parameters</u>

Unit 1 (months):

Unit 2 (months):

Unit 3 (months):

Unit 4 (months):

Ash Output (t/hr) Gypsum Output (t/hr)	150.00 19.33	Ash S.G. Gypsum S.G.	0.80	Ash Volume (m³/hr) Gypsum Volume (m³/hr)	187.50 19.33
Ash Load Factor Gypsum Load Factor	0.90	Ash Availability Factor Gypsum Availability Factor	0.90	Ash Factor of Safety Gypsum Factor of Safety	1.10 1.10
Adjusted Unit Output Ash Output (t/hr) Gypsum Output (t/hr)	133.65 17.22	Ash Volume (m³/hr) Gypsum Volume (m³/hr)	167.06 17.22	Monthly Ash Volume (m³) Monthly Gypsum Volume (m³)	121956 12573
Commissioning Schedule	(relative to proje	ct time zero)		Co-Disposal Duration (months)	60

Feb 17 2017 (assume 2 week delay to March 1 2017)

Commissioning Schedule (relative to project time zero)

July 1, 2013 March 1, 2014 November 1, 2014 July 1, 2015

32 Unit 5 (months): March 1, 2016 Unit 6 (months): 40 November 1, 2016

16

24

Start	months) End	Units Online	Inc. Ash (m³)	Inc. FGD (m ³)	Total Ash (m³)	Total FGD (m³)	Total (m ³
0	4 8	1 1	487823 487823	50291 50291	487823 975645	50291 100582	538114 1076227
8	12	2	975645	100582	1951290	201165	2152455
12 16	16 20	3	975645 1463468	100582 150874	2926935 4390403	301747 452621	3228682 4843024
20	24	3 4	1463468 1951290	150874 201165	5853870 7805160	603495 804660	6457365 8609820
28	32	4	1951290	201165	9756450	1005825	1076227
32 36	36 40	5 5	2439113	251456	12195563	1257281	1345284
40	40	6	2439113 2926935	251456 301747	14634675 17561610	1508737 1810485	1614341 1937209
44	48	6	2926935	301747	20488545	2112232	2260077
48 52	52 56	6	2926935 2926935	301747 301747	23415480 26342415	2413980 2715727	2582946 2905814
56 60	60 64	6 6	2926935 0	301747 301747	29269350 29269350	3017475 3319222	3228682 3258857
64	68	6	0	301747	29269350	3620970	3289032
68 72	72 76	6	0	301747 301747	29269350 29269350	3922717 4224465	3319206 3349381
76	80	6	0	301747	29269350	4526212	3379556
80 84	84 88	6	0	301747 301747	29269350 29269350	4827960 5129707	3409731 3439905
88	92	6	0	301747	29269350	5431455	3470080
92 96	96 100	6	0	301747 301747	29269350 29269350	5733202 6034950	3500255 3530430
100	104	6	0	301747	29269350	6336697	3560604
104 108	108 112	6	0	301747 301747	29269350 29269350	6638445 6940192	3590779 3620954
112	116	6	0	301747	29269350	7241940	3651129
116 120	120 124	6	0	301747 301747	29269350 29269350	7543687 7845435	3681303 3711478
124	128	6	0	301747	29269350	8147182	3741653
128 132	132 136	6	0	301747 301747	29269350 29269350	8448930 8750677	3771828 3802002
136	140	6	0	301747	29269350	9052425	3832177
140 144	144 148	6	0	301747 301747	29269350 29269350	9354172 9655920	3862352 3892527
148	152	6	0	301747	29269350	9957667	3922701
152 156	156 160	6	0	301747 301747	29269350 29269350	10259415 10561162	3952876 3983051
160	164	6	0	301747	29269350	10862909	4013225
164 168	168 172	6	0	301747 301747	29269350 29269350	11164657 11466404	4043400 4073575
172 176	176 180	6	0	301747 301747	29269350 29269350	11768152 12069899	4103750 4133924
180	180	6	0	301747	29269350	12069899	4133924
184 188	188 192	6 6	0	301747 301747	29269350 29269350	12673394 12975142	4194274 4224449
192	192	6	0	301747	29269350	13276889	4254623
196 200	200 204	6 6	0	301747 301747	29269350 29269350	13578637	4284798
204	204	6	0	301747	29269350	13880384 14182132	4314973 4345148
208 212	212 216	6 6	0	301747 301747	29269350 29269350	14483879 14785627	4375322 4405497
216	220	6	0	301747	29269350	15087374	4435672
220 224	224 228	6	0	301747 301747	29269350 29269350	15389122 15690869	4465847 4496021
228	232	6	0	301747	29269350	15992617	4526196
232	236 240	6	0	301747 301747	29269350 29269350	16294364 16596112	4556371 4586546
240	244	6	0	301747	29269350	16897859	4616720
244	248 252	6	0	301747 301747	29269350 29269350	17199607 17501354	4646895 4677070
252	256	6	0	301747	29269350	17803102	4707245
256 260	260 264	6	0	301747 301747	29269350 29269350	18104849 18406597	4737419 4767594
264	268	6	0	301747	29269350	18708344	4797769
268 272	272 276	6	0	301747 301747	29269350 29269350	19010092 19311839	4827944 4858118
276	280	6	0	301747	29269350	19613587	4888293
280 284	284 288	6	0	301747 301747	29269350 29269350	19915334 20217082	4918468 4948643
288	292	6	0	301747	29269350	20518829	4978817
292 296	296 300	6	0	301747 301747	29269350 29269350	20820577 21122324	5008992 5039167
300	304	6	0	301747	29269350	21424071	5069342
304 308	308 312	6	0	301747 301747	29269350 29269350	21725819 22027566	5099516 5129691
312	316	6	0	301747	29269350	22329314	5159866
316 320	320 324	6	0	301747 301747	29269350 29269350	22631061 22932809	5190041 5220215
324	328	6	0	301747	29269350	23234556	5250390
328 332	332 336	6	0	301747 301747	29269350 29269350	23536304 23838051	5280565 5310740
336	340	6	0	301747 301747	29269350	24139799	5340914
340 344	344 348	6 6	0	301747 301747	29269350 29269350	24441546 24743294	5371089 5401264
348	352	6	0	301747	29269350	25045041	5431439
352 356	356 360	6	0	301747 301747	29269350 29269350	25346789 25648536	5461613 5491788
360 364	364 368	6	0	301747 301747	29269350 29269350	25950284 26252031	5521963 5552138
364 368	368 372	6	0	301747 301747	29269350 29269350	26252031 26553779	5552138 5582312
372	376	6	0	301747	29269350	26855526 27157274	5612487
376 380	380 384	6	0	301747 301747	29269350 29269350	27157274 27459021	5642662 5672837
384	388	6	0	301747 301747	29269350	27760769	5703011 5722186
388 392	392 396	6	0	301747 301747	29269350 29269350	28062516 28364264	5733186 5763361
396	400	6	0	301747	29269350	28666011	5793536
400 404	404 408	6	0	301747 301747	29269350 29269350	28967759 29269506	5823710 5853885
408	412	6	0	301747	29269350	29571254	5884060
412 416	416 420	6	0	301747 301747	29269350 29269350	29873001 30174749	5914235 5944409
420	424	6	0	301747	29269350	30476496	5974584
424 428	428 432	6	0	301747 301747	29269350 29269350	30778244 31079991	6004759 6034934
432	436	6	0	301747	29269350	31381739	6065108
436 440	440 444	6	0	301747 301747	29269350 29269350	31683486 31985233	6095283 6125458
444	448	6	0	301747	29269350	32286981	6155633
448	452	6	0	301747	29269350 29269350	32588728 32890476	6185807

AEC.	460	6	^	201747	20260250	22102222	62464572
456 460	460 464	6 6	0	301747 301747	29269350 29269350	33192223 33493971	62461573 62763321
464	468	6	0	301747	29269350	33795718	63065068
468	472	6	0	301747	29269350	34097466	63366816
472	476	6	0	301747	29269350	34399213	63668563
476	480	6	0	301747	29269350	34700961	63970311
480	484	6	0	301747	29269350	35002708	64272058
484	488	6	0	301747	29269350	35304456	64573806
488	492	6	0	301747	29269350	35606203	64875553
492	496	6	0	301747	29269350	35907951	65177301
496	500	6	0	301747	29269350	36209698	65479048
500	504	6	0	301747	29269350	36511446	65780796
504	508	6	0	301747	29269350	36813193	66082543
508	512	6	0	301747	29269350	37114941	66384291
512	516	6	0	301747	29269350	37416688	66686038
516	520	6	0	301747	29269350	37718436	66987786
520	524	6	0	301747	29269350	38020183	67289533
524	528	6	0	301747	29269350	38321931	67591281
528	532	6	0	301747	29269350	38623678	67893028
532	536	6	0	301747	29269350	38925426	68194776
536	540	6	0	301747	29269350	39227173	68496523
540	544	6	0	301747	29269350	39528921	68798271
544	548	6	0	301747	29269350	39830668	69100018
548	552	6	0	301747	29269350	40132416	69401766
552	556	6	0	301747	29269350	40132410	69703513
556	560	6	0	301747	29269350	40735911	70005261
560	564	6	0	301747	29269350	41037658	70307008
564	568	6	0	301747	29269350	41339406	70608756
568	572	6	0	301747	29269350	41641153	70910503
572	576	6	0	301747	29269350	41942900	71212250
576	580	6	0	301747	29269350	42244648	71513998
580	584	6	0	301747	29269350	42546395	71815745
584	588	6	0	301747	29269350	42848143	72117493
588	592	6	0	301747	29269350	43149890	72117433
592	596	6	0	301747	29269350	43451638	72720988
596	600	6	0	301747	29269350	43753385	73022735
600	604	6	0	301747	29269350	44055133	73324483
604	608	6	0	301747	29269350	44356880	73626230
608	612	6	0	301747	29269350	44658628	73927978
612	616	6	0	301747	29269350	44960375	74229725
616	620	6	0	301747	29269350	45262123	74531473
620	624	6	0	301747	29269350	45563870	74833220
624	628	6	0	301747	29269350	45865618	75134968
628	632	6	0	301747	29269350	46167365	75436715
632	636	6	0	301747	29269350	46469113	75738463
636	640	6	0	301747	29269350	46770860	76040210
640	644	6	0	301747	29269350	47072608	76341958
644	648	6	0	301747	29269350	47374355	76643705
648	652	6	0	301747	29269350	47676103	76945453
652	656	6	0	301747	29269350	47977850	77247200
656	660	6	0	301747	29269350	48279598	77548948
660	664	6	0	301747	29269350	48581345	77850695
664	668	6	0	301747	29269350	48883093	78152443
668	672	6	0	301747	29269350	49184840	78454190
672	676	6	0	301747	29269350	49486588	78755938
676	680	6	0	301747	29269350	49788335	79057685
680	684	6	0	301747	29269350	50090083	79359433
684	688	6	0	301747	29269350	50391830	79661180
688	692	6	0	301747	29269350	50693578	79962928
692	696	6	0	301747	29269350	50693578	79962928 80264675
696	700	6	0	301747	29269350	51297073	80566423
700	704	6	0	301747	29269350	51598820	80868170
704	708	6	0	301747	29269350	51900568	81169918
708	712	6	0	301747	29269350	52202315	81471665
712 716	716 720	6	0	301747	29269350	52504062	81773412
	/ ///	6	0	301747	29269350	52805810	82075160

APPENDIX 3

DWA LINER CORRESPONDENCE

KUSILE POWER STATION ASH DUMP IWULA APPLICATION

DWA letter ref 16/2/7/B200/B174 refers.

I section B: Substansive Aspects, it is stated that the proposed liner system does not conform to the requirements of the DWA "Minimum Standards" document.

In this respect, discussions were held with Mr. F. Druits at the DWA offices in Pretoria on 6 August 2009.

The Minimum Standards document requires a 3-layer liner system comprising synthetic and clay layers with leakage detection, for a class H:h waste disposal facility. As there is no clay available in the Kusile Power station locality, it was agreed that the liner system for Kusile would be constructed using only synthetic materials (HDPE sheeting), with appropriate leakage detection facilities.

It was further proposed that because of the "dry" dumping nature of the Kusile ash dump, where ash and gypsum would be placed at only 15% moisture content, there was motivation to consider relaxation of the Minimum Standards liner requirements.

Although the "Cautionary Principle" is understood and accepted, there is thus a view that the caution could be applied less rigorously in the case at Kusile (The ash is classified as non-toxic and the FGD Gypsum (USA sample) classifies as a moderate hazard waste. The 1:6 mix of FGD/Ash also classifies as a moderate hazard waste, but the dump is a dry dump so leachate is unlikely to be present).

It was thus proposed to DWA (Druits) that the Kusile ash dump be provided with a two layer liner system instead of the three layer requirement of the Minimum Standards document.

The motivation for only providing a 2-hdpe layer system is because of the high residual field capacity of the ash/gypsum after placement at 15% moisture content.

This means that it is highly unlikely that a seepage plume will ever develop in the ash dump, so seepage to the base drainage layer and leakage is unlikely. It is thus considered that a 2-layer system with seepage collection above the liner, will more than adequately provide a seal and leakage indication to cover this dry dumping case.

There is a technical paper on the subject of field capacity of South African ash dumps; "Optimisation of Dry Ash Disposal Operations at Tutuka Power Station" by Dorman and Kreuiter. This states that if the initial moisture content of the ash does not exceed 25%, the ash dump can absorb and retain between $3.5 \, \mathrm{m}^3$ and $4.2 \, \mathrm{m}^3$ per $1 \, \mathrm{m}^2$ of dump surface area, for 20m and 40m high dumps respectively. (the Kusile dump will have an average height of 35m). The Authors further noted that a phreatic surface would only develop should uncontrolled irrigation take place continuously over a period of 2 to 3 months. At Kusile, a specific irrigation and dust control management plan will be in place to provide assurance that these aspects are strictly controlled. Furthermore there will not be any disposal of excess effluents from the power station to the ash dump.

DWA (F. Druits) has provided written approval to the proposes two-layer liner system for the Kusile ash dump, whereby the liners will each be 2mm HDPE with a cuspated HDPE leakage detection layer sandwiched in-between. The e-mail correspondence in this respect is attached over-leaf.

30300098/6/Reports JRW 27 August 2009

Rob Williamson

From: Muttanato Suphic (SMattenato@dwaf.gov.za) or behalf of Druyts Frans.

[OruytsF@dwaf.gov.za]

Sent: Monday, August 17, 2009 11;43 AM To: Rob Williamson; Druyts Frans

Co: Dougles Dorren; Scott Rees; Kirkpatrick, Shelly K.; Michael Were

Subject: RE: Kusile Ash Dump

Good day.

Your motivation is noted and accepted. Please include your reasoning in your formal application. I will recommend approval of the double (2) HDPE lining each membrane having 2 minimum thickness of 2 mm.

Regards,

FRANS

From: Rob Williamson [mailto:jwilliamson@knightpiesold.rom]

Sent: 12 August 2009 09:50 AM

To: Drieyls Frans

Cc: Douglas Dorren; Scott Rees; Kirkpatrick, Shelly K.; Michael Were

Subject: Kupile Ash Dump

Dear Frans,

Thanks for seeing us last week and for the discussions.

The Client has requested that we review the necessity of a 3-hdpe layer requirement for compliance with the "Minimum Standards" document, because of the "dry" dumping nature of the facility. Although the "Cautionary Principle" is understood and accepted, there is a view that the caution could be applied less rigorously in this particular situation? (The ash is classified as non-toxic and the FGD Gypsum (USA sample) classifies as a moderate hazard waste. The 1:6 mix of FGD/Ash also classifies as a moderate hazard waste, but the dump is a dry dump so leachate is unlikely to be present)

The motivation for only providing a 2-hdpe layer system was because of the high residual field capacity of the ash/gypsum after placement at 15% m/c.

This means that it is highly unlikely that a seepage plume will ever develop in the ash dump, so seepage to the base drainage layer and leakage is unlikely. It is thus considered that a 2-layer system with seepage collection above the liner, will more than adequately provide a seal and leakage indication to cover this dry dumping case.

There is a paper on the subject of field capacity of South African ash dumps; "Optimisation of Dry Ash Disprisal Operations at Tutuka Power Station" by Dorman and Kroulter. This states that if the initial moisture content of the ash does not exceed 25%, the ash dump can absorb and retain between 3.5m3 and 4.2m3 per 1m2 of dump surface area, for 20m and 40m high dumps respectively (the Kusile dump will have an average height of 35m). The Authors further noted that a phreatic surface would only develop should uncontrolled irrigation take place continuously over a period of 2 to 3 months.

We therefore request your re-consideration towards acceptance of the proposed 2-hdpe liner system with a single leakage detection layer i.e. for only partial compliance with the Minimum Standards. We are happy to come to your office again to discuss the matter further.

we are nappy to come to your office again to discuss the matter further Regards

JRG (Rob) Williamson Technical Consultant Knight Plésoid (Pky) Ltd.

APPENDIX 4

STORMWATER HYDROLOGY AND HYDRAULIC CALCULATION RECORD

PANEL B CONSULTANTS JOINT VENTURE Calculation Record

Clien	t Name: I	ESKOM			Page	:	1	of		36
Proje	ect Name:	Kusile Po	ower Statio	n	Job No	303-0	0098/0	6		
Calcu	ılation Title	2: 10 yr	Ash Dump	Stormwater -	– Dirty a	ınd Clea	ın Syste	ems Hyd	rology	and
		Hydra	ulic Calcul	ations						
Calcu	ılation No./	File No.:		0098\04\A\C					- 10 YR	Hydraulic
			Design\A	sh Dump Cal	culation	Record	01101	0.doc		
Calcu	ılation is:		Prelimina	ary	⊠ Fin	al				
Obje	ctive: Detai	iled hydra	ulic design	of the clean	and dirty	stormy	vater sy	stems aı	nd the a	sh dump
dirty	dam includii	ng the ene	rgy dissipa	tion structure	es.					
Г										
	1	Unver		nptions requi	ring sub	sequent				<u> </u>
No.	None		Assumpti	on			Verifie	d by		Date
	INOTIC									
		This	section and	olies to comp	uter gen	erated c	alculatio	ons		
Progr	am Name/Nu			nes to comp			rsion:	0113		
Progr	am Name/Nu	ımber:				Ve	rsion:			
Evido	nce of or ref	orance to	computer r	orogram verif	ication i	f annlic	ahla:			
LVIGE	ilice of of fer	erence to	computer p	orogram verm	ication, i	і арріісі	abic.			
Bases	s or referenc	e thereto s	supporting	application o	f the cor	nputer p	orogram	to the p	hysical	problem:
<u> </u>										
		 		Review and			T			
Rev	Prepared Nicholas Pi	•	Date	Verified I	оу	Date	e	Approv	ed by	Date
0	MICHOIAS PI	iz OCIO	ber 2010							

Client: Project: Job no.: Title:

ESKOM

Kusile Power Station 303-00098/06

Component: Ash Dump Hydraulics File no.:

Computed by: Date: Checked by: Date: Page:

Nicholas Pilz October 2010 Rob Williamson October 2010 36 of

1. PURPOSE:

To calculate the size of various unlined diversion canals conveying stormwater runoff around the Coal Stock Yard as well as the associated hydraulic structures such as the concrete drop structures.

10 yr Ash Dump Stormwater – Dirty and Clean Systems Hydrology and Hydraulic Calculations

2. REFERENCES:

<u>2. R</u>	EFERENCES:	1		
1.	Ash Dump No.1 – General Arrangement Plan	30300098/06-201	Rev	1
2.	Ash Dump No.1 – Geotechnical Plan	30300098/06-202	Rev	1
3.	Ash Dump No.1 – Phase 1 GA & Setting Out Co-ordinates	30300098/06-206	Rev	2
4.	Ash Dump No.1 – Typical Overall Sections	30300098/06-207	Rev	0
5.	Wetland / Pan Drainage Plan and Details	30300098/06-208	Rev	2
6.	Wetland / Pan Drainage – DN100 Kabelflex Longitudinal Section	30300098/06-209	Rev	2
7.	Footprint Site Preparation – Phase 1	30300098/06-210	Rev	2
8.	Footprint Site Preparation – Phase 1 Details	30300098/06-211	Rev	2
9.	Terracing of Radial Stacker – General Arrangement Plan	30300098/06-213	Rev	2
10.	Ash Dump Dirty Dam – Construction Phase Storm Water Management GA	30300098/06-215	Rev	1
11.	Ash Dump No.1 – Construction Phase Storm Water Management GA	30300098/06-216	Rev	1
12.	Workshop Terrace – General Arrangement & Typical Sections	30300098/06-217	Rev	2
13.	Pump Station Terrace – General Arrangement & Typical Sections	30300098/06-218	Rev	2
14.	Ash Dump No. 1 – Storm Water Diversion/Collection Channels – Typical Sections & Details	30300098/06-219	Rev	1
15.	HDPE Liner General Arrangement, Phase 1	30300098/06-220	Rev	2
16.	Sections And Details, Phase 1	30300098/06-221	Rev	2
17.	Drainage above HDPE Liner – General Arrangement & Details, Phase 1	30300098/06-224	Rev	2
18.	Dirty Water Management – General Arrangement & Details, Phase 1	30300098/06-231	Rev	1
19.	Dirty Water Drains – Concrete Details	30300098/06-232	Rev	2
20.	ADDD – General Arrangement and Setting Out Co-ordinates	30300098/06-280	Rev	2
21.	ADDD – Sections And Details – Sheet 1 of 2	30300098/06-281	Rev	2
22.	ADDD – Sections And Details – Sheet 2 of 2	30300098/06-282	Rev	2
23.	ADDD – Compartment No. 1 Inlet – General Arrangement & Details	30300098/06-283	Rev	2
24.	ADDD – Compartment No. 1 Outlet – General Arrangement & Details	30300098/06-284	Rev	2
25.	ADDD – Spillway No.1 – General Arrangement & Details	30300098/06-285	Rev	2
26.	ADDD – Spillway No.2 – General Arrangement & Details	30300098/06-286	Rev	2
27.	ADDD – Energy Dissipator No. 1 – General Arrangement & Details	30300098/06-287	Rev	2
28.	ADDD – Leakage Detection Sump – General Arrangement & Details	30300098/06-288	Rev	1
29.	ADDD – Compartment No. 2 Inlet – General Arrangement & Details	30300098/06-289	Rev	1
30.	ADDD – Compartment No. 2 Outlet – General Arrangement & Details	30300098/06-290	Rev	1
31.	ADDD – Compartment No. 1 Basin Division Walls & Details	30300098/06-295	Rev	1
32.	ADDD – Compartment No. 2 Basin Division Walls & Details	30300098/06-296	Rev	1
33.	Clean Water Management – Phase 1 General Arrangement	30300098/06-301	Rev	1
34.	Clean Water Drains, Sheet 1 of 6	30300098/06-303	Rev	2
35.	Clean Water Drains, Sheet 2 of 6	30300098/06-304	Rev	2

Client: Project: Job no.:

ESKOM

Kusile Power Station 303-00098/06

Component: Ash Dump Hydraulics File no .:

Computed by: Date: Checked by: Date: Page:

Nicholas Pilz October 2010 Rob Williamson October 2010 36 of

10 yr Asn Dump Stormwater – Dirty and C	Clean Systems Hydrology
and Hydraulic Calculations	

36.	Ash Dump No. 1 – Bulk Material Storage Stockpile Diversion Channels	30300098/06-320	Rev	1
30.	Asii Duirip No. 1 – Buik Wateriai Storage Stockpile Diversion Charliels	30300090/00-320	Rev	'
37.	Ash Dump No. 1 – Silt Retention Dam (E1) – Plan and Details	30300098/06-321	Rev	1
38.	Ash Dump No. 1 – Silt Retention Dam (E2) – Plan and Details	30300098/06-322	Rev	1
39.	Ash Dump No. 1 – Silt Retention Dam (W1) – Plan and Details	30300098/06-323	Rev	1
40.	Ash Dump No. 1 – Silt Retention Dam (W2) – Plan and Details	30300098/06-324	Rev	1
41.	Ash Dump No. 1 – Silt Retention Dam (W3) – Plan and Details	30300098/06-325	Rev	1
42.	Ash Dump No. 1 – Silt Retention Dam (W4) – Plan and Details	30300098/06-326	Rev	1
43.	Ash Dump No. 1 – Silt Retention Dam (W5) – Plan and Details	30300098/06-327	Rev	1
44.	Perimeter Access Road – General Arrangement	30300098/06-340	Rev	2
45.	Access Road No. 3 – General Arrangement and Setting Out Co-ordinates	30300098/06-370	Rev	2

3. ASSUMPTIONS

Clean Water Canals sized for the 1: 100 year flood event Dirty Water Canals sized for the 1:50 year flood event

1000 kg/m³ Density of water = 9.81m/s² Acceleration due to gravity = > 0.70 Sub-critical flow conditions require Froude Number Allowance for groundwater seepage = 10% Additional freeboard = 300 mm 0.023 Mannings' n-value for unlined canals = Mannings' n-value for lined canals = 0.018 Mannings' n-value for concrete culverts = 0.012

Additional assumptions are listed in the detailed hydrology and hydraulic calculations, where applicable.

4. PROCEDURE/METHODOLOGY OF DESIGN:

- 4.1 **Determine Catchment Areas**
- 4.2 Calculate the 1:50 and 1:100 year flood peaks
- 4.3 Determine the location of the proposed surface canals
- 4.4 Calculate canal sizes for the given flowrates
- 4.5 Design associated structures such as energy dissipators and culverts
- Calculate run-off volumes and determine the required ADDD storage capacity as well as clean water 4.6 retention ponds.

5. FLOOD HYDROLOGY CALCULATIONS

5.1 **Catchment Characteristics**

5.1.1 **Dirty Catchment Area**

Dirty water catchment area comprises:

- Active dumping face,
- a 50 m section behind the active face
- 1-year irrigation zone
- Further 2 years of rehabilitation zone

PANEL B Client: **ESKOM** Computed by: Nicholas Pilz CONSULTANTS Project: Kusile Power Station Component: Ash Dump Hydraulics Date: October 2010 JOINT Checked by: Job no.: 303-00098/06 File no.: Rob Williamson **VENTURE** October 2010 Date: 10 yr Ash Dump Stormwater – Dirty and Clean Systems Hydrology and Hydraulic Calculations Page: of 36

5 year ash dump footprint is developed in two phases; 1A and 1B:

- Phase 1A comprises the 1st three years of deposition;
- Phase 1B consists of years 4 and 5 of deposition.

Phase 2 comprises the remaining 55 years of deposition.

The phased development of the Ash dump is illustrated in **Appendix 1**.

Phase 1A to be fully rehabilitated after 6 years of deposition and Phase 1B will be fully rehabilitated after 8 years of deposition. Establishing surface area is still considered dirty water catchment, if it encloses both irrigation and dust suppression areas.

The run-off from the catchment area surrounding the radial stacker is also considered dirty. This catchment area will remain dirty for the 60yr disposal period.

The catchment areas during dirty disposal are shown in Table 1 below.

Table 1: Dirty Water Catchment Areas

Phase	Deposition Period	Total Area
-	Years	km ²
1A	1 – 3	0.511
1B	4 - 5	0.775
2 (East)	6 – 8*	0.162
2 (West)	6 – 8*	0.256
Radial Stacker	1 –	0.049

^{*} The catchment areas in phase two will remain essentially constant for the remaining years of deposition i.e. to year 60.

5.1.2 Clean Catchment Area

Ash dump has been divided into a series of individual catchments, each contributing to an individual clean water canal, as defined by the topography along the canal routes. See **Appendix 2**.

5.1.3 Catchment Run-off Coefficients

The runoff coefficient is based on surface slopes, permeability and vegetation.

- Run-off co-efficient of 0.504 is based on a rehabilitated dirty catchment areas;
- Run-off co-efficient of 0.436 is based on a rehabilitated clean catchment areas;
- Run-off co-efficient of 0.700 is based on a rehabilitated dirty catchment area and concrete surface for the radial stacker platform.

5.1.4 Time of Concentration

The Time of Concentration for overland flow conditions uses the equation shown below:

$$T_c = 0.604 \left(\frac{rL}{S^{0.5}}\right)^{0.467}$$
 Equation 1

Where $T_c = Time of Concentration (hrs)$

r = Roughness coefficient

L = Longest Flowpath (m)

S = Catchment Slope (m/m)

The Time of Concentration for defined watercourses uses the equation shown below:

PANEL B Client: **ESKOM** Computed by: Nicholas Pilz CONSULTANTS Project: Kusile Power Station Component: Ash Dump Hydraulics Date: October 2010 JOINT Checked by: Job no.: 303-00098/06 File no.: Rob Williamson **VENTURE** October 2010 Date: 10 yr Ash Dump Stormwater – Dirty and Clean Systems Hydrology 36 and Hydraulic Calculations Page: of

$$T_c = \left(\frac{0.87L^2}{1000S_{av}}\right)^{0.385}$$
 Equation 2

Where $T_c = Time of Concentration (hrs)$

L = Longest Flowpath (m)

 S_{av} = Average Catchment Slope (m/m)

Time of Concentration assumes overland flow down the active face and defined channel flow along the edge of ash dump.

Longest flowpath is the longest distance that water would follow from the furthest point in the catchment to the end of the flowpath.

5.1.5 Rainfall

Mean Annual Precipitation (MAP) = 655mm

The rainfall station 0514618W at Wilge Rivier was chosen as the most reliable due to the length of its record (98 years) as well as the fact that the station is still in operation.

Table 2: Characteristics of Rainfall Station - 0514618W

Rainfall Station	Mean Annual Precipitation (mm)	Record (years)		
0514618W	701	98		

Table 3: Design Rainfall for Station 0514618W

Duration (Days)	Return Period (years)							
	2	5	10	20	50	100	200	
1 day	50	70	84	100	122	141	162	
2 days	64	89	109	129	160	187	217	
3 days	74	102	123	147	181	210	243	
7 days	100	135	161	188	226	258	292	

Recommended return period point precipitation:

- 122 mm is used to determine the 50 year flood event (dirty water system);
- 141 mm is used to determine the 100 year flood event (clean water system).

5.2 Flood Peak Determination

Small catchment areas therefore deterministic approach was adopted. Rational Method was used to determine flood peaks. Flood peaks calculated using following equation:

$$Q = \frac{C.I.A}{3.6}$$
 Equation 3

Where $Q = Peak Flow (m^3/s)$

C = runoff coefficient

I = Rainfall Intensity (mm/hr)

A = Catchment Area (km²)

Intensity is the Point Precipitation divided by the Time of Concentration.

PANEL B Client: **ESKOM** Computed by: Nicholas Pilz **CONSULTANTS** Project: **Kusile Power Station** Component: Ash Dump Hydraulics Date: October 2010 JOINT Job no.: 303-00098/06 Rob Williamson File no .: Checked by: **VENTURE** Title: October 2010 Date: 10 yr Ash Dump Stormwater – Dirty and Clean Systems Hydrology 36 and Hydraulic Calculations Page: of 6

5.3 Stormwater Runoff

5.3.1 Dirty Water Runoff

The calculated dirty water runoff flowrates are summarised in Table 4 below.

Table 4: 1:50 yr Dirty Water Runoff Flowrates

Catchment Area		Flowpath	Time of Concentration	Intensity*	Runoff C	Flowrate
	km ²	km	hrs	mm/hr	-	m³/s
Phase 1A	0.511	1.732	1.021	119.472	0.504	8.545
Phase 1B	0.775	1.949	1.124	108.591	0.504	11.796
Phase 2 (East)	0.162	0.689	0.486	250.842	0.504	5.687
Phase 2 (West)	0.256	0.875	0.579	210.804	0.504	7.562
Radial Stacker	0.049	0.549	0.607	200.732	0.700	1.904

^{*} Intensity based on 1:50 yr 24 hr Point Precipitation of 122 mm

5.3.1 Clean Water Runoff

The calculated clean water runoff flowrates for Phase 1A and 1B are summarised in Table 5 and Table 6 below.

Table 5: 1:100yr Clean Water Runoff Flowrates (Phase 1A)

Catchment A	rea	Flowpath	Time of Concentration	Intensity*	Runoff C	Flowrate
Clean Catchment	km ²	Km	hrs	mm/hr	-	m ³ /s
CWT1	0.034	0.674	0.645	218.463	0.436	0.890
CWT2	0.094	0.697	0.662	212.988	0.436	2.424
CWT3	0.124	0.688	0.659	214.091	0.436	3.215
CWT4	0.042	0.551	0.570	247.365	0.436	1.254
CWT5	0.030	0.531	0.556	253.617	0.436	0.922
CWT6	0.048	0.556	0.570	247.192	0.436	1.440
CWT7	0.019	0.458	0.493	285.844	0.436	0.675
CWT8	0.019	0.452	0.484	291.415	0.436	0.683
CWT9	0.028	0.466	0.486	289.970	0.436	0.975
CWT10	0.040	0.593	0.554	254.672	0.436	1.222
CWT11	0.015	0.386	0.251	560.908	0.436	1.001
CWT12	0.021	0.387	0.257	549.491	0.436	1.381
CWT13	0.024	0.355	0.237	594.294	0.436	1.725
CWT14	0.021	0.365	0.243	579.345	0.436	1.494
CWT15	0.017	0.455	0.300	470.140	0.436	0.956
CWT16	0.016	0.417	0.274	515.042	0.436	0.977

^{*} Intensity based on 1:100 yr 24 hr Point Precipitation of 141 mm

PANEL B CONSULTANTS Client: **ESKOM** Project: **Kusile Power Station** JOINT Job no.: 303-00098/06 **VENTURE**

Component: Ash Dump Hydraulics File no.:

10 yr Ash Dump Stormwater – Dirty and Clean Systems Hydrology and Hydraulic Calculations

Computed by: Date: Checked by:

Date:

Page:

Nicholas Pilz October 2010 Rob Williamson October 2010 of 36

Table 6: 1:100yr Clean Water Runoff Flowrates (Phase 1B)

Catchment Area		Flowpath	Time of Concentration	Intensity*	Runoff C	Flowrate
Clean Catchment	km ²	Km	hrs	mm/hr	-	m ³ /s
CWT17	0.030	0.437	0.459	307.220	0.436	1.130
CWT18	0.083	0.658	0.628	224.700	0.436	2.247
CWT19	0.034	0.562	0.571	246.818	0.436	1.028
CWT20	0.065	0.582	0.587	240.223	0.436	1.890
CWT21	0.045	0.609	0.611	230.651	0.436	1.271
CWT22	0.027	0.660	0.650	216.878	0.436	0.704
CWT23	0.032	0.598	0.611	230.847	0.436	0.883
CWT24	0.032	0.585	0.607	232.464	0.436	0.896
CWT25	0.038	0.585	0.610	231.090	0.436	1.074
CWT26	0.018	0.551	0.585	241.094	0.436	0.532
CWT27	0.025	0.605	0.614	229.767	0.436	0.685
CWT28	0.025	0.605	0.617	228.662	0.436	0.688
CWT29	0.032	0.617	0.627	225.002	0.436	0.868

^{*} Intensity based on 1:100 yr 24 hr Point Precipitation of 141 mm

Table 7: 1:100yr Clean Water Runoff Flowrates (Phase 2)

Catchment A	rea	Flowpath	Time of Concentration	Intensity*	Runoff C	Flowrate
Clean Catchment	km ²	Km	hrs	mm/hr	-	m³/s

PANEL B Client: **ESKOM** Computed by: Nicholas Pilz **CONSULTANTS** Project: **Kusile Power Station** Component: Ash Dump Hydraulics Date: October 2010 JOINT Job no.: 303-00098/06 Checked by: Rob Williamson File no.: **VENTURE** Date: October 2010 10 yr Ash Dump Stormwater - Dirty and Clean Systems Hydrology and Hydraulic Calculations Page: of 36

6. HYDRAULIC CALCULATIONS

6.1 Dirty Water Canals and Pipeline

Dirty canals designed to carry dirty water stormwater runoff plus leakage.

Canals sized for Phase 1A, Phase 1B and Phase 2 (East and West)

Dirty water design parameters:

- Concrete lined rectangular canals with a 2.50 m base width and vertical side slopes;
- Lined Canal Mannings' n = 0.018;
- Canal slopes = 1 : 250;
- Canal depth = flow depth + 10% allowance for groundwater + 300mm freeboard (Sub-critical flow conditions);
- Canal depth = flow depth + 2 * Energy Head (Super-critical flow conditions).

Flow depth was calculated using the Mannings' equation:

$$Q = \frac{AR^{\frac{2}{3}}S^{\frac{1}{2}}}{n}$$
 Equation 4

Where $Q = Peak Flow (m^3/s)$

A = Cross Section Flow Area (m^2)

R = Hydraulic Radius (m)

S = Canal Slope (m/m)

n = Mannings' n value (0.023)

Table 8: Concrete Lined Rectangular Dirty Water Canal Sizes

		ou mootangalal 2	,			
Drain	Flow Rate	Flow Depth	Velocity	Energy Head	Froude No.	Total Depth
-	m ³ /s	m	m/s	m	-	m
Canal 1	8.545	1.310	2.609	0.347	0.728	2.004
Canal 2	11.797	1.678	2.813	0.403	0.693	1.978
Canal 3	5.687	0.969	2.347	0.281	0.761	1.531
Canal 4	7.562	1.196	2.530	0.326	0.739	1.848

Rectangular concrete canals discharge into concrete pipes leading to the ADDD.

Pipe 1 – Phase 1A (Years 1 – 3 of deposition) to JB5 (Blue Line)

Pipe 2 – Phase 1B (Years 4 – 5 of deposition) to JB5 (Red Line)

Pipe 3 – JB5 to ADDD Compartment 2 (Yellow Line)

Pipe 4 – JB5 to ADDD Compartment 1 (Green Line)

Pipe 5 – Phase 2 (west) to JB5 (Purple Line)

Pipe 6 – Radial Stacker platform to JB5 (Orange Line)

The pipeline layout is shown in Figure 1.

Client: Job no.: 303-00098/06

ESKOM

Project: Kusile Power Station

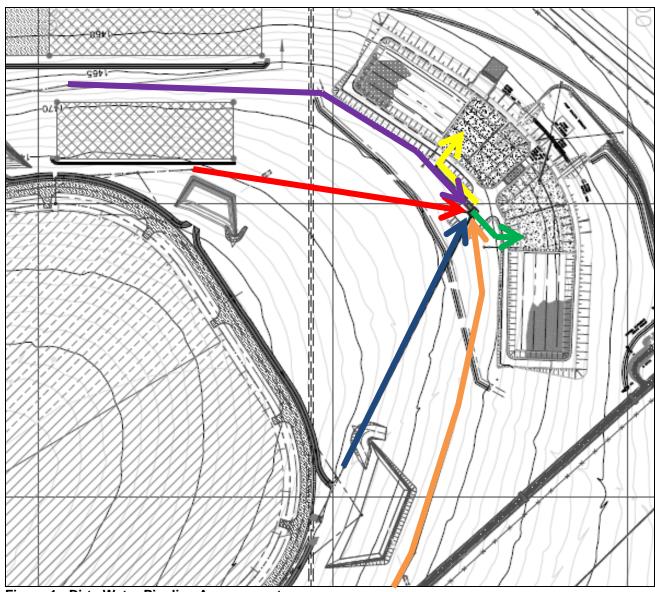
Component: File no.:

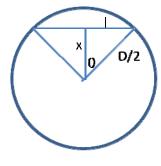
Ash Dump Hydraulics

Computed by: Date: Checked by: 10 yr Ash Dump Stormwater – Dirty and Clean Systems Hydrology and Hydraulic Calculations Date:

Page:

Nicholas Pilz October 2010 Rob Williamson October 2010




Figure 1 : Dirty Water Pipeline Arrangement

The following approach was taking in sizing the pipelines leading from the dirty water canals to the ADDD. A typical pipe sizing calculation is shown below.

Pipe flowing partially full:

Pipe 1 required capacity = 8.54 m³/s Assume optimal pipe efficiency at 75% full

Diameter	2.000	m
Pipe Gradient	0.005	m/m
Mannings' n	0.012	
x	0.500	m
1	0.866	m
21	1.732	m
cos θ	0.5	
θ	60	degrees
2θ	120	degrees
Wetted Area	2.527	m^2

Client: Project: Job no.:

ESKOM

Kusile Power Station 303-00098/06

and Hydraulic Calculations

Ash Dump Hydraulics Component: File no.:

Computed by: Date: Checked by: 10 yr Ash Dump Stormwater - Dirty and Clean Systems Hydrology Date:

Page:

Nicholas Pilz October 2010 Rob Williamson October 2010 36 of

Wetted Perimeter 4.189 m 0.603 m Hydraulic Radius

Velocity 4.208 m/s (based on Mannings' Formula)

 $10.634 \text{ m}^3/\text{s}$ Flowrate

The proposed 2.000 m diameter pipeline is sufficient to pass the design flow of 8.54 m³/s under open channel flow conditions.

Pipe flowing full:

 $8.540 \text{ m}^3/\text{s}$ Design Flow Headwater Level 1479.640 m Tailwater Level 1470.500 m **Height Loss** 9.140 m

Pipeline Length 1528.470 m Minor Losses * 13.500 Pipe Roughness: 3.00E-04 m m²/s K. Viscosity 1.14E-06

The pipe diameter required to pass the design flow was calculated according to the Swamee – Jain equation:

$$f = \frac{0.25}{\left[\log_{10}\left(\frac{\varepsilon}{3.7D} + \frac{5.74}{\text{Re}^{0.9}}\right)\right]^2}$$

Equation 5

Where f =Friction Factor

Pipe roughness (m) D = Pipe diameter (m) Re = Reynolds Number

The Swamee – Jain equation was re-arranged to solve for the required pipe diameter, and through an iterative process, the 2.000 m diameter pipe has sufficient capacity to pass the design flow of 8.54 m³/s under full flow conditions.

The required dirty water pipe diameters are summarised in Table 9.

Table 9: Required Dirty Water Pipe Diameters

Pipeline Required Flow Capacity		Required Pipe Diameter
-	m ³ /s	mm
Pipe 1	8.54	2000
Pipe 2	11.79	2250
Pipe 3	22.23	2250
Pipe 4	22.23	2250
Pipe 5	7.56	2000
Pipe 6	1.904	1200

Pipes 3 and 4 will terminate at with an impact type energy dissipator. Sizing calculations for the energy dissipators are presented in Appendix 4.

^{*} Minor losses assumes and entrance loss coefficient of 0.5 and an exit loss coefficient of 1.0. Assuming inspection manholes at every 200m, Pipe 1 has 9 manholes.

PANEL B Client: **ESKOM** Computed by: Nicholas Pilz **CONSULTANTS** Ash Dump Hydraulics Project: **Kusile Power Station** Component: Date: October 2010 JOINT 303-00098/06 Checked by: Rob Williamson Job no.: File no .: **VENTURE** October 2010 10 yr Ash Dump Stormwater - Dirty and Clean Systems Hydrology Date: and Hydraulic Calculations Page: of 36 11

Ash dump site requires pipes with the following internal diameters:

- 1200

- 2000

- 2250

Check was carried out to determine the flow velocities in the pipe sections for a range of flowrates. This was carried out to determine whether self-scouring velocities are achieved.

The flow velocities and the flowrates in each of the pipe sections is summarised in Table 10.

Table 10: Flow Velocities at varying Flowrates

rable to the releasing at varying the intace									
Flowrate	Flow Velocity in Pipeline (m/s)								
m ³ /s	1200 Ø	2000 Ø	2250 Ø						
0.10	1.22	1.14	1.12						
0.25	1.60	1.50	1.48						
0.50	1.96	1.85	1.82						
1.00	2.38	2.27	2.24						
1.50	2.64	2.55	2.52						

Flow velocity in the pipes is greater than 1 m/s for all flows greater than 100 l/s. This can be assumed to be self scouring under the majority of flow conditions.

6.2 Clean Water Perimeter Drains

Design to maintain sub-critical flow conditions in the canals to avoid large concrete drop structures.

Each sub-catchments served by an individual length of trapezoidal drain terminating in a culvert running under Ash Dump perimeter road.

Clean water design parameters:

- Unlined trapezoidal drains with a 1.00 m base width, 1V: 3H side slopes;
- Unlined drain Mannings' n = 0.023;
- Drain slopes = 1 : 200;
- Drain depth = flow depth + 10% allowance for groundwater + 300mm freeboard (Sub-critical flow conditions).

Flow depth was calculated using the Mannings' equation:

$$Q = \frac{AR^{\frac{2}{3}}S^{\frac{1}{2}}}{n}$$
 Equation 6

Where $Q = Peak Flow (m^3/s)$

A = Cross Section Flow Area (m²)

R = Hydraulic Radius (m)

S = Canal Slope (m/m)

n = Mannings' n value (0.023)

Table 11: Unlined Trapezoidal Clean Water Drain Sizes (Phase 1A)

Drain	Flow Rate	Flow Depth	Velocity	Energy Head	Froude No.	Total Depth
-	m ³ /s	M	m/s	m	-	М
CWT1	0.890	0.546	1.378	0.097	0.640	0.900
CWT2	2.424	1.025	1.763	0.159	0.623	1.427

Client: Title:

ESKOM

Project: Kusile Power Station Job no.: 303-00098/06

Component: Ash Dump Hydraulics File no.:

Date: Checked by: Date: Page: 12

Computed by:

Nicholas Pilz October 2010 Rob Williamson October 2010 of 36

10 yr Ash Dump Stormwater – Dirty and Clean Systems Hydrology and Hydraulic Calculations

Drain	Flow Rate	Flow Depth	Velocity	Energy Head	Froude No.	Total Depth
-	m ³ /s	M	m/s	m	-	М
CWT3	3.215	1.216	1.883	0.181	0.619	1.637
CWT4	1.254	0.680	1.503	0.115	0.633	1.048
CWT5	0.922	0.559	1.391	0.099	0.639	0.915
CWT6	1.440	0.741	1.558	0.124	0.632	1.116
CWT7	0.675	0.457	1.280	0.084	0.643	0.803
CWT8	0.683	0.461	1.284	0.084	0.643	0.807
CWT9	0.975	0.579	1.411	0.102	0.638	0.937
CWT10	1.222	0.668	1.495	0.114	0.635	1.035
CWT11	1.001	0.589	1.421	0.103	0.638	0.948
CWT12	1.381	0.722	1.542	0.121	0.633	1.094
CWT13	1.725	0.830	1.628	0.135	0.629	1.213
CWT14	1.494	0.759	1.572	0.126	0.632	1.135
CWT15	0.956	0.572	1.404	0.101	0.639	0.929
CWT16	0.977	0.580	1.412	0.102	0.638	0.938

Table 12: Unlined Trapezoidal Clean Water Drain Sizes (Phase 1B)

Drain	Flow Rate	Flow Depth	Velocity	Energy Head	Froude No.	Total Depth
-	m ³ /s	M	m/s	m	-	М
CWT17	1.130	0.636	0.636	0.636	0.636	0.999
CWT18	2.247	0.978	0.978	0.978	0.625	1.375
CWT19	1.028	0.599	0.599	0.599	0.637	0.959
CWT20	1.890	0.879	0.879	0.879	0.628	1.267
CWT21	1.271	0.685	0.685	0.685	0.634	1.054
CWT22	0.704	0.469	0.469	0.469	0.645	0.816
CWT23	0.883	0.544	0.544	0.544	0.639	0.898
CWT24	0.896	0.549	0.549	0.549	0.639	0.904
CWT25	1.074	0.616	0.616	0.616	0.637	0.978
CWT26	0.532	0.393	0.393	0.393	0.644	0.732
CWT27	0.685	0.462	0.462	0.462	0.643	0.808
CWT28	0.688	0.464	0.464	0.464	0.642	0.810
CWT29	0.868	0.537	0.537	0.537	0.641	0.891

Table 13: Unlined Trapezoidal Clean Water Drain Sizes (Phase 2)

Drain	Flow Rate	Flow Depth	Velocity	Energy Head	Froude No.	Total Depth
-	m³/s	M	m/s	m	-	m

Clean water drains terminate at concrete culverts, running under the perimeter access road

Culverts sized to maintain flowrate without causing backwater in canal.

Culvert capacity calculated using Mannings' equation:

Client: Project:

ESKOM

Kusile Power Station Job no : 303-00098/06

and Hydraulic Calculations

Component: Ash Dump Hydraulics File no.:

10 yr Ash Dump Stormwater – Dirty and Clean Systems Hydrology

Computed by: Date: Checked by: Date:

Page:

Nicholas Pilz October 2010 Rob Williamson October 2010 36 of

$$Q = \frac{AR^{\frac{2}{3}}S^{\frac{1}{2}}}{n}$$
 Equation 7

Peak Flow (m³/s) Where Q =

> Cross Section Flow Area (m²) A =

R= Hydraulic Radius (m) S= Canal Slope (m/m)

n = Mannings' n value (0.023)

Initially sized for 1No 750 x 750 culvert

- → calculate flow depth
- → calculate velocity and energy head
- → check flow depth + energy head < 750mm

If not, add additional culvert and repeat process.

Table 14: Clean Water Drain Culvert Sizing (Phase 1A)

Drain	Arrangement	Flow Rate	Flow Depth	Velocity	Energy Head	Total Depth
-	-	m ³ /s	m	m/s	m	m
CWT1	2No 750 x 750	0.890	0.287	2.066	0.218	0.505
CWT2	4No 750 x 750	2.424	0.329	2.456	0.307	0.636
CWT3	4No 750 x 750	3.215	0.343	3.125	0.498	0.841
CWT4	2No 750 x 750	1.254	0.363	2.303	0.270	0.633
CWT5	2No 750 x 750	0.922	0.294	2.090	0.223	0.517
CWT6	2No 750 x 750	1.440	0.399	2.407	0.295	0.694
CWT7	1No 750 x 750	0.675	0.239	3.764	0.722	0.961
CWT8	1No 750 x 750	0.683	0.241	3.780	0.728	0.969
CWT9	2No 750 x 750	0.975	0.305	2.131	0.232	0.537
CWT10	2No 750 x 750	1.222	0.356	2.288	0.267	0.623
CWT11	2No 750 x 750	1.001	0.311	2.145	0.235	0.546
CWT12	2No 750 x 750	1.381	0.388	2.373	0.287	0.675
CWT13	3No 750 x 750	1.725	0.326	2.351	0.282	0.608
CWT14	2No 750 x 750	1.494	0.41	2.430	0.301	0.711
CWT15	2No 750 x 750	0.956	0.301	2.117	0.228	0.529
CWT16	2No 750 x 750	0.977	0.306	2.129	0.231	0.537

Table 15 : Clean Water Drain Culvert Sizing (Phase 1B)

			izilig (Fliase 16)			
Drain	Arrangement	Flow Rate	Flow Depth	Velocity	Energy Head	Total Depth
-	-	m ³ /s	m	m/s	m	М
CWT17	2*750*750	1.130	0.338	2.228	0.253	0.591
CWT18	3*750*750	2.247	0.388	2.574	0.338	0.726
CWT19	2*750*750	1.028	0.317	2.162	0.238	0.555
CWT20	3*750*750	1.890	0.346	2.428	0.301	0.647
CWT21	2*750*750	1.271	0.366	2.315	0.273	0.639
CWT22	1*750*750	0.704	0.245	1.916	0.187	0.432
CWT23	2*750*750	0.883	0.286	2.059	0.216	0.502

Client: Job no.: 303-00098/06 Title:

ESKOM Project: Kusile Power Station

Component: File no.:

Ash Dump Hydraulics Date:

Computed by: Checked by: Date:

Page:

Nicholas Pilz October 2010 Rob Williamson October 2010 36 of

10 yr Ash Dump Stormwater – Dirty and Clean Systems Hydrology and Hydraulic Calculations

Drain	Arrangement	Flow Rate	Flow Depth	Velocity	Energy Head	Total Depth
-	-	m³/s	m	m/s	m	M
CWT24	2*750*750	0.896	0.288	2.075	0.219	0.507
CWT25	2*750*750	1.074	0.326	2.197	0.246	0.572
CWT26	1*750*750	0.532	0.344	2.062	0.217	0.561
CWT27	1*750*750	0.685	0.221	4.134	0.871	1.092
CWT28	1*750*751	0.688	0.221	4.154	0.879	1.100
CWT29	2*750*752	0.868	0.282	2.051	0.214	0.496

Table 16 : Clean Water Drain Culvert Sizing (Phase 2)

Drain	Arrangement	Flow Rate	Flow Depth	Velocity	Energy Head	Total Depth
-	-	m³/s	m	m/s	m	m

Client: Project: Job no.:

ESKOM

Kusile Power Station 303-00098/06

and Hydraulic Calculations

Ash Dump Hydraulics Component: File no.:

Computed by: Date: Checked by: 10 yr Ash Dump Stormwater - Dirty and Clean Systems Hydrology Date:

Page:

Nicholas Pilz October 2010 Rob Williamson October 2010 36 of

7. **ASH DUMP DIRTY DAM STORAGE CAPACITY**

7.1 **Ash Dump Stormwater Storage Volume**

The required stormwater storage capacity for the Ash Dump Dirty Dam (ADDD) is 204 000 m³, and corresponds with the 1:50 yr / 24 hr storm event falling on the maximum dirty catchment area of 1 553 596 m². This volume was provided by Black & Veatch.

7.2 **Dust Suppression & Irrigation Storage (Operational Storage)**

ADDD is provided for 72 hours of operational storage for dust suppression and irrigation.

During Ash - FGD Co-disposal phase:

Dust Suppression Area:

Advancing face and a 50 m section behind the face

Irrigation Area:

Equivalent to 1 year of disposal behind Dust Suppression Area

During FGD disposal phase:

Dust Suppression Area: Irrigation Area:

Advancing face and a 25 m section behind the face Extends for 50 m behind the Dust Suppression Area

Dust control and irrigation storage volumes are based on 1 mm/day of equivalent rainfall. 1 mm/day is equivalent to 0.5*the average annual daily rainfall at Kusile Site.

The dust control and irrigation volumes during disposal are shown in Table 17 below.

Table 17: Dust Control and Irrigation Volumes

Years	Dust Suppression Area	Irrigation Area	Daily Volume	72 hr Volume
-	km ²	km²	m³/day	m ³
1	0.500	0.028	527.865	1583.595
2	0.464	0.098	562.196	1686.589
3	0.294	0.102	395.403	1186.210
4	0.680	0.175	854.191	2562.573
5	0.504	0.116	620.522	1861.565
6	0.131	0.190	320.956	962.867
7	0.098	0.114	212.206	636.619
8	0.127	0.115	241.379	724.138

The maximum pumping capacity from the ADDD is 25l/s.

Based on the maximum pumping capacity, the Operational storage was set at 6480 m³, which is equivalent to 72 hrs of pumping at 25l/s.

7.3 **ADDD Storage Volume**

ADDD storage volume is sufficient to store the maximum dirty water run-off for 1:50 yr / 24hr storm event, and for 72 hours of dust control and irrigation.

Table 18: Required ADDD Storage Volume

Stormwater Volume	Dust and Irrigation Volume	Total Required Volume
m ³	m ³	m ³
204 000	6480	210480

ADDD has a design total storage capacity of 227410 m³, which includes an allowance for silt accumulation in the sump.

Client: Project:

ESKOM

Kusile Power Station Job no.: 303-00098/06 File no .:

and Hydraulic Calculations

Component: Ash Dump Hydraulics Computed by: Date: Checked by: Date:

Page:

Nicholas Pilz October 2010 Rob Williamson October 2010 36

8. **CLEAN WATER RETENTION PONDS**

Clean stormwater runoff flows into retention / settling dams.

Stilled clean run-off will then flow back into the natural streams surrounding the ash dump.

Catchment areas are small (<10km²) therefore a triangular hydrograph can be used to determine the stormwater volume.

10 yr Ash Dump Stormwater – Dirty and Clean Systems Hydrology

The shaded area under the graph represents the storm volume.

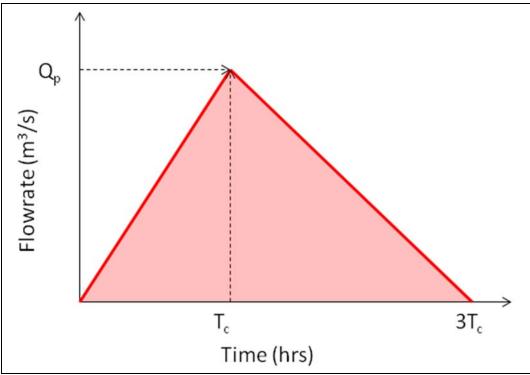


Figure 2: Triangular Hydrograph used to calculate the storm volume

Table 19: Clean Stormwater Volumes (Phase 1A)

Drain	Flow Rate	Time of Concentration	Flood Volume
-	m ³ /s	Hrs	m ³
CWT1	0.890	0.645	3100
CWT2	2.424	0.662	8665
CWT3	3.215	0.659	11435
CWT4	1.254	0.570	3860
CWT5	0.922	0.556	2767
CWT6	1.440	0.570	4437
CWT7	0.675	0.493	1797
CWT8	0.683	0.484	1785
CWT9	0.975	0.486	2560
CWT10	1.222	0.554	3652
CWT11	1.001	0.251	1358
CWT12	1.381	0.257	1914
CWT13	1.725	0.237	2210

Client: Job no.: Title:

ESKOM

Project: Kusile Power Station Component: 303-00098/06 File no.:

Ash Dump Hydraulics

Computed by: Date: Checked by: Date:

17

Page:

Nicholas Pilz October 2010 Rob Williamson October 2010 of 36

10 yr Ash Dump Stormwater – Dirty and Clean Systems Hydrolog	gy
and Hydraulic Calculations	

Drain	Flow Rate	Time of Concentration	Flood Volume
-	m ³ /s	Hrs	m ³
CWT14	1.494	0.243	1964
CWT15	0.956	0.300	1548
CWT16	0.977	0.274	1445

Table 20: Clean Stormwater Volumes (Phase 1B)

Drain	Flow Rate	Time of Concentration	Flow Volume
-	m ³ /s	Hrs	m ³
CWT17	1.130	0.459	2800
CWT18	2.247	0.628	7614
CWT19	1.028	0.571	3172
CWT20	1.890	0.587	5992
CWT21	1.271	0.611	4195
CWT22	0.704	0.650	2471
CWT23	0.883	0.611	2913
CWT24	0.896	0.607	2936
CWT25	1.074	0.610	3539
CWT26	0.532	0.585	1680
CWT27	0.685	0.614	2271
CWT28	0.688	0.617	2293
CWT29	0.868	0.627	2936

Table 21 : Clean Stormwater Volumes (Phase 2)

Drain	Flow Rate	Time of Concentration	Flow Volume
-	m ³ /s	Hrs	m ³

PANEL B Client: **ESKOM** Computed by: Nicholas Pilz CONSULTANTS Project: Kusile Power Station Component: Ash Dump Hydraulics Date: October 2010 JOINT Job no.: 303-00098/06 Checked by: Rob Williamson File no .: **VENTURE** October 2010 Date: 10 yr Ash Dump Stormwater – Dirty and Clean Systems Hydrology and Hydraulic Calculations Page: of 36

9.1 TEMPORARY CLEAN WATER INTERCEPTION DRAINS

During construction of Phase 1, clean water interception drains will be constructed along the 5 yr footprint to prevent cleanwater from entering the open footprint.

Figure 3: Temporary Clean Water Drain Catchment Areas

Table 22: 1:10yr Temporary Clean Water Runoff Flowrates

Catchment Area		Flowpath	Time of Concentration	Intensity*	Runoff C	Flowrate
Clean Catchment	km ²	Km	hrs	mm/hr	-	m ³ /s
West (Orange)	0.145	1.073	0.812	103.509	0.436	1.819
East (Pink)	0.172	1.052	0.711	118.123	0.436	2.463

^{*} Intensity based on 1:10 yr 24 hr Point Precipitation of 84 mm

9.2 TEMPORARY CLEAN WATER INCEPTION DRAIN SIZING

Design to maintain sub-critical flow conditions in the canals to avoid large concrete drop structures.

Each sub-catchments served by an individual length of trapezoidal drain terminating in a culvert running under Ash Dump perimeter road.

Clean water design parameters:

- Unlined trapezoidal drains with a 1.00 m base width, 1V: 3H side slopes;
- Unlined drain Mannings' n = 0.023;
- Drain slopes = 1 : 200;
- Drain depth = flow depth + 10% allowance for groundwater + 300mm freeboard (Sub-critical flow conditions).

PANEL B Client: **ESKOM** Computed by: Nicholas Pilz **CONSULTANTS** Project: Kusile Power Station Component: Ash Dump Hydraulics Date: October 2010 JOINT Job no.: 303-00098/06 Checked by: Rob Williamson File no .: **VENTURE** October 2010 10 yr Ash Dump Stormwater – Dirty and Clean Systems Hydrology Date: 36 and Hydraulic Calculations Page: of

Flow depth was calculated using the Mannings' equation:

$$Q = \frac{AR^{\frac{2}{3}}S^{\frac{1}{2}}}{n}$$
 Equation 6

Where $Q = Peak Flow (m^3/s)$

A = Cross Section Flow Area (m²)

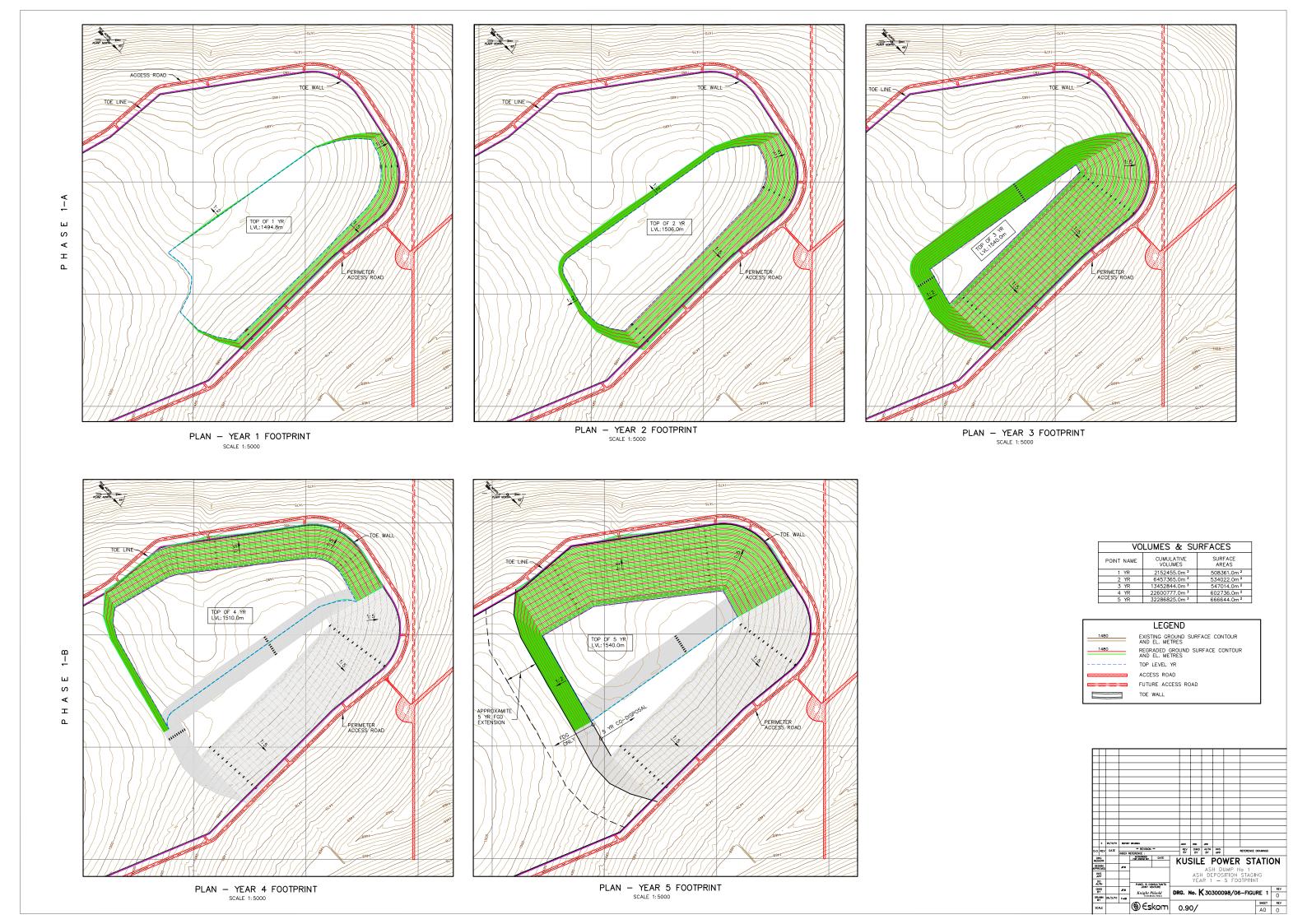
R = Hydraulic Radius (m) S = Canal Slope (m/m)

n = Mannings' n value (0.023)

Table 23: Temporary Unlined Trapezoidal Clean Water Drain Sizes

Drain	Flow Rate	Flow Depth	Velocity	Energy Head	Froude No.	Total Depth
-	m ³ /s	М	m/s	m	-	m
West Drain	1.819	0.389	1.133	0.065	0.589	1.3
East Drain	2.463	0.470	1.261	0.081	0.598	1.4

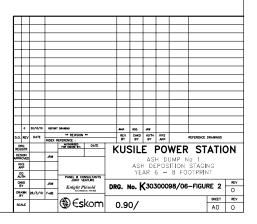
9.3 TEMPORARY CLEAN WATER RETENTION PONDS


Table 24: Temporary Clean Stormwater Volumes

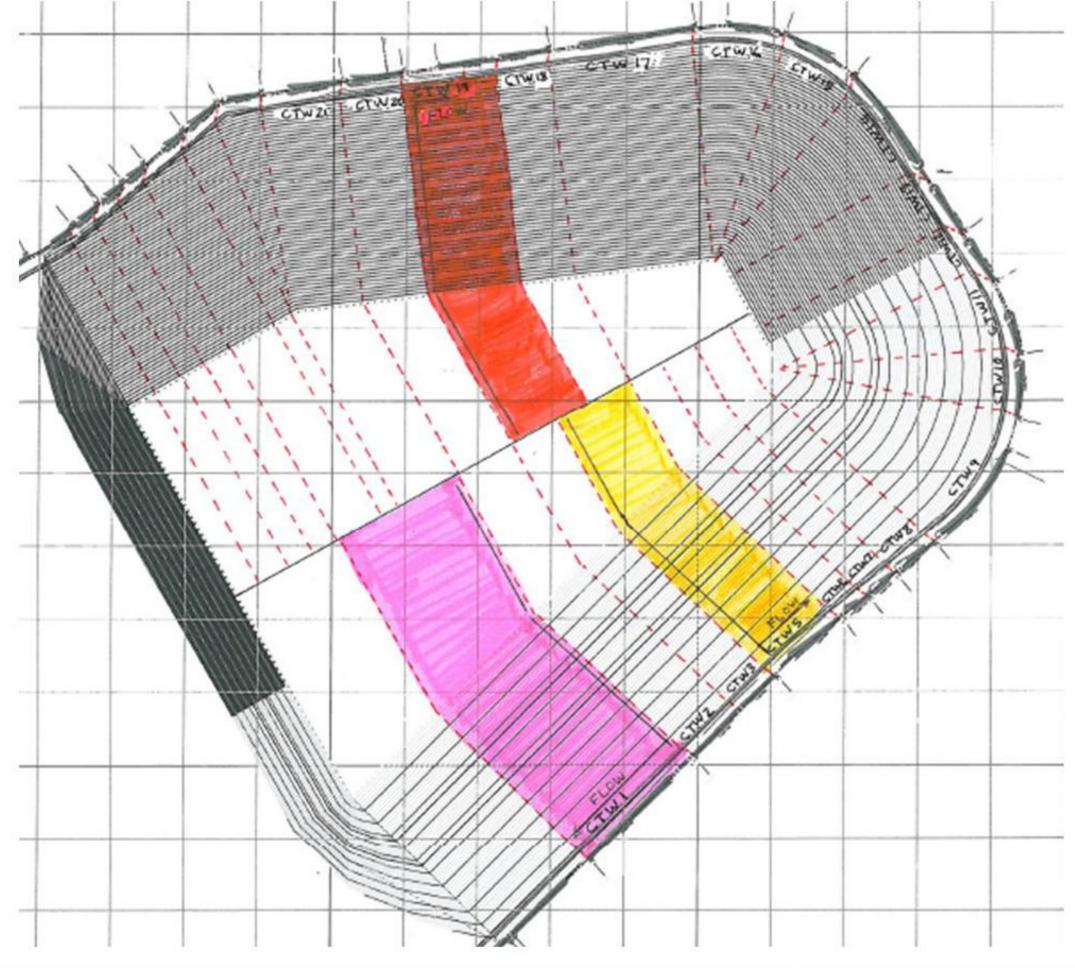
- table = 1 1 1 cm portary or carrie or contract or contract or carries or ca				
Drain	Flow Rate	Time of Concentration	Flood Volume	
-	m ³ /s	Hrs	m ³	
CWT1	1.819	1.073	7972	
CWT2	2.463	1.052	9456	

PANEL B Client: **ESKOM** Computed by: Nicholas Pilz CONSULTANTS Project: Kusile Power Station Component: Ash Dump Hydraulics October 2010 JOINT Job no.: 303-00098/06 File no.: Checked by: Rob Williamson **VENTURE** October 2010 10 yr Ash Dump Stormwater – Dirty and Clean Systems Hydrology Date: 36 and Hydraulic Calculations Page:

APPENDIX 1


Dirty Water Catchment Areas

VOLUMES & SURFACES		
POINT NAME	CUMULATIVE VOLUMES	SURFACE AREAS
6 YR	33192067.0m	115569.0m ²
7 YR	34097310.0m ³	109979.0m ²
8 YR	35002552.0m ³	109481.0m ²



PANEL B Client: **ESKOM** Computed by: Nicholas Pilz CONSULTANTS Project: Kusile Power Station Component: Ash Dump Hydraulics Date: October 2010 JOINT Job no.: 303-00098/06 File no : Checked by: Rob Williamson **VENTURE** October 2010 10 yr Ash Dump Stormwater – Dirty and Clean Systems Hydrology Date: 36 and Hydraulic Calculations Page: of

APPENDIX 2

Clean Water Catchment Areas

Canal	Catchment Area	Flowpath Length	Time of Concentration	Point Precipitation	Intensity	Runoff Coefficient	Flowrate
-	krm²	km	hr hr	mm	mm/hr	<u> </u>	m³/s
CTW1	0.998	0.6883	0.6586	141	214.091	0.436	2.59
CTW5	0.0195	0.4583	0.4933	141	285.844	0.436	0.67
CTW19	0.0455	0.6094	0.6113	141	230.651	0.436	1.27

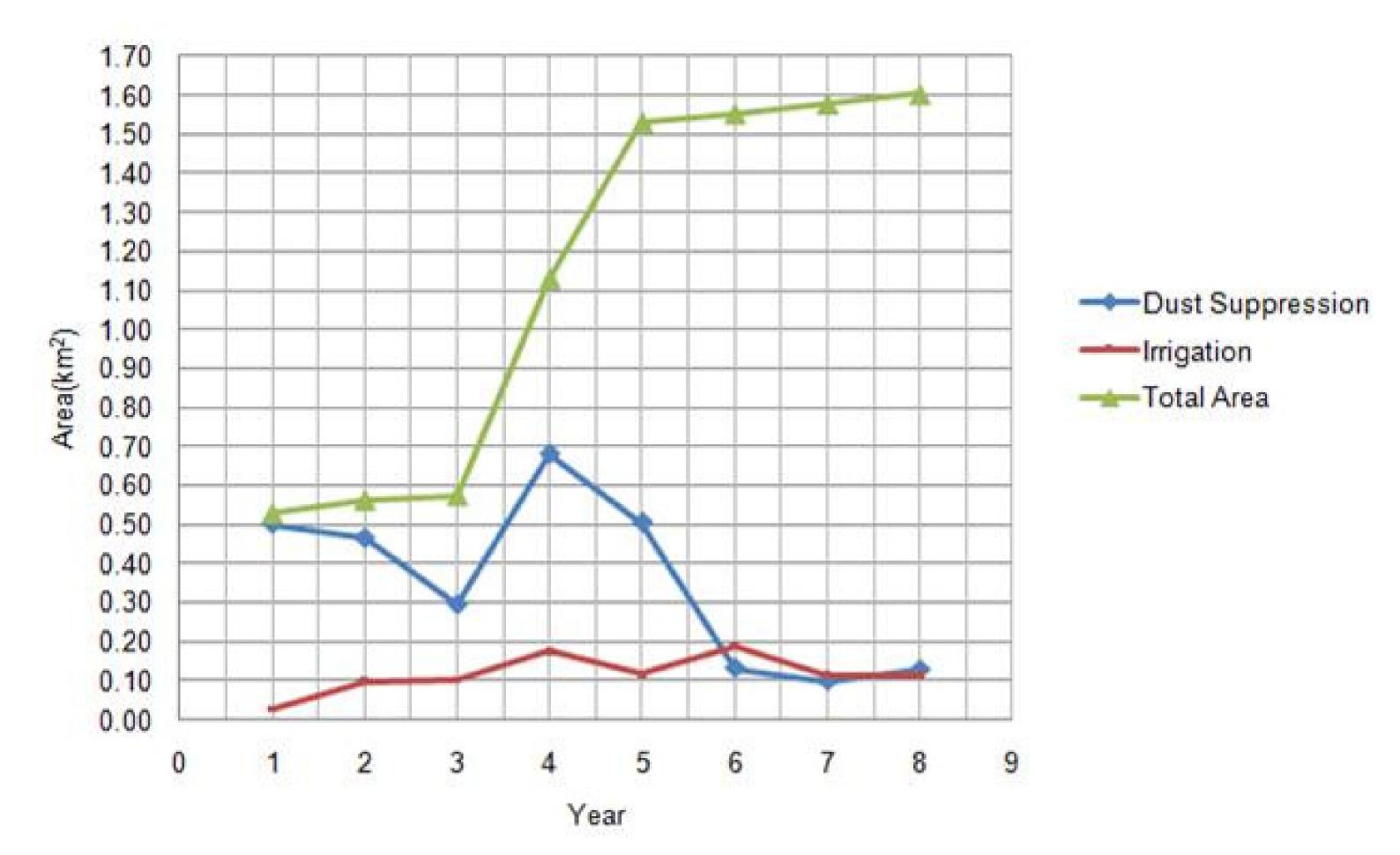
PANEL B CONSULTANTS JOINT **VENTURE**

Client:

ESKOM Project: Kusile Power Station Job no.: 303-00098/06

and Hydraulic Calculations

Component: File no.:


Ash Dump Hydraulics

Computed by: Date: Checked by: Date: 10 yr Ash Dump Stormwater – Dirty and Clean Systems Hydrology Page:

Nicholas Pilz October 2010 Rob Williamson October 2010 36

APPENDIX 3

Dirty Water Catchment Area Graph

 PANEL B CONSULTANTS JOINT VENTURE
 Client: ESKOM
 ESKOM
 Component: Musile Power Station Component: Musile Power Station File no.:
 Component: Ash Dump Hydraulics File no.:

 10 yr Ash Dump Stormwater – Dirty and Clean Systems Hydrology

and Hydraulic Calculations

Computed by: Nicholas Pilz
Date: October 2010
Checked by: Rob Williamson
Date: October 2010
Page: 23 of 36

APPENDIX 4

Energy Dissipator Design Calculations

PANEL B **CONSULTANTS** JOINT **VENTURE**

Client: Project: Job no.: Title:

ESKOM

Kusile Power Station Component: 303-00098/06 File no.:

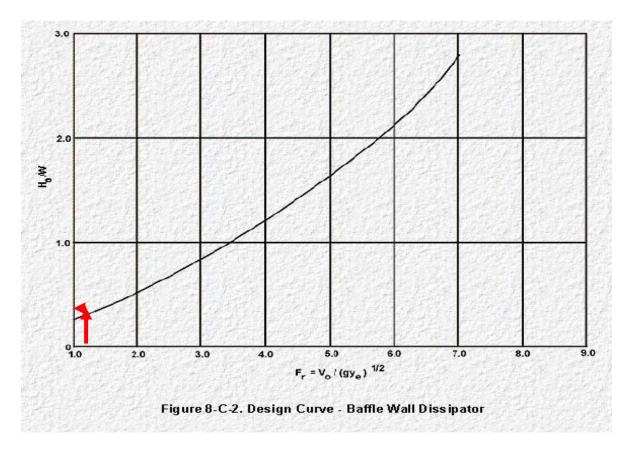
and Hydraulic Calculations

Ash Dump Hydraulics

Date: Checked by: 10 yr Ash Dump Stormwater - Dirty and Clean Systems Hydrology

Date: Page: 24

Computed by:


Nicholas Pilz October 2010 Rob Williamson October 2010 of 36

Pipe 3 and Pipe 4 Energy Dissipators

Inlet flow from Plant Terrace

Q =	22.23m ³ /s
Pipe Wetted Area 2250 Ø =	3.976 m ²
Velocity =	5.591 m/s
$y_e = (A/2)^{1/2} =$	1.672 m
$Fr = u / \sqrt{gy_e} =$	1.186
$H_0 = y_e + v^2/2g =$	2.455 m

From Figure 8-C-2,

 $H_0/W =$ 0.371 W =6.800 m

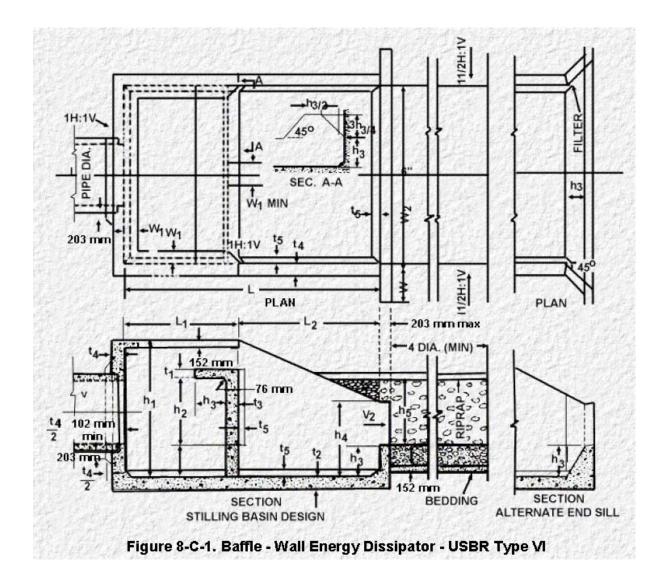
The energy dissipator has the following dimensions based on Figure 8-C-1:

h ₁ =	5.04 m	w ₂ =	2.27 m
L =	8.85 m	t ₃ =	0.60 m
h ₂ =	4.27 m	t ₂ =	0.30 m
$h_3 =$	1.13 m	t ₁ =	0.60 m
L ₁ =	4.00 m	t ₄ =	0.40 m
L ₂ =	4.85 m	t ₅ =	0.15 m
$h_4 =$	3.33 m	$w_1 =$	0.58 m

PANEL B CONSULTANTS JOINT VENTURE Client: Project: Job no.: ESKOM Kusile Power Station 303-00098/06

Component: File no.: Ash Dump Hydraulics

Date: Checked by: Date:


25

Page:

Computed by:

Nicholas Pilz
October 2010
Rob Williamson
October 2010
of 36

Title: 10 yr Ash Dump Stormwater – Dirty and Clean Systems Hydrology and Hydraulic Calculations

PANEL B	Client:	ESKOM			Compute	ed by:	Nicholas	s Pilz
CONSULTANTS	Project:	Kusile Power Station	Component:	Ash Dump Hydraulics	Date:		October	2010
JOINT	Job no.:	303-00098/06	File no.:		Checked	l by:	Rob Will	iamson
VENTURE	Title:	10 yr Ash Dump Stormwate	er – Dirty and Cle	ean Systems Hydrology	Date:		October	2010
		and Hydraulic Calculations	•		Page:	26	of	36

APPENDIX 5

System Descriptions

SYSTEM DESCRIPTION DUST SUPPRESSION & IRRIGATION

1.1 System Identification

System Name Ash Dump Dust Suppression

KKS Code ETN

1.2 Function

The Dust Suppression & Irrigation System will supply recycle water at the required flows and pressures to the ash dump dust suppression sprinklers.

1.3 Process Description

A process flow diagram of the dust suppression & irrigation system is shown on 146838-0ETN-M2662D.

The Dust Suppression & Irrigation System will include the following major equipment and components:

- Two 50 percent Ash Dump Dust Suppression pumps.
- Ash Dump Dust Suppression sprinklers/water guns.
- Associated piping, valves, instruments, controls, and accessories.

The ash dump dust suppression pumps will draw recycle water from the Ash Dump Dam. The pumps will operate as needed to supply dust suppression water to the ash dump dust suppression sprinklers. Two primary pumps will be provided.

Initial pump operation will be manual with either pump running with the other pump on standby. The second pump will start automatically when the pressure in the discharge header drops below a set value. The pumps will be operated primarily at the local control panel, but will also be controllable from the DCS. Each pump has a local pressure indicator on the individual suction and discharge pipe to view the suction and discharge pressure of each pump. Pumps will be tripped by low level alarms from level transmitters in the Ash Dump Dam.

Adequate, constant pressure to the sprinklers via the supply line will be maintained by a combination of automatically starting and stopping the pumps and automatically modulating a recirculation control valve. The control valve will be automatically controlled by the pressure indicating transmitter in the supply header to provide a minimum flow for the pumps.

A magnetic flow meter will be installed in the supply header downstream of the ash dump dust suppression pump recirculation line to monitor the flow of the system.

SYSTEM DESCRIPTION DUST SUPPRESSION & IRRIGATION

1.4 Basis for Design

Each pump will be sized to provide half of the required flow for the entire dust suppression sprinkler system. The total head required for the pumps will be determined by the piping and friction losses and the location and pressure requirements of the ash dump dust suppression sprinklers.

Piping will be galvanized carbon steel. All buried pipe will be PVC-M pipe. Butterfly valves will be used in all piping 80 mm nominal size and larger and will be constructed of cast iron. Ball valves will be used in all piping 65 mm nominal size and smaller and will be constructed of stainless steel. Check valves will be swing check type and constructed of carbon steel.

Temporary carbon steel cone strainers will be provided. These will be removed after start-up.

SYSTEM DESCRIPTION ASH DUMP DAM MAKEUP WATER

1.1 System Identification

System Name Ash Dump Dam Makeup Water

KKS Code ETN

1.2 Function

The Ash Dump Dam Makeup Water System will supply recycle water at the required flow to the Ash Dump Dam to maintain a minimum liquid level and replenish water used for dust suppression.

1.3 Process Description

A process flow diagram of the ash dump dam makeup water system is shown on 146838-0ETN-M2662C.

The Ash Dump Dam Makeup Water System will include the following major equipment and components:

Associated piping, valves, instruments, and controls.

The ash dump dam makeup water system will gravity feed recycle water from the Holding/Recycle Dam to the Ash Dump Dam. The system will automatically operate as needed to supply make-up water to the ash dump dam to maintain level. Two motorized open/close butterfly valves will be used to control levels in the two ash dump dam cells.

1.4 Basis for Design

One pipeline will be taken off each of the four supply lines from the Holding/Recycle Dam to the Holding/Recycle Dam Pump Suction Header. The four pipelines will be headered together and routed underground to the Ash Dump Dam Workshop. The header will then split to each of the Ash Dump Dam cells. Each of these pipelines will contain a motorized open/close butterfly valve. Each dam's valve acts automatically and independently to maintain level based on dam level transmitters. Each dam will have three redundant level transmitters.

Because the Ash Dump Dam cells are larger than the Holding/Recycle Dam cells, the Ash Dump Dam will also be used to drain the Holding/Recycle Dam for maintenance. Because of this, manual operation of the isolation valves will be allowed.

The Ash Dump Dam Makeup Water header will be sized to maintain the required makeup water flow to the ash dump dam. A change in pipe size will be required to maintain an appropriate flow to the Ash Dump Dam. The location of the change in pipe size will be determined to ensure the flow will remain relatively constant.

SYSTEM DESCRIPTION ASH DUMP DAM MAKEUP WATER

Piping will be galvanized carbon steel. Butterfly valves shall be used in all piping 80 mm nominal size and larger and shall be constructed of cast iron. Ball valves shall be used in all piping 65 mm nominal size and smaller and shall be constructed of stainless steel.

APPENDIX 5

SPECIALIST REPORTS

Report: Classification and Environmental Evaluation of Kusile Power Station Ash and FGD Gypsum in Terms of the Minimum Requirements: November 2008"

Panel B Consultants Joint Venture

Kusile Power Station Project: Classification and Environmental Evaluation of Ash and FGD Gypsum in terms of the Minimum Requirements

November 2008

Report prepared for:

Linda Munro Environmental Team Panel B Consultants Joint Venture P O Box 2700 Rivonia, 2128

D A Baldwin, Ph.D., Pr.Sci.Nat, MIWM, MSACI Director, En-Chem Consultants cc P O Box 10324, George, 6530 Tel: 044 874 3638; Fax: 086 689 7896

Disclaimer:

This report has been prepared by En-Chem Consultants cc, with all reasonable skill, care and diligence within the terms of the Contract with the client, incorporating our General Terms and Conditions of Business and taking account of the resources devoted to it by agreement with the client.

We disclaim any responsibility to the client and others in respect of any matters outside the scope of the above.

This report is confidential to the client and we accept no responsibility of whatsoever nature to third parties to whom this report, or any part thereof, is made known. Any such party relies on the report at their own risk.

Executive Summary

The gypsum, which will be generated at the new Kusile Power Station that is being constructed near Witbank, would be formally classified as a waste product, because it is generated from a flue gas cleaning process, and, therefore, must be classified and the environmental risks assessed using the Minimum Requirements. It is estimated that each of the six scrubbing units at the Kusile Power Station will generate 464 tons/day of gypsum, i.e. once all six units are in operation in 2016, a total of 2784 tons/day will be generated.

En-Chem Consultants was requested by the Panel B Consultants Joint Venture to classify the gypsum product in terms of the requirements and to evaluate the utilisation, treatment and disposal options. As co-disposal with general waste and mono-disposal are both potential options for the gypsum both the Toxicity Characteristic Leaching Procedure and Acid Rain Leaching Procedure were used. One option is to dispose in the ash dam that will be constructed on site and a sample of ash plus a mixture of ash and gypsum have also been investigated. As the Kusile Power Station is just being built, samples of the ash were obtained from Kendal Power Station and the FGD gypsum from an overseas facility that uses the same process. Note that these materials will be sufficiently similar to those that will be generated from the new Kusile Plant to be able to determine the waste management requirements but, once the first Kusile unit is operational in 2013, samples must be obtained and the waste evaluation repeated.

The FGD Gypsum is predominantly calcium sulphate dihydrate but it contains a number of minor elements, i.e. Al, 0.254%; Mg, 0.22%; P, 0.428%; plus of a number of trace elements (<0.10%), i.e. Fe, F, K, etc. The FGD Gypsum sample leached only fluoride at a concentration above it acceptable risk limit using both the TCLP and the ARLP tests. Fluoride is a moderate hazard according to the Minimum Requirements and, therefore, the FGD gypsum formally classifies as a moderate hazard waste.

The Kendal Power Station Ash leaches Mn and Pb at a concentration above their acceptable risk limits using TCLP solution number 2 and, therefore, as both elements are classified as high hazards, the ash classifies as high hazard waste, if disposed with general waste. However, using the ARLP, no element is leached above its acceptable risk limit and, therefore, the ash formally classifies as non-toxic and, because it is also not-flammable, reactive or corrosive, it classifies as non-hazardous for disposal to a mono-disposal landfill or ash dam. The leaching of salts for the ash could, however, lead to an increase in the salinity of important water resources and, therefore, control of any leachate is required.

The Ash/FGD Gypsum (6:1) mixture leaches Mn, Pb and P concentrations above their acceptable risk limits using TCLP solution number 1. Because Mn and Pb are classified as high hazard species, the mixture classifies as high hazard waste if co-disposed with general waste. However, the mixture leaches only F at a concentration above its acceptable risk limit using the ARLP. As F classifies as a moderate hazard species, the mixture classifies as moderate hazard waste for disposal to a mono-disposal landfill. The origin of the fluoride is mainly the gypsum and, therefore, the hazard rating of the ash is increased by mixing with gypsum.

The results show that mono-disposal of the FGD Gypsum, either separately or with the ash would result in lower environmental risks that co-disposal with general waste. It may be more economic to dispose of the two wastes in two separate facilities, as the ash which is classified as non-hazardous and is produced in much higher amounts could be disposed to a facility with a lower grade liner than that required for the gypsum and ash/gypsum mixture. In addition,

disposing the FGD Gypsum its own mono-disposal facility would mean that, if required, the material could be recovered and utilised in the future. Treatment of the FGD Gypsum with lime or the use of excess lime in the gas cleaning process to reduce the leachability of the fluoride should be considered. The amount of excess lime, CaO or Ca(OH)₂, required would be about 2.5% by mass.

The actual choice of liners for the ash dam, a FGD gypsum mono-disposal site or a site that takes the mixed waste will depend on a number of other factors not considered in this report, e.g. the climatic water balance at the site and the presence of any groundwater that has to be protected.

When considering the environmental risks posed by most utilisation options, the analytical data presented in this report can be used to determine, at least initially, if it meets that standards required, e.g. in the manufacture of the various grades of cement from cement clinker; in the manufacture of bison board and as agricultural soil ameliorant. For agricultural use, the Waste Water Sludge Guidelines, which are based on the load of heavy metals and other potential pollutants that can be added to an agricultural soil, can be used to give an idea of the possible environmental impact of the gypsum. A brief comparison of the results obtained for the current sample of FGD Gypsum with the guidelines suggests that this option is worth pursuing further, although a separate in-depth study would have to be done.

A draft Material Safety Data Sheet that is required for handling, storage and transport of the FGD Gypsum has also been produced.

Table of Contents

Exe	utive Summary	
1.	Introduction	2
2.	Overview and Approach to Waste Classification.	٠٠
2.	. General Background	··· ·
2.	Classification of Hazardous Waste	۶
2.	Acceptable Load Calculations	(
2.	Leaching Characteristics of Solid Wastes	Ç
2.	Delisting of Hazardous Wastes	11
2.	Landfill Restrictions	11
2.	. Landfill Classification	12
2.	. Revision of the Minimum Requirements	12
3.	Analytical Procedures	12
4.	Classification of the Waste Materials	14
4.	. Classification of the Sample S1: FGD Gypsum	14
	4.1.1. Composition of the FGD Gypsum	14
	1.1.2. Primary Classification	14
	1.1.3. Toxicity Rating	14
	4.1.3.1. Chronic Toxicity	14
	4.1.3.2. Acute Toxicity	15
	l.1.4. Conclusion	15
4.2	Classification of the Sample S2: Kendal Power Station Ash	15
	.2.1. Primary Classification	16
	-2.2. Toxicity Rating	16
	4.2.2.1. Chronic Toxicity	16
	4.2.2.2. Acute Toxicity	16
	.2.3. Conclusion	17
4.3	Classification of the Sample S3: Ash/FGD Gypsum Mixture	17
	.3.1. Primary Classification	17
	.3.2. Toxicity Rating	17
	4.3.2.1. Chronic Toxicity	17
	4.3.2.2. Acute Toxicity	18
	3.3. Conclusion	8
4.4	Treatment and Disposar of Pob Gypsum	8
	4.1. Moisture Content	8
	4.2. Non-toxic Pollutants	8
4	4.3. Disposal to Landfill	9
	4.4.3.1. Monodisposal	9
) <u>4</u> %	4.4.3.2. Co-disposal with General Waste	0
5. T	filication of the Draduct Communication	1

6.	Conclusions	23
	References	
App	pendix 1: Draft MSDS for the FGD Gypsum	2 <i>6</i>
	pendix 2: Copy of the M and L Laboratory Services Certificate of Analysis	

1. Introduction

Eskom has just started the construction of the new Kusile Power Station near Witbank, Mpumalanga. The 4 818-MW station will consist of six 803MW units; the first unit will enter commercial operation in 2013, with the subsequent five units being commissioned in eightmonth intervals thereafter. Each unit will be fitted with a flue gas desulphurisation (FGD) facility, as an atmospheric-emission abatement technology to ensure compliance with new air quality standards.

The Flue Gas Desulphurisation scrubbing process injects a limestone or calcium oxide slurry into the gas stream, where it reacts with the sulphur dioxide to form calcium sulphite, which is then oxidised by air to produce calcium sulphate The suspended calcium sulphate dehydrate (gypsum) is separated and dried down to a moisture content of ~10%. Eskom opted for the water-intensive FGD route in a trade-off between adding to the plant's water footprint and reducing atmospheric emissions. It is estimated that each of the six scrubbing units will generate 464 tons/day of gypsum, i.e. once all six units are in operation in 2016, a total of 2784 tons/day will be generated.

The gypsum is formally classified as a waste product, because it is generated from a flue gas cleaning process, and, therefore, must be classified and the environmental risks assessed using the Minimum Requirements [1, 2]. However, depending on its purity, the FGD gypsum can be a valuable material and, in Europe, it is widely used in the building industry, as a substitute for natural gypsum and by heating to $\sim 150\,^{\circ}\text{C}$ to produce α - and β - calcium sulphate hemihydrates, which are used to make of plaster products. In addition, gypsum is used in significant quantities in the production of Portland Cement to control the setting rate.

Because at full operation more than a million tons of gypsum with be produced a year, Kusile must clearly look at all options for the utilisation and disposal of the gypsum.

En-Chem Consultants has been requested by the Panel B Consultants Joint Venture to classify the gypsum product in terms of the requirements and to evaluate the utilisation, treatment and disposal options. One option is to dispose in the ash dam that will be constructed on site and a sample of ash plus a mixture of ash and gypsum have also been investigated. As the Kusile Power Station is just being built, samples of the ash were obtained from Kendal Power Station and the FGD gypsum from an overseas facility that uses the same process. Note that these materials will be sufficiently similar to those that will be generated from the new Kusile Plant to be able to determine the waste management requirements but, once the first Kusile unit is

operational in 2013, samples must be obtained and the waste evaluation repeated.

In this report, an overview of the current Minimum Requirements and the classification system used for waste is included in section 2; the analytical procedures used are presented in section 3; and the classification of the three materials, the gypsum, the ash and the ash/gypsum mixture and their disposal in section 4. Section 5 briefly discusses the waste utilisation options for the gypsum and the conclusions of the study are presented in section 6. A draft MSDS has been prepared for the product gypsum in terms of the requirements of the Occupational Health and Safety Act (Act 85 of 1993) and is included in appendix 1.

2. Overview and Approach to Waste Classification.

2.1. General Background

Until 2006, the Department of Water Affairs and Forestry was obliged in terms of the Environmental Conservation Act (73 of 1989) to control pollution from amongst others littering and waste disposal. Section 20/1 of the Act makes provision for the permitting of landfills and this aspect is administered and controlled by the Department via the "Minimum Requirements". During 2006, most of the functions concerning waste management were taken over by the Department of Environment Affairs and Tourism, e.g. permitting of landfills, classification and delisting of hazardous waste, etc. Currently, the three "Minimum Requirements" documents published by the Department of Water Affairs and Forestry are still used for assessing wastes:

- Minimum Requirements for the Classification, Handling and Disposal of Hazardous Waste
 [1]
- Minimum Requirements for Waste Disposal by Landfill [2] and the
- Minimum Requirements for Monitoring at Waste Management Facilities.

The Minimum Requirements documents were launched at the end of September 1994 and a second edition was published in October 1998. The approach used in the documents has brought South Africa into line with overseas methods for the control of solid and hazardous waste. They include the Integrated Waste Management approach that promotes waste avoidance, waste re-use, waste recycling and waste treatment in preference to disposal. Since 1994, more than 700 landfill sites in South Africa have been permitted and upgraded according to these documents and many more are in the process of applying for permits.

2.2. Classification of Hazardous Waste

The Minimum Requirements for the Classification, Handling and Disposal of Hazardous Waste [1] considers any waste that contains or that can leach a potentially hazardous component as "probably" or potentially hazardous. The document contains an approach for the classification of these wastes either as a hazardous waste (see below) or a non-hazardous waste. A non-hazardous waste is one that has a similar or even lower pollution potential than a General Waste such as household waste.

Potentially hazardous wastes are identified by:

- The Industrial Group or Sector that generates the waste, e.g. Chemical and Allied Industries, Metallurgical Industry, etc,
- The processes that generate the waste, e.g. Petroleum Production, Production of Primary Chemicals and Feedstocks, etc,
- The Waste Stream, e.g. Ash and Slags, Oily Wastes, Organic Wastes, etc, and
- The hazardous characteristics of the waste, i.e. Corrosivity, Flammability, Reactivity and Toxicity

In South Africa, the primary classification of wastes in terms of their hazardous characteristics is accomplished by using the International Maritime Dangerous Goods (IMDG) Code, or SANS Code 10228:2003, i.e.

Class 1, Explosives

Class 2, Gases

Class 3, Flammable Liquids

Class 4, Flammable Solids

Class 5, Oxidising Substances and Organic Peroxides

Class 6, Toxic and Infectious Substances

Class 7, Radioactive Substances

Class 8, Corrosive Substances and

Class 9, Miscellaneous Dangerous Substances

The above code was primarily developed as a code for the transport of hazardous materials. Therefore, the approach used to classify class 6, Toxic and Infectious Substances, in this code is not adequate for the determination of the impact of hazardous waste on the environment.

The Minimum Requirements [1], therefore, outline a comprehensive approach to the classification of the toxic or poisonous characteristic of a hazardous waste.

The Minimum Requirements classify waste streams in terms of their chronic toxicity (teratogenicity, mutagenicity, carcinogenicity), acute toxicity in terms of the mammalian toxicity, as measured by the LD_{50} mg/kg (oral, rat) and ecotoxicity in terms of its LC_{50} mg/l/96hr for fish preferably trout. Also taken into account is the biodegradability of the specific component, its persistency, bioaccumulation and mobility in the environment. The waste or the species of concern in the waste is assigned to a Hazard Group (HG) depending on its chronic toxicity, acute toxicity and its acceptable risk concentration or level (ARL). The ARL is equal to one tenth of the LC_{50} in ppm. In simple terms, the ARL is that concentration, which when added to a body of water will provide no risk or at least an acceptable risk, if consumed by a population. The hazard groups are defined as:

Hazard Group 1, (HG1): Extreme Hazard, e.g. Cr (VI), Hg and PCBs Hazard Group 2, (HG2): High Hazard, e.g. Mn and Zn Hazard Group 3, (HG3): Moderate Hazard, e.g. Ni and phenol Hazard Group 4, (HG4): Low Hazard, e.g. Ethanol

Non-hazardous, e.g. fresh domestic waste

2.3. Acceptable Load Calculations

Unlike most classification systems used in the world, the South African system allows for the calculation of the amount that can be disposed and a total load for a particular class of site. The load in grams per hectare per month is defined in the Minimum Requirements document as the ARL (in ppb) divided by 0.66. For example, for Mn which is hazard class 2 and has an ARL of 0.3 ppm, the load or dose that can be disposed to a hazardous waste site is 300/0.66 = 454.5 g/hectare/month [1]. For a waste with more than one hazardous component, that component that is the most hazardous determines the hazard group and that component at the highest concentration or leachable concentration is the one that determines the load. The maximum amount can be disposed on that 1 hectare of site for up to 100 months.

2.4. Leaching Characteristics of Solid Wastes

Another innovation in the South African approach is that for a solid waste, the leachable concentration is used to calculate the impact on the environment. For a waste that is co-disposed with municipal waste, the United States Environmental Protection Agencies'

Toxicity Characteristic Leaching Procedure (TCLP) is used to determine the leachability of potentially hazardous components. The TCLP is also used, as a worse case scenario, if a waste is stored and transported off-site. Whereas, for a mono-disposal site, where one type of waste is being disposed, such as a Metallurgical slag or a power station ash disposal site, then the modified Acid Rain leaching procedure can be used. In the TCLP procedure, an acetic acid buffer is used as the leach solution, in order to simulate the chemical and physical characteristics of the leachate from domestic waste sites. In the Acid Rain test, the solution is a weak carbonic acid and nitric acid solution to simulate Acid Rain.

The leachability of a material depends on a multitude of factors, the most important of which are:

- a) The pH of the leach solution and the acid neutralisation capacity.
- b) Basic chemical equilibria, which for inorganic wastes involves:
 - The "hydrolysis" reaction, where the metal ion reacts with water,
 - The reaction in the interstial space within the solid re-precipitation can occur that could prevent further leaching.
 - The formation of new ionic or neutral species in solution
- c) The presence of readily soluble species such as chromium (VI), vanadium (V), sodium, potassium, sulphate and chloride.
- d) The presence of degrading organic matter, which can have the following effects: production of dissolved organic compounds that can dissolve metal ions, the generation of CO₂ that has a neutralising effect and the development of reducing conditions.
- e) The redox potential
- f) The leaching solution used. For the TCLP procedure, 0.1M acetic acid or acetic acid buffer are used to simulate the type of leachate found in a domestic waste site. This solution favours the leaching of "hard" ions such Mn (II) and Fe (III). The Acid Rain test on the other hand contains carbon dioxide and thus one would anticipate elements that form relatively insoluble carbonates or basic carbonates to be of lower leachability than in the TCLP test, e.g. Ca, Ba (II) and Pb (II).
- g) The leaching tests tend to be acidic thus any material that has a reasonable alkalinity, will

tend to neutralise the solution and pH values above about 8 will lead to low leachability of most metal ions. Exceptions tend to be the anionic compounds such as chromate and vanadate.

- h) The physical nature of the waste, e.g. its particle size, the presence of water in the sample, etc.
- i) The presence of calcium or other cations that can form relatively insoluble compounds compared to the equivalent sodium salts, e.g. calcium zincate, calcium sulphate and calcium fluoride.

2.5. Delisting of Hazardous Wastes

A hazardous waste can be delisted - that is can be downgraded in terms of its classification and hazardousness to the environment - if the Estimated Environmental Concentration (EEC), as determined from the actual concentration or leachable concentration of the main constituent of concern, is below the acceptable risk limit (ARL). In the Minimum Requirements for the Handling, Classification and Disposal of Hazardous Waste [1], the delisting concentrations are defined as:

 $HG1 \rightarrow HG3/4$ when the EEC is < ARL.

 $HG1 \rightarrow General$ when the EEC is $\langle ARL/10 \rangle$

 $HG2/3/4 \rightarrow General$ when the EEC is < ARL

Also total load in g/ha/m = ARL in ppb/0.66

Note that a waste, even one containing an extreme hazard waste, can delist such that it can be disposed to a general waste site (G site), i.e. a site taking domestic waste or one that is constructed as a G site [1]. A delisted waste is still classified as hazardous but if it is delisted, it can be disposed in to a general site with a leachate management system; i.e. the site must be constructed as a GB⁺ site [1, 2]: see section 2.7.

2.6. Landfill Restrictions

The Minimum Requirements prohibit the landfilling of wastes with certain characteristics, i.e.

- Class 1, Explosives
- Class 2, Compressed gases
- Class 3, Flammable Liquids with a flash point <61 °C

- Class 4, Solids that emit flammable or toxic gases
- Class 5, Strong Oxidising Substances and Organic Peroxides
- Class 6, Infectious Substances
- Class 7, Radioactive Substances
- Class 8, Corrosive Substances with a pH <6 or >12

The requirement is that, if possible, the waste is treated to remove that characteristic prior to disposal to landfill. Once the characteristic has been removed, the waste or any residues must then be classified according to its toxicity in class 6.1.

2.7. Landfill Classification

The classes of landfills according to the Department of Water Affairs and Forestry's Minimum Requirements for Waste Disposal to Landfill [2] are summarised in the table below. Note that hazardous wastes must be disposed to an H landfill (HH or Hh) according to the hazard ratings listed in the right hand column. However, hazardous wastes can be delisted, see section 2.5, and it is a policy decision from the Departments that disposal to a GMB⁺ or GLB⁺ landfill, i.e. one with a leachate management system, is required. The Department of Water Affairs and Forestry, in the past, allowed disposal of selected dry wastes to a GLB⁻ landfill after careful motivation, but it is not known whether the Department of Environment Affairs and Tourism would also give such an approval.

Landfill Classification System

Waste Type		G General V	Vaste		THE RESERVE THE RESIDENCE OF THE PERSON OF T	I us Waste
Landfill Size	C Communal Landfill	S Small Landfill	M Medium Landfill	L Large Landfill	h Hazard Ratings 3 & 4	H Hazard Ratings 1 to 4
Climatic Water Balance	B- B+	B- B+	B- B+	B· B ⁺		
Landfill Size Maximum Rate of Deposition	<25 ton/day	>25 < 150 tons/day	>150 <500 tons/day	>500 tons/day		

2.8. Revision of the Minimum Requirements

The Department of Water Affairs and Forestry is required in terms of the National Waste Management Strategy, which was completed in 1999, to revise the Minimum Requirements documents every five years and, therefore, the Department in collaboration with the Department of Environment Affairs and Tourism embarked on a process, which has lead to

the publication of draft 3rd editions of the three document discussed in section 2. The 3rd edition of the Minimum Requirements for the Handling, Classification and Disposal of Hazardous Waste has received considerable criticism from many quarters. The Department of Environment Affairs and Tourism has therefore decided not to publish a final document and to undertake a benchmarking exercise that will compare the South African approach to waste classification against those used internationally. This exercise is expected to start towards the end of 2008, but until such time that a revised approach is developed; the second edition of the Minimum Requirements documents must be used.

3. Analytical Procedures

Samples of the FGD Gypsum and the Coal Ash were forwarded to M and L Laboratory Services, Ormonde, Johannesburg by the environmental consultants from Panel B. The laboratory was requested to:

- a) Prepare two composite samples S1: FGD Gypsum and S2: Ash
- b) Prepare a sample S3: Mixed Waste, which is one part by mass of S1 and 6 parts by mass of S2;
- c) Analyse S1 for moisture, 10%pH, a range of 35 elements (major & trace), sulphate, volatile and semi-volatile organic compounds. Although, no organic compounds are expected, the Department of Environment Affairs and Tourism would require the generator to analyse at least one sample for these species to demonstrate that none are present. This analysis was repeated because the first results reported by the laboratory were not correct.
- d) An ARLP on S1, S2 and S3 and analysis of the leachate for the same 35 elements plus sulphate. In the estimate given below, it is assumed that no volatile and semi-volatile compounds are present but if they are identified in b), then they would also have to be analysed in the ARLP extract.
- e) A TCLP on S1, S2 and S3 and analysis of the leachate for the same 35 elements plus sulphate.

A copy of the final certificate of analysis from M and L Laboratory Services is included in appendix 2.

4. Classification of the Waste Materials

The results for the FGD gypsum are discussed in section 4.1, the Ash in section 4.2 and the Ash/Gypsum Mixture in section 4.3.

4.1. Classification of the Sample S1: FGD Gypsum

The results, that were obtained by M and L Laboratory Services for the S1: FGD Gypsum, are presented in table 2 together with the hazard rating (HR) and acceptable risk limits (ARL, mg/l) of each component. In addition, the total concentrations for the major components calcium and sulphate (as percentages) and the minor and trace elements (in mg/kg) are given.

4.1.1. Composition of the FGD Gypsum

According to the results from M and L Laboratory Services, the FGD Gypsum, as would be expected, contains mainly Ca, 25.9%; Sulphate, 65.5% and Moisture 16.6%. The FGD Gypsum, as produced should be wet calcium sulphate dihydrate, CaSO₄2H₂O. The moisture is the amount of water driven off at 110°C, whereas the dihydrate water is only partially removed above 150°C to nominally form calcium sulphate hemihydrate, CaSO₄0.5H₂O. The sulphate: calcium mass ratio in all these products should be 2.4, whereas the above analysis gives a value of ~2.53, which makes the sulphate value higher than stoichiometric. One component that would increase this ratio is magnesium sulphate.

The FGD Gypsum contains a number of minor elements, i.e. Al, 0.254%; Mg, 0.22%; P, 0.428%; plus of a number of traces elements (<0.10%), i.e. Fe, F, K, etc.

4.1.2. Primary Classification

The FGD Gypsum is not flammable (flash point >61°C), reactive or corrosive (pH< 6 or >12) in terms of the Minimum Requirements. The waste could, however, be toxic and this characteristic is discussed below in section 4.1.3.

4.1.3. Toxicity Rating

The toxicity of a species considers, the chronic toxicity, i.e. the presence of carcinogens, etc. and the acute toxicity, which is determined by the acceptable risk limit of the species.

4.1.3.1. Chronic Toxicity

The FGD Gypsum does not contain any leachable species, which are classified as Teratogens, Mutagens or Carcinogens, at a concentration above 1%, i.e. 10,000mg/kg. Therefore, in terms of the Minimum Requirements, the FGD Gypsum is not considered a teratogen, mutagen or

carcinogen.

4.1.3.2. Acute Toxicity

(i) Organic Compounds

The possible presence of volatile and semivolatile organic compounds in the TCLP extract were analysed by headspace GC. The first set of results indicated that part per billion concentrations of carbon tetrachloride, toluene, xylenes and 1,2,4-trimethylbenzene were present. However, as the FGD gypsum is generated from a coal combustion process at high temperature, the presence of carbon tetrachloride in particular would be very unlikely. Because of the sensitivity of the technique samples can become contaminated in the laboratory or a sample with high concentrations of these components was analysed in the sample before and one can get incorrect results. M and L Laboratory Services were requested to repeat this analysis and this time all compounds analysed for were below the detection limit of 0.005mg/kg.

Therefore, there are no organic compounds present at an environmentally significant concentration.

(ii) Inorganic Species

The FGD Gypsum leaches only fluoride at a concentration above it acceptable risk limit in both the TCLP and the ARLP tests. Fluoride is a moderate hazard according to the Minimum Requirements and, therefore, the FGD gypsum classifies as a moderate hazard waste.

4.1.4. Conclusion

In terms of the Minimum Requirements, the FGD Gypsum sample classifies as a moderate hazard waste both for co-disposal with general waste and when disposed in a mono-disposal facility: a class Hh landfill would be required: : see section 4.4.3.

4.2. Classification of the Sample S2: Kendal Power Station Ash

The TCLP and ARLP results, that were obtained by M and L Laboratory Services for sample S2: Ash, are presented in table 2 together with the hazard rating (HR) and acceptable risk limits (ARL, mg/l) of each component. No organic compounds were analysed in the leach solution from the ash in this study, as it has been demonstrated on many occasions that the ash generated by Eskom Power Stations does not leach volatile or semi-volatile organic compounds [3].

Unfortunately, the Toxicity Characteristic Leaching Procedure on S2, Ash required the use of solution number 2, which is a 0.1M Acetic Acid solution, pH 2.80±0.05, whereas samples S1 and S3 required the use of TCLP solution number 1, which is a 0.1M Acetic Acid/Sodium Acetate buffer of pH 4.93±0.05. The procedure requires the use of solution number 2, when the sample has a high acid neutralisation capacity and clearly this leach solution does not represent the conditions under which the waste would be disposed to co-disposal landfill in South Africa, where permitted landfills tend to have a leachate pH of between 6.5 and 8.2. Because of the use of TCLP solution number 2, the results in table 2 for the ash are not directly comparable to the TCLP results obtained for the Gypsum or the Gypsum/Ash mixture, where TCLP solution number 1 was used.

4.2.1. Primary Classification

The Ash is not flammable (flash point >61°C), reactive or corrosive (pH< 6 or >12) in terms of the Minimum Requirements. The waste could, however, be toxic and this characteristic is discussed below.

4.2.2. <u>Toxicity Rating</u>

The toxicity of a species considers, the chronic toxicity, i.e. the presence of carcinogens, etc. and the acute toxicity, which is determined by the acceptable risk limit of the species.

4.2.2.1. Chronic Toxicity

The Ash does not contain any leachable species, which are classified as Teratogens, Mutagens or Carcinogens, at a concentration above 1%, i.e. 10,000mg/kg. Therefore, in terms of the Minimum Requirements, the FGD Gypsum is not considered a teratogen, mutagen or carcinogen.

4.2.2.2. Acute Toxicity

The Ash leaches Mn and Pb at a concentration above their acceptable risk limits using TCLP solution number 2 and, therefore, as both elements are classified as high hazards, the ash classifies as high hazard in terms of the Minimum Requirements [1].

However, using the ARLP, no element is leached above its acceptable risk limit and, therefore, the ash formally classifies as non-toxic and, because it is also not-flammable, reactive or corrosive, it classifies as non-hazardous. Note, however, that it does leach Pb and F at concentrations just below their acceptable risk limit and that the non-toxic calcium leaches at a concentration of 457mg/l in the TCLP and 128mg/l in the ARLP. As the ash is

produced in such large amounts, i.e. ~16 700 tons/day at full production, it can still have a significant impact on the environment as it can increase the salinity of water resources and a lined facility with a water management system is required for its disposal.

4.2.3. Conclusion

The Kendal Power Station Ash classifies as a high hazard, if co-disposed with general waste, but is classified as non-toxic and non-hazardous for disposal to a mono-disposal facility or ash dam. In the former case an HH landfill would formally be required but for the mono-disposal, a GB⁺ or GB⁻ class facility would be required depending on the water balance in the area and the need to protect groundwater resources: see section 4.4.3.

4.3. Classification of the Sample S3: Ash/FGD Gypsum Mixture

One of the waste management scenarios is to dispose of the FGD Gypsum to the ash dam. It has been estimated that the gypsum will be generated at a rate of one sixth of the quantity of ash and, therefore, this scenario has been evaluated by leaching a 6:1 mixture of ash and the gypsum. The TCLP and ARLP results, that were obtained by M and L Laboratory Services for the S3: Ash/FGD Gypsum, are presented in table 2 together with the hazard rating (HR) and acceptable risk limits (ARL, mg/l) of each component.

4.3.1. Primary Classification

Sample S3 is not flammable (flash point >61°C), reactive or corrosive (pH< 6 or >12) in terms of the Minimum Requirements. The waste could, however, be toxic and this characteristic is discussed below.

4.3.2. <u>Toxicity Rating</u>

The toxicity rating of a waste depends on the chronic toxicity, i.e. the presence of carcinogens, etc. and the acute toxicity, which is determined by the acceptable risk limit of the species.

4.3.2.1. Chronic Toxicity

The FGD Gypsum and the Ash do not contain any leachable species, which are classified as Teratogens, Mutagens or Carcinogens, at a concentration above 1%, i.e. 10,000mg/kg. Therefore, in terms of the Minimum Requirements, the mixed waste is not considered a teratogen, mutagen or carcinogen.

4.3.2.2. Acute Toxicity

The Ash/FGD Gypsum mixture leaches Mn, Pb and P concentrations above their acceptable risk limits using TCLP solution number 1. Because Mn and Pb are classified as high hazard species, the mixture classifies as high hazard in terms of the Minimum Requirements [1]. P is classified as a low hazard.

However, the Ash/FGD Gypsum mixture leaches only F at a concentration above its acceptable risk limit using the ARLP. As F classifies as a moderate hazard species, the mixture classifies as moderate hazard in terms of the Minimum Requirements [1].

4.3.3. Conclusion

The Ash/FGD Gypsum mixture classifies as a high hazard if co-disposed with general waste and formally an HH landfill would be required. For mono-disposal, e.g. the FGD Gypsum and Ash would have to be disposed formally to an Hh site: see section 4.4.3.

4.4. Treatment and Disposal of FGD Gypsum

Two key chemical issues must be considered whatever landfilling option is chosen, i.e. the moisture content and the leachable non-toxic elements and these are discussed in sections 4.4.1 and 4.4.2, respectively.

4.4.1. Moisture Content

The free moisture content of the FGD gypsum is fairly low, i.e. 16.6%. The normal guideline is that a waste with a moisture content of greater than 40% will generate a leachate, when disposed to landfill, due to compaction and the pressure on the waste as the waste height is increased. Clearly, the field capacity of a waste for retaining moisture will depend on the nature of the material and, particularly if mono-disposal is used as the management option, it would be worthwhile determining the actual field capacity of the waste. The Civil Engineering Department at the University of the Witwatersrand is able to undertake these measurements. The experiment simply determines the moisture retention of the waste under gravity and then when subjected to external pressure that simulates the compaction normally achieved on landfilling. In addition, the permeability of the waste under these scenarios can be measured.

4.4.2. <u>Non-toxic Pollutants</u>

Synthetic gypsum is slightly soluble in water and, for the purposes of this report, it is assumed

that it is of the order of 2g/litre on a dry basis, i.e. Ca would be ~588mg/l and sulphate ~1420 mg/l. Note that the values achieved during the ARLP in table 2 are slightly higher that the theoretical values. The TCLP results obtained for calcium and sulphate are about 50% higher than the theoretical values due to the presence of the acetate anion in the extractant solution, which will increase the solubility of the calcium cation. The FGD gypsum, however, leaches relatively low amounts of the cations, K and Na plus the anions, chloride and fluoride. The FGD gypsum could increase the salinity of both surface and ground water resources, if incorrectly utilised on land or disposed to an inappropriate waste disposal facility. The Department of Environment Affairs and Tourism and Department of Water Affairs and Forestry would require the landfill facility to be lined and, if necessary, to have a leachate management system to prevent increasing the salinity of surface and ground water resources.

4.4.3. <u>Disposal to Landfill</u>

4.4.3.1. Monodisposal

A mono-disposal landfill is one that accepts a single type of waste and usually refers to one that accepts inorganic waste, e.g. the FGD Gypsum. In practice, a mono-disposal facility can accept a number of purely inorganic waste streams, e.g. gypsum and ash could be disposed in the same facility.

For mono-disposal, the ARLP is used to assess the leachability and hence to classify each waste stream and the mixed product, e.g. FGD Gypsum + Ash. As shown in sections 4.1 to 4.3., the ARLP tends to be less aggressive than the TCLP, particularly towards some elements such as Pb The leaching results thus suggest that disposal to a mono-disposal landfill would have less impact that if the FGD Gypsum was co-disposed with general waste.

According to the Minimum Requirements, the FGD classifies as a moderate hazard and, therefore, must be disposed to an HH or Hh landfill, although the waste can delist for a GB⁺ Landfill provided the amount of fluoride that is disposed does not exceed the allowed load. For fluoride, the load or dose of fluoride is given by:

Amount =
$$(ARL (ppb) \div 0.66)$$
 g/ha/m = 1515.2 g/ha/m

The amount of FGD Gypsum that can be mono-disposed is given by:

Amount = $1515.2 \div [ARLP Concentration, mg/l] = 1515.2 \div 6.2 \cong 244 tons/ha/m$

Note that formally very little of the gypsum, which is going to be produced in amounts of

about 2 784 tons/day or 83 520 tons/m, can be disposed to a landfill that is classified as a GB⁺ that has an economically feasible area and, therefore, an Hh waste site will be required.

When disposed to an ash dam, the Ash/FGD Gypsum mixture would be expected to leach F, as shown by the ARLP results in table 2, i.e. it classifies as a moderate hazard waste. The gypsum also increases the amounts of calcium and sulphate ions that leach compared to the ash alone. The origin of the fluoride is mainly the FGD Gypsum, although the ash also makes a contribution.

It would appear that the FGD Gypsum would increase the potential environmental risk posed by the ash dam, and, the development of the ash dam as an Hh landfill would be required. Note that as Witbank is a water deficit area and provided the ash and FGD Gypsum are disposed dry, the requirements for the liner and the leachate management system that are installed might be able to be reduced: a water balance calculation is required.

Other issues that might be able to be taken into account, if the FGD Gypsum is to be monodisposed, are:

- The possible treatment of the FGD Gypsum with lime or the use of excess lime in the gas cleaning process to reduce the leachability of the fluoride. Note that the pH of the FGD Gypsum is only 7.2 and this would encourage the leaching of fluoride. From the results in table 2, an excess of about 2.5% lime should be sufficient to reduce the leaching of fluoride to more acceptable levels.
- The ash gypsum mixture is classified as a moderate hazard, but the ash is classified as non-hazardous. It may, therefore, be more economic to dispose of the two wastes in separate facilities, as the ash which is produced in much higher amounts could be disposed to a facility lower grade liner than that required for the gypsum and ash/gypsum mixture.
- Disposing the FGD Gypsum to its own mono-disposal facility would mean that, if required, the material could be recovered and utilised in the future.

4.4.3.2. <u>Co-disposal with General Waste</u>

The amount of FGD Gypsum that can be co-disposed with general waste is given by:

Amount = $1515.2 \div [TCLP Concentration, mg/l] = 1515.2 \div 7.5 \cong 202 tons/ha/m$

Note that without treatment, the amounts of the gypsum that could be co-disposed are very

small compared to the 83 520 tons/m that will be generated when the Kusile Power Station is fully operational. Thus, disposal to a municipal or private co-disposal facility that is close to Witbank would not seem possible, because of the low amounts that can be disposed. Treatment with lime, say 2.5%, may decrease the leaching of fluoride and, thus, allow a higher amount to be co-disposed. Note that there may, however, be occasions, when co-disposal of relatively small amounts of the FGD Gypsum to a municipal or private landfill is required, e.g. after a transport accident.

Currently, the only two sites in Gauteng, Northwest, Limpopo and Mpumalanga Provinces that can currently accept delisted waste are the Ekurhuleni Metropolitan Municipality's 10ha Rietfontein GLB⁺ Landfill and EnviroServ's 25ha Holfontein HH site, both are near Springs. The Holfontein HH Landfill has a special rate for delisted waste. Other sites that may be available in future include the EnviroServ's Rosslyn GLB⁺ Landfill near Pretoria, although the permit is under urgent discussion with the Department of Environment Affairs and Tourism, plus various regional sites that appear to be in the planning stages, e.g. planning is underway by the Mpumalanga Department of Agriculture & Land Administration for three regional GLB⁺ Landfills that will be located near Middelburg/Witbank, Secunda and Nelspruit.

5. Utilisation of the Product Gypsum

When considering the environmental risks posed by most options, the analytical data given in table 2 can be used, e.g. in the manufacture of the various grades of cement from cement clinker; in the manufacture of bison board and as agricultural soil ameliorant.

The data given in table 2 for the total content of the FGD gypsum should be forwarded to one or more of the South African cement manufacturers for an assessment of its use in the production of cement, although they may request additional information.

For manufactured products that contain the gypsum as an ingredient, one approach to the assessment of the environmental risks is to compare the leaching characteristics of the product made with synthetic gypsum to that made with natural gypsum or the gypsum already used in the manufacturer. The leaching characteristics of the product manufactured with the synthetic gypsum should, at least, be equivalent to or preferably better than that made with the natural gypsum.

For agricultural use, the Waste Water Sludge Guidelines [4, 5 and 6], which are based on the

load of heavy metals and other potential pollutants that can be added to an agricultural soil, can be used to give an idea of the possible environmental impact of the gypsum. The Department of Agriculture requires that an environmental assessment be undertaken, before it will provide a license for any product that is to be used as a soil ameliorant.

Table 3 provides a comparison between the metal concentrations in the FGD Gypsum with the limits for sewage sludge. Note that a "Class a" sludge can be used in any amount on agricultural land, while there are some restrictions for "Class b" and "Class c".

Table 3: Comparison of the Analytical Data for the FDG Gypsum with the 2005

Analyte	Class a	Class b	Class c	FGD Gypsum
	М	etal Limits, mg/kg		
Arsenic (As)	<40	40-75	>75	<2
Cadmium (Cd)	<40	40-85	>85	< 0.1
Chromium (Cr)	<1200	1200-3000	>3000	7.8
Copper (Cu)	<1500	1500-4300	>4300	2.8
Lead (Pb)	<300	300-840	>840	93
Mercury (Hg)	<15	15-55	>55	<1
Nickel (Ni)	<420	420	>420	6.8
Zinc (Zn)	<2800	2800-7500	>7500	< 0.5
	Benchme	ark Metal Values, mg/k	g	
Antimony (Sb)	<1.1	1.1-7.0	>7.0	<1
Boron (B)	<23	23-72	>72	na
Barium (Ba)	<108	108-250	>250	17
Beryllium (Be)	<0.8	0.8-7.0	>7.0	36
Cobalt (Co)	<5	5-38	>38	8.2
Manganese (Mn)	<260	260-1225	>1225	7.1
Molybdenum (Mo)	<4	4-12	>12	0.79
Selenium (Se)	<5	5-15	>15	22
Strontium (Sr)	<84	84-205	>205	128
Thallium (Tl)	< 0.03	0.03-0.14	>0.14	<0.9
Vanadium (V)	<85	85-430	>430	5

Note that the amounts present in the FGD Gypsum in the most important metals limits category are all in Class "a" and, therefore, for these elements, the gypsum would have little impact if used on agricultural land. However, in the benchmark values section Co and Sr fall into Class "b", whereas Be, Se and Tl fall into Class "c". The actual impact will depend of course on many factors, not the least of which is the amount of gypsum that would be used on the land. There are also other elements that could impact on agricultural land that are not included in table 3, e.g. fluoride.

The initial results appear reasonable, although if utilisation of the FGD gypsum as an agricultural ameliorant is an option, a separate in depth study would have to be done.

6. Conclusions

The FGD Gypsum is predominantly calcium sulphate dihydrate but it contains a number of minor elements, i.e. Al, 0.254%; Mg, 0.22%; P, 0.428%; plus of a number of trace elements (<0.10%), i.e. Fe, F, K, etc. The FGD Gypsum sample leached only fluoride at a concentration above it acceptable risk limit using both the TCLP and the ARLP tests. Fluoride is a moderate hazard according to the Minimum Requirements and, therefore, the FGD gypsum formally classifies as a moderate hazard waste.

The Kendal Power Station Ash leaches Mn and Pb at a concentration above their acceptable risk limits using TCLP solution number 2 and, therefore, as both elements are classified as high hazards, the ash classifies as high hazard waste, if disposed with general waste. However, using the ARLP, no element is leached above its acceptable risk limit and, therefore, the ash formally classifies as non-toxic and, because it is also not-flammable, reactive or corrosive, it classifies as non-hazardous for disposal to a mono-disposal landfill or ash dam. The leaching of salts for the ash could, however, lead to an increase in the salinity of important water resources and, therefore, control of any leachate is required.

The Ash/FGD Gypsum (6:1) mixture leaches Mn, Pb and P concentrations above their acceptable risk limits using TCLP solution number 1. Because Mn and Pb are classified as high hazard species, the mixture classifies as high hazard waste if co-disposed with general waste. However, the mixture leaches only F at a concentration above its acceptable risk limit using the ARLP. As F classifies as a moderate hazard species, the mixture classifies as moderate hazard waste for disposal to a mono-disposal landfill. The origin of the fluoride is mainly the gypsum and, therefore, the hazard rating of the ash is increased by mixing with gypsum.

The results show that mono-disposal of the FGD Gypsum, either separately or with the ash would result in lower environmental risks that co-disposal with general waste. It may be more economic to dispose of the two wastes in two separate facilities, as the ash which is classified as non-hazardous and is produced in much higher amounts could be disposed to a facility with a lower grade liner than that required for the gypsum and ash/gypsum mixture. In addition, disposing the FGD Gypsum its own mono-disposal facility would mean that, if required, the material could be recovered and utilised in the future. Treatment of the FGD Gypsum with lime or the use of excess lime in the gas cleaning process to reduce the leachability of the fluoride should be considered. The amount of excess lime, CaO or Ca(OH)2, required would

be about 2.5% by mass.

The actual choice of liners for the ash dam, a FGD gypsum mono-disposal site or a site that takes the mixed waste will depend on a number of other factors not considered in this report, e.g. the climatic water balance at the site and the presence of any groundwater that has to be protected.

When considering the environmental risks posed by most utilisation options, the analytical data presented in this report can be used to determine, at least initially, if it meets that standards required, e.g. in the manufacture of the various grades of cement from cement clinker; in the manufacture of bison board and as agricultural soil ameliorant. For agricultural use, the Waste Water Sludge Guidelines, which are based on the load of heavy metals and other potential pollutants that can be added to an agricultural soil, can be used to give an idea of the possible environmental impact of the gypsum. A brief comparison of the results obtained for the current sample of FGD Gypsum with the guidelines suggests that this option is worth pursuing further, although a separate in-depth study would have to be done.

All the above results are based on an FGD Gypsum sample from a similar plant overseas and by using ash from Kendal Power Station. While these samples can provide guidance on the classification of the waste materials and the type of waste management facilities required, as soon as samples produced at the new Kusile Power Station become available, this study must be repeated.

7. References

- [1] Department of Water Affairs and Forestry, Minimum Requirements for the Handling, Classification, and Disposal of Hazardous Waste, 2nd edition, Pretoria, 1998
- [2] Department of Water Affairs and Forestry, Minimum Requirements for Waste Disposal by Landfill, 2nd edition, 1998.
- [3] En-Chem Consultants, Investigation into the Classification, Treatment and Disposal Options for Filter Bags from: Duhva, Hendrina, Majuba, and Arnot Power Stations, July 1999
- [4] Water Research Commission, "Guidelines for the Utilisation and Disposal of Wastewater Sludge", Volume 1, "Selection of Management Options", Pretoria, 2005
- [5] Water Research Commission, "Guidelines for the Utilisation and Disposal of Wastewater

- Sludge", Volume 2, "Requirements for the Agricultural Use of Wastewater Sludge", Pretoria, 2005
- [6] Water Research Commission, "Guidelines for the Utilisation and Disposal of Wastewater Sludge", Volume 3, "Requirements for the On-site and Off-site Disposal of Wastewater Sludge", Pretoria, 2007

Appendix 1: Draft MSDS for the FGD Gypsum

LOGO

Material Safety Data Sheet

Synthetic Gypsum

COMPANY DETAILS

Name:

Address:

Emergency: +27

Tel:

+27

Fax:

+27

E-mail:

SECTION 1 - PRODUCT AND COMPANY IDENTIFICATION

Trade name:

Synthetic Gypsum

CaSO₄•2H₂O

CAS Number:

7778-18-9

Chemical Family:

Alkaline Earth Sulphate

NOISH Number:

Not available

Chemical Name:

Calcium Sulphate Dihydrate

Hazchem Code:

Not available

Synonyms:

Gypsum, FGD Gypsum

UN Number:

Not regulated

SECTION 2 - COMPOSITION AND INFORMATION ON INGREDIENTS

Chemical Name	CAS No.	Percent	Hazardous ¹
Calcium Sulphate Dihydrate	7778-18-9	80 to 90%	Not Hazardous
Water (unbound)	7732-18-5	10 to 20%	Not Hazardous
Magnesium Oxide	1309-48-4	0.20 to 0.5%	Not Hazardous
Phosphorus Oxide	1314-56-3	0.80 to 1.20%	Low Hazard
Silicon Dioxide, Crystalline ³	14808-60-7	0.5 to 1.5%	High hazard
Aluminium Oxide, Al ₂ O ₃	1344-28-1	0.3 to 0.6%	Not Hazardous

- Classification based on the South African Minimum Requirements, 2nd edition, 1998. Under acid leach
 conditions the product could leach environmentally significant concentrations of F and some heavy metals;
- 2. Contains a number of trace elements (<0.1%), e.g. Cl, F, Fe, K and Pb.
- 3. Contains silicon dioxide that has been assumed to be possibly crystalline.

SECTION 3 – HAZARDS IDENTIFICATION

Main hazard:

Dust may cause irritation to the eyes, nose, throat and upper respiratory tract.

Flammability:

Not Flammable

Chemical hazard:

None

Date of Issue: 18 November 2008

PAGE 1 OF 6

Biological hazard:

None known.

Reproduction hazard:

None known.

Eye Effects:

Exposure to dust can produce eye irritation

Health Effects - skin

No adverse effects expected.

Health Effects - ingestion May be toxic if ingested due to release of iron and trace heavy metals

Health Effects - inhalation Repeated inhalation can produce respiratory irritation or lung damage.

Carcinogenicity

May contain low amounts of crystalline silica: prolonged and repeated exposure to airborne free respirable crystalline silica can result in lung disease (i.e., silicosis) and/or

lung cancer

Mutagenicity

None known.

Neurotoxicity

None known.

SECTION 4 – FIRST AID MEASURES

Product in Eye:

Check and remove any contact lenses. Flush thoroughly with plenty of water for at

least 15 minutes. Obtain medical attention.

Product on Skin:

Wash skin with a mild soap and water. Remove and wash contaminated clothing and

footwear. Obtain medical attention, if irritation develops.

Product Ingested:

Give water to drink if ingested. Never give anything by mouth to an unconscious

person. Obtain medical attention.

Product Inhaled:

Remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult,

give oxygen. Obtain medical attention.

SECTION 5 – FIRE FIGHTING MEASURES

Fire:

The product is not a fire hazard.

Explosion:

No information found.

Extinguishing Media:

Use water or the appropriate means to extinguish a surrounding fire

Decomposition Products:

Above 1450° C calcium sulphate decomposes to calcium oxide (CaO) and sulphur dioxide

(SO2).

Protective Clothing:

In the event of any fire, wear full protective clothing and an approved self-contained

breathing apparatus.

SECTION 6 – ACCIDENTAL RELEASE MEASURES

Personal Precautions:

Keep unnecessary and unprotected persons away from the area of the spill. Wear

protective clothing as detailed in section 8.

DATE OF ISSUE: 18 NOVEMBER 2008

PAGE 2 OF 6

Environmental Precautions: As far as possible, prevent the material entering a watercourse or storm water channel.

Small and Large Spills:

Carefully collect spilt material and place in suitable container, e.g. skip or drum, for reclamation or disposal. Any water that may be contaminated should preferably be

discharged to sewer with permission of the Municipal Authority.

SECTION 7 – HANDLING AND STORAGE

Handling/Storage

Avoid dust contact with eyes. Wear the appropriate eye protection against dust (See Section 8). Minimise dust generation and accumulation. Avoid breathing dust. Wear the appropriate respiratory protection against dust in poorly ventilated areas and if TLV is exceeded (see Sections 2 and 8). Use good safety and industrial hygiene practices.

SECTION 8 – EXPOSURE CONTROLS AND PERSONAL PROTECTION

Occupational Exposure Limits:

The South African Occupational limits are presented in the table below.

Chemical Name	TWA OEL-	RL mg/m³
	Total Inhalable	Respirable
Gypsum	10	5
Silica, Crystalline		0.4

Engineering Control Measures:

Provide ventilation sufficient to control airborne dust levels. If user operations generate airborne dust, use ventilation to keep dust concentrations below permissible exposure limits. Where general ventilation is inadequate use process enclosures, local exhaust ventilation, or other engineering controls to decrease dust levels below the permissible exposure limits.

Personal Protection - Respiratory: Use dust masks in accordance with SANS 1455/EN and Government Gazette 1200. If exposure limit exceeded, a full-face piece respirator must be worn.

Personal protection - Eye:

Use chemical safety goggles and/or full-face shield, where dusting is possible. Maintain eye wash fountain and quick drench facilities in work area.

Personal Protection - Skin:

Impervious clothing should be worn, including boots, gloves, lab coat, apron, or overalls, as appropriate to avoid skin contact.

SECTION 9 – PHYSICAL AND CHEMICAL PROPERTIES

Appearance:

White to Off-white Powder

Odour:

None

pH 10% solution:

Between 7 and 8

Specific Gravity:

~2.32

Boiling Point:

Not known

Melting Point:

Not known

Flash Point:

Not applicable

DATE OF ISSUE: 18 NOVEMBER 2008

PAGE 3 OF 6

Flammability:

Not flammable

Oxidising Properties:

Not applicable

Vapour Pressure:

Not applicable

Solubility in Water:

Low

SECTION 10 – STABILITY AND REACTIVITY

Stability:

Stable under normal conditions

Conditions to Avoid:

Incompatible Chemicals

Incompatible Chemicals:

Diazomethane, aluminium, phosphorus

Hazardous Decomposition Products:

Burning may produce sulphur dioxides

SECTION 11 - TOXICOLOGICAL INFORMATION

Acute Toxicity:

No acute toxicological data available. Expected to be of very low toxicity to humans

and animals

Skin and Eye Contact:

No data available

Chronic Toxicity:

Carcinogenicity:

Not carcinogenic

Mutagenicity:

No data available

Reproductive Hazards:

No data available

SECTION 12 - ECOLOGICAL INFORMATION

Aquatic Toxicity:

Expected to be of low toxicity to aquatic life forms, except under acid conditions, when F and

some heavy metals may leach.

Ingredient	LC ₅₀ , mg/l	Species	Duration	Hazard Rating
Calcium Fluoride	1000	Trout	96hrs	Moderate

Aquatic Toxicity:

Expected to be of low toxicity.

Degradability:

Will not degrade.

Bioaccumulation:

Will not bioaccumulate.

Mobility:

Not mobile except F may be mobilised under acid conditions.

Environmental Fate - Air:

Dust may be a nuisance factor

Date of Issue: 18 November 2008

PAGE 4 OF 6

SECTION 13 – DISPOSAL CONSIDERATIONS

Disposal Methods:

The product classifies as a moderate hazard due to the leaching F using standard acid leach procedures according to the Department of Water Affairs and

Forestry's Minimum Requirements. Dispose to a permitted hazardous waste landfill or delist in terms of the requirements and dispose to a permitted GB⁺

Landfill.

Waste Classification:

Normally classifies as a moderate hazardous waste, when subjected to the leaching procedures required by the Department of Water Affairs and Forestry's Minimum Requirements but reasonable amounts can be delisted for disposal to

a GB+ Landfill.

UN Number:

Not regulated

IMDG - Class:

Not regulated

SANS 10228:

Not regulated

SECTION 15 - REGULATORY INFORMATION

UN Number:

Not regulated

Substance Identity Number:

Not applicable

IMDG - Class:

Not regulated

IMDG Packaging Group:

Not regulated

Risk/Safety Phrases:

Harmful if swallowed or inhaled Do not get in eyes, skin or clothing

Do not breathe dust

Use only with adequate ventilation Wash thoroughly after handling Keep out of reach of children

SECTION 16 - OTHER INFORMATION

Other Special Considerations:

None identified

History:

Date of Issue:

18th November 2008

Date of Previous Issue:

None

Validated by:

Notice to Reader:

The information and recommendations presented in this data sheet are to the best of our knowledge and belief accurate and reliable, but do not constitute a warranty. None of our representatives or agents are authorised to give any guarantee or warranty or make any representation in addition or contrary to the above, and we do not accept liability for claims of any kind for any loss, including, without limitation, consequential loss, injury or

DATE OF ISSUE: 18 NOVEMBER 2008

PAGE 5 OF 6

	damage arising from the use of the information or recommendations, or of the products, matter hereof. The products are sold subject to our standard conditions of sale and tende available on request.	which are the subject er, copies of which are	
	•		
I	Date of Issue: 18 November 2008	Page 6 of 6	

Appendix 2: Copy of the M and L Laboratory Services Certificate of Analysis

Vat Number 4780103505

M and L Laboratory Services (Pty) Ltd

Consulting Industrial Chemists, Analysts & Samplers CONFIDENTIAL

Ref.No.

: 08/12583L

Issued

: Johannesburg

at Date

: 2008.11.12

Page : 1 of 13

COMPANY NAME

EN-CHEM CONSULTANTS CC

ADDRESS

PO BOX 2856, CRESTA, 2118 :

SUBJECT

ANALYSIS OF 3 SAMPLES OF GYPSUM AND ASH

MARKED

KUSILE and as below

INSTRUCTED BY

D.A. Baldwin

PROJECT NO.

P962/2008

RECEIVED ON

2008.09.23

LAB NO(S)

E50788,E50789,E51657

DATE ANALYSED

2008/10/19

Analysis on an as received basis:

KUSILE GYPSUM (S1)

% Moisture, loss on dry @ 105°C

16.6

Analysis on a 5% TCLP extract of the sample as received: Reference EPA 1311

DETERMINANTS	TITICITY IN LOVY (CA)	KUSILE GYPSUM	70 C D
pH Value on a 10% extract @ 25°C	KUSILE ASH (S2)	<u>(S1)</u>	COMPOSITE(S3)
	10.8	7.2	10.4
pH Value @ 25°C (of leach Solution)	4.2	5.1	5.2
Chloride, Cl	3.1	5.2	11.3
Fluoride, F	0.8	7. 5	0.6
Mercury, Hg	<0.001	<0.001	<0.001
Sulfate, SO ₄	60	2387	2038
Sulfide Sulfur, S	<0.2	<0.2	<0.2
Sulfate and Sulfide Sulfur as S	20	797	680
Hexavalent Chromium Cr6+	<0.01	<0.01	< 0.01

The results are expressed in mg/l where applicable A list of Test Methods is appended.

NOTE 1: Sample marked Kusile Ash was extracted using TCLP solution 2

NOTE 2: Samples marked Kusile Gypsum and S3 were extracted using TCLP solution no. 1

NOTE 3: S3 was prepared on a 1:6 composite of S1:S2.

Consulting Industrial Chemists, Analysts & Samplers
CONFIDENTIAL

Ref.No.

: 08/12583L

Issued

: Johannesburg

at Date

: 2008.11.12

Page

: 2 of 13

COMPANY NAME

EN-CHEM CONSULTANTS CC

ADDRESS

PO BOX 2856, CRESTA, 2118

SUBJECT

ANALYSIS OF 3 SAMPLES OF GYPSUM AND ASH

MARKED

: KUSILE, and as below

INSTRUCTED BY

: D.A. Baldwin

PROJECT NO.

P962/2008

RECEIVED ON

2008.09.23

LAB NO(S)

E50788,E50789,E51657

DATE ANALYSED

2008/10/19

Analysis on a 5% Acid Rain extraction of the samples as received:

	KUSILE	KUSILE	
SAMPLE MARKS	ASH(S2)	GYPSUM(S1)	COMPOSITE(S3)
pH Value @ 22°C	8.8	7.3	11.6
Chloride,Cl	5.1	4.4	2.0
Fluoride,F	0.6	6.2	2.1
Mercury, Hg	< 0.001	<0.001	< 0.001
Sulfate,SO4	41	1703	1622
Sulfide Sulfur, S	<0.2	<0.2	<0.2
Sulfate and Sulfide Sulfur as S	13.7	568	541
Hexavalent chromium, Cr ⁶⁺	<0.01	<0.01	<0.01

The results are expressed in mg/l where applicable A list of Test Methods is appended.

Vat Number 4780103505 M and L Laboratory Services (Pty) Ltd

Issued at Date

Ref.No.

: Johannesburg

: 2008.11.12

: 08/12583L

Page

: 3 of 13

COMPANY NAME

EN-CHEM CONSULTANTS CC

ADDRESS

PO BOX 2856, CRESTA, 2118

SUBJECT

ANALYSIS OF 3 SAMPLES OF GYPSUM AND ASH

MARKED

KUSILE, and as below

Consulting Industrial Chemists, Analysts & Samplers
CONFIDENTIAL

INSTRUCTED BY

D.A. Baldwin

PROJECT NO.

P962/2008

RECEIVED ON

2008.09.23

LAB NO(S)

E50788,E50789,E51657

DATE ANALYSED

2008/10/19

Analysis on a 5 % TCLP extract of the samples as received:

:

:

:

:

Sample marks	<u>S2</u>	C1	<u>S3</u>
Arsenic, As	0.06	<u>S1</u>	
Selenium, Se	0.06	<0.02	0.13
Titanium, Ti	<0.001	0.12 <0.001	<0.03
Aluminium, Al	1.9		0.02
Nickel, Ni	0.11	2.5	0.39
Manganese, Mn	0.79	0.007 0.04	0.03
Iron, Fe	0.05		0.57
Vanadium, V	0.08	0.15 0.002	<0.001
Zinc, Zn	< 0.005		0.50
Antimony, Sb	<0.01	0.06	0.10
Lead, Pb	0.73	<0.01	<0.01
Cobalt, Co	0.04	<0.01	2.3
Copper, Cu	0.02	0.25	0.18
Total Chromium, Cr	0.05	0.02	0.06
Silicon, Si	78	<0.003	0.08
Tin, Sn	<0.02	4.3	55
	<0.001	<0.02	<0.02
Zirconium, Zr	<0.005	0.001	0.002
Bismuth, Bi	<0.009	<0.005	<0.005
Thallium, Tl	<0.002	<0.009	<0.009
Beryllium, Be	0.002	<0.002	<0.002
Cadmium, Cd	4.5	<0.001	<0.001
Strontium, Sr	1.7	0.47	2.7
Boron, B	6.0	0.09	1.9
Phosphorus, P		1.1	12.7
Uranium, U	<0.004	<0.004	< 0.004
Molybdenum, Mo	0.03	0.007	0.05
Barium, Ba	0.83	0.07	0.24
Sodium, Na	2.0	6.5	<0.02
Potassium, K	0.96	0.61	1.6
Magnesium, Mg	76	33	62
Calcium, Ca	457	928	1010
Silver, Ag	<0.004	0.01	< 0.004
Thorium, Th - The results are expressed in mg/l	0.005	0.01	0.03

⁻ Method: Quantitative ICP scan (A.P.H.A 3120 B)

:

:

Vat Number 4780103505

M and L Laboratory Services (Pty) Ltd

Consulting Industrial Chemists, Analysts & Samplers
CONFIDENTIAL

Ref.No.

: 08/12583L

Issued

: Johannesburg

at Date

: 2008.11.12

Page

: 4 of 13

COMPANY NAME

: EN-CHEM CONSULTANTS CC

ADDRESS

PO BOX 2856, CRESTA, 2118

SUBJECT

ANALYSIS OF 3 SAMPLES OF GYPSUM AND ASH

MARKED

KUSILE, and as below

INSTRUCTED BY

D.A. Baldwin

PROJECT NO.

P962/2008

RECEIVED ON

2008.09.23

LAB NO(S)

E50788,E50789,E51657

DATE ANALYSED

2008/10/19

Sample marks S2 S1 S3 Arsenic, As <0.02 <0.02 <0.02 Selenium, Se <0.03 0.06 <0.03 Titanium, Ti <0.001 <0.001 <0.001 Aluminium, Al 0.28 0.45 0.25 Nickel, Ni 0.02 <0.003 0.05 Manganese, Mn 0.01 0.009 0.03 Iron, Fe 0.03 0.05 0.68 Vanadium, V 0.13 0.003 0.06 Zinc, Zn <0.005 <0.005 <0.005 Antimony, Sb <0.01 <0.01 <0.01 Lead, Pb 0.08 <0.01 <0.01 Cobalt, Co 0.05 0.08 0.18 Copper, Cu <0.002 <0.002 <0.002 Total Chromium, Cr 0.08 0.003 0.05 Silicon, Si 12.7 0.32 10.3 Tin, Sn <0.02 <0.02 <0.02 Zirconium, Zr <0.001 0
Arsenic, As <0.02
Titanium, Ti <0.001
Aluminium, Al 0.28 0.45 0.25 Nickel, Ni 0.02 <0.003
Nickel, Ni 0.02 <0.003 0.05 Manganese, Mn 0.01 0.009 0.03 Iron, Fe 0.03 0.05 0.68 Vanadium, V 0.13 0.003 0.06 Zinc, Zn <0.005
Manganese, Mn 0.01 0.009 0.03 Iron, Fe 0.03 0.05 0.68 Vanadium, V 0.13 0.003 0.06 Zinc, Zn <0.005
Iron, Fe
Vanadium, V 0.13 0.003 0.06 Zinc, Zn <0.005
Zinc, Zn <0.005 <0.005 <0.005 Antimony, Sb <0.01
Antimony, Sb
Lead, Pb 0.08 <0.01
Cobalt, Co 0.05 0.08 0.18 Copper, Cu <0.002
Copper, Cu <0.002 <0.002 <0.002 Total Chromium, Cr 0.08 0.003 0.05 Silicon, Si 12.7 0.32 10.3 Tin, Sn <0.02
Total Chromium, Cr 0.08 0.003 0.05 Silicon, Si 12.7 0.32 10.3 Tin, Sn <0.02
Silicon, Si 12.7 0.32 10.3 Tin, Sn <0.02
Tin, Sn <0.02
Zirconium, Zr <0.001
Bismuth, Bi
Thallium, Tl <0.009
Beryllium, Be <0.002
Cadmium, Cd 0.003 <0.001 0.002 Strontium, Sr 1.2 0.47 1.7
Strontium, Sr 1.2 0.47 1.7
0.71
Boron, B 0.74 0.11 0.35
Phosphorus, P 0.92 0.23 0.70
Uranium, U <0.004 <0.004 <0.004
Molybdenum, Mo 0.02 0.004 0.03
Barium, Ba 0.11 0.08 0.30
Sodium, Na 2.5 0.77 1.1
Potassium, K 1.5 0.20 0.71
Magnesium, Mg 19.0 1.6 0.14
Calcium, Ca 128 631 517
Silver, Ag <0.004 <0.004 0.003
Thorium, Th 0.002 0.004 <0.002

⁻ The results are expressed in mg/l

⁻ Method: Quantitative ICP scan (A.P.H.A 3120 B)

Vat Number 4780103505

M and L Laboratory Services (Pty) Ltd

Consulting Industrial Chemists, Analysts & Samplers
CONFIDENTIAL

Ref.No.

: 08/12583L

Issued

: Johannesburg

at Date

: 2008.11.12

Page

: 5 of 13

CO	AAD	ANV	TAT A	BATTO
	IVIP	AIVV	IN A	IVI H

EN-CHEM CONSULTANTS CC

ADDRESS

PO BOX 2856, CRESTA, 2118 :

SUBJECT

: ANALYSIS OF 1 SAMPLE OF WASTE

MARKED

KUSILE, and as below

INSTRUCTED BY

D.A. Baldwin

PROJECT NO.

P962/2008

RECEIVED ON

2008.09.23

LAB NO(S)

E50789

:

:

DATE ANALYSED

2008/11/07

Analysis on dry basis (Total Digestion):

	Andrew Control of the
<u>Determinants</u>	Results
Sample marks	Kusile Gypsum (S1
Arsenic, As	<2
Selenium, Se	22
Nickel, Ni	6.8
Vanadium, V	5.0
Zinc, Zn	<0.5
Antimony, Sb	<1
Lead, Pb	93
Cobalt, Co	8.2
Copper, Cu	2.8
Total Chromium, Cr	7.8
Tin, Sn	<2
Zirconium, Zr	3.3
Bismuth, Bi	9.2
Thallium, Tl	<0.9
Beryllium, Be	36
Cadmium, Cd	<0.1
Strontium, Sr	128
Uranium, U	<0.4
Molybdenum, Mo	0.79
Barium, Ba	17
Potassium, K	899
Silver, Ag	1.2
Thorium, Th	1.1
- The results are expressed in mg/kg unless otherwise stated	***

The results are expressed in mg/kg unless otherwise stated.

⁻ Method: Quantitative ICP scan (A.P.H.A 3120 B)

Vat Number 4780103505

M and L Laboratory Services (Pty) Ltd
Consulting Industrial Chemists, Analysts & Samplers
CONFIDENTIAL

Ref.No. : 08/12583L

Issued

: Johannesburg

at

Date

: 2008.11.12

Page

: 6 of 13

COMPANY NAME

EN-CHEM CONSULTANTS CC

ADDRESS

PO BOX 2856, CRESTA, 2118 :

SUBJECT

ANALYSIS OF 1 SAMPLE OF WASTE

MARKED

KUSILE, and as below

INSTRUCTED BY

D.A. Baldwin

PROJECT NO.

P962/2008

RECEIVED ON

2008.09.23

LAB NO(S)

E50789

DATE ANALYSED

2008/10/28

Analysis on dry basis (Total Digestion):

SAMPLE MARKS	<u>KUSILE</u> <u>GYPSUM(S1)</u>
Chloride,Cl	210
Fluoride,F	355
Mercury, Hg	<1
Sulfate,SO4	60.5%
Hexavalent chromium, Cr6+	<1

The results are expressed in mg/kg unless otherwise stated. A list of Test Methods is appended.

Vat Number 4780103505

M and L Laboratory Services (Pty) Ltd
Consulting Industrial Chemists, Analysts & Samplers
CONFIDENTIAL

Ref.No. : 08/12583L

Issued

: Johannesburg

at

Date : 2008.11.12

Page : 7 of 13

COMPANY NAME

EN-CHEM CONSULTANTS CC

ADDRESS

PO BOX 2856, CRESTA, 2118

SUBJECT

ANALYSIS OF 1 SAMPLE OF WASTE

MARKED

KUSILEGypsum S1 and as below

INSTRUCTED BY

D.A. Baldwin

PROJECT NO.

P962/2008

RECEIVED ON

2008.09.23

LAB NO(S)

E50789

DATE ANALYSED

2008/10/28

Analysis on as received basis:

Determinants	Results
	<u>%</u>
Loss on ignition (1000°C)	14.1
Silicon as SiO ₂	1.0
Aluminium as Al ₂ O ₃	0.2
Total Iron as Fe ₂ O ₃	0.19
Titanium as TiO ₂	<0.05
Phosphorus as P ₂ O ₅	< 0.05
Calcium as CaO	36.3
Magnesium as MgO	0.35
	<0.05
Sodium as Na ₂ O	0.07
Potassium as K ₂ O Manganese as MnO	<0.05

Vat Number 4780103505 M and L Laboratory Services (Pty) Ltd

Consulting Industrial Chemists, Analysts & Samplers
CONFIDENTIAL

Ref.No.

: 08/12583L

Issued

: Johannesburg

at Date

: 2008.11.12

Page

: 8 of 13

COMPANY NAME

EN-CHEM CONSULTANTS CC

ADDRESS

PO BOX 2856, CRESTA, 2118 :

SUBJECT

ANALYSIS OF 1 SAMPLE OF SOIL

MARKED

KUSILE, and as below

INSTRUCTED BY

D.A. Baldwin

2008.09.23

PROJECT NO.

:

: P962/2008

RECEIVED ON LAB NO(S)

E50789

:

DATE ANALYSED

2008/10/24

Analysis on as received basis:

Test: VOC

Test Ref.: EPA 8260B & EPA 5035

DETERMINANTS	KUSILE GYPSUM
	<u>(S1)</u>
Benzene	BDL
Bromobenzene	BDL
Bromodichloromethane	BDL
Bromoform	BDL
n-Butylbenzene	BDL
sec-Butylbenzene	BDL
tert-Butylbenzene	BDL
Carbon Tetrachloride	. 48
Chlorobenzene	BDL
Chloroform	BDL
Dibromochloromethane	BDL
Dibromomethane	BDL
Ethylbenzene	BDL
Hexachlorobutadiene	BDL
Isopropylbenzene	BDL
Naphthalene	BDL
n-Propylbenzene	BDL
Styrene	BDL
Tetrachloroethene	BDL
Toluene	49

Vat Number 4780103505

M and L Laboratory Services (Pty) Ltd

Consulting Industrial Chemists, Analysts & Samplers
CONFIDENTIAL

Ref.No.

: 08/12583L

Issued

ea

: Johannesburg

at Date

: 2008.11.12

Page

: 9 of 13

<u>DETERMINANTS</u>	KUSILE GYPSUM
	<u>(S1)</u>
Trichloroethene	BDL
Xylenes	10
1,1-Dichloroethane	BDL
1,1-Dichloroethene	BDL
1,1-Dichloropropene	BDL
1,1,1-Trichloroethane	BDL
1,1,1,2-Tetrachloroethane	BDL
1,1,2-Trichloroethane	BDL
1,1,2,2-Tetrachloroethane	BDL
1,2-Dibromoethane	BDL
1,2-Dichlorobenzene	BDL
1,2-Dichloroethane	BDL
Cis-1,2-Dichloroethene	BDL
Trans-1,2-Dichloroethene	BDL
1,2,3-Trichlorobenzene	BDL
1,2,3-Trichloropropane	BDL
1,2,4-Trichlorobenzene	BDL
1,2,4-Trimethylbenzene	6
1,3-Dichlorobenzene	BDL
1,3-Dichloropropane	BDL
Cis-1,3-Dichloropropene	BDL
Trans-1,3-Dichloropropene	BDL
1,3,5-Trimethylbenzene	BDL
1,4-Dichlorobenzene	BDL
2-Chlorotoluene	BDL
2,2-Dichloropropane	BDL
4-Chlorotoluene	BDL
4-Isopropyltoluene	BDL
1000 0.7000	

VOC-GC/MS Following Purge & Trap Technique

- 1. All results reported in (μg/kg).
- 2. BDL Below Detection Limit (5μg/kg).
- 3. No Field Blank supplied by Client.

Registration Number 1974/001476/07 Vat Number 4780103505

M and L Laboratory Services (Pty) Ltd

Consulting Industrial Chemists, Analysts & Samplers
CONFIDENTIAL

Ref.No. : 08/12583L

Issued

: Johannesburg

at Date

: 2008.11.12

Page

: 10 of 13

COMPANY NAME

: EN-CHEM CONSULTANTS CC

ADDRESS

: PO BOX 2856, CRESTA, 2118

SUBJECT

ANALYSIS OF 1 SAMPLE OF SOIL

MARKED

KUSILE, and as below

INSTRUCTED BY

D.A. Baldwin

PROJECT NO.

P962/2008

RECEIVED ON

1702/2000

LAB NO(S)

2008.09.23 E50789

DATE ANALYSED

2008/10/23

Analysis on as received basis:

Test: SVOC

Test Ref.: EPA 8270C & EPA 3550B

DETERMINANTS	KUSILE GYPSUM
	<u>(S1)</u>
Acenaphthene	BDL
Acenaphthylene	BDL
Anthracene	BDL
Azobenzene	BDL
Benzo(a)anthracene	BDL
Benzo(a)pyrene	BDL
Benzo(b)fluoranthene	BDL
Benzo(k)fluoranthene	BDL
Bis-(2-chloroethoxy) methane	BDL
Bis-(2-chloroethyl) ether	BDL
Bis-(2-chloroisopropyl) ether	BDL
Butyl benzyl phthalate	BDL
Carbazole	BDL
Chrysene	BDL
Di-n-butyl phthalate	BDL
Dibenzofuran	BDL
Diethyl phthalate	BDL
Dimethyl phthalate	BDL
Fluoranthene	BDL
Fluorene	BDL
Hexachlorobenzene	BDL
Hexachlorobutadiene	BDL

Vat Number 4780103505

M and L Laboratory Services (Pty) Ltd Consulting Industrial Chemists, Analysts & Samplers CONFIDENTIAL

Ref.No. : 08/12583L

Issued

: Johannesburg

at Date

: 2008.11.12

Page

: 11 of 13

H2 of 2

DETERMINANTS:	KUSILE GYPSUM
	<u>(S1)</u>
Hexachlorocyclopentadiene	BDL
Hexachloroethane	BDL
Isophorone	BDL
N-nitrosodi-n-propylamine	BDL
N-nitrosodimethylamine	BDL
Naphthalene	BDL
Nitrobenzene	BDL
Phenanthrene	BDL
Phenol	BDL
Pyrene	BDL
1,2-Dichlorobenzene	BDL
1,2,4-Trichlorobenzene	BDL
1,3-Dichlorobenzene	BDL
1,4-Dichlorobenzene	BDL
2-Chloronaphthalene	BDL
2-Chlorophenol	BDL
2-Methylnaphthalene	BDL
2-Methylphenol	BDL
2-Nitroaniline	BDL
2-Nitrophenol	BDL
2,4-Dichlorophenol	BDL
2,4-Dimethylphenol	BDL
2,4-Dinitrotoluene	BDL
2,4,5-Trichlorophenol	BDL
2,4,6-Trichlorophenol	BDL
2,6-Dinitrotoluene	BDL
3-Nitroaniline	BDL
4-Bromophenylphenyl ether	BDL
4-Chloro-3-methylphenol	BDL
4-Chloroaniline	BDL
4-Chlorophenylphenyl ether	BDL
4-Methylphenol	BDL
4-Nitroaniline	BDL

SVOC - GC/MS Following Solvent Extraction Technique.

- All Results Reported in (µg/kg).
- BDL Below Detection Limit (50µg/kg).
- No field blank supplied by client.

Registration Number 1974/001476/07

Vat Number 4780103505

M and L Laboratory Services (Pty) Ltd Consulting Industrial Chemists, Analysts & Samplers CONFIDENTIAL

Ref.No.

: 08/12583L

Issued

: Johannesburg

at

Date

: 2008.11.12

Page : 12 of 13

DETERMINANT	METHOD	METHOD REFERENCES
pH Value	Electrometric	W044-08-W (A.P.H.A. 4500-H ⁺ B)
Conductivity	Potentiometric	W044-04-0 (A.P.H.A. 2510 B)
Total Dissolved Solids	Gravimetric	W044-03-W (A.P.H.A. 2540 C)
Total Solids and Loss On Ignition	Gravimetric	A.P.H.A. 2540 BE
Total Alkalinity	Titrimetric	Auto Analyser or A.P.H.A. 2320 B
Calcium	Atomic Absorption Spectrophotometry	W044-15-W (A.P.H.A. 3111 B)
Magnesium	Atomic Absorption Spectrophotometry	W044-01-W (A.P.H.A. 3111 B)
Potassium	Atomic Absorption Spectrophotometry	W044-01-W (A.P.H.A. 3111 B)
Sodium	Atomic Absorption Spectrophotometry	A.P.H.A. 3111 B
Colour Hazen Units	Lovibond Comparator	B.D.H. Nessleriser Method
Turbidity N.T.U.	Comparator	A.P.H.A. 2130 B
Odour	Physical Testing	
Carbonate Hardness	By Calculation	A.P.H.A. 2150 B
Chloride	Titrimetric or Mercuric Nitrate	A.P.H.A. 2340 A
	Titration	Auto Analyser or A.P.H.A. 4500-Cl C
Sulfate	Gravimetric	A.P.H.A. 4500-SO ₄ C
Sulfate	Turbimetric	A.P.H.A. 4500-SO ₄ E
Sulfite,	Titrimetric	A.P.H.A. 4500-SO ₃ B
Settle-able Solids	Volumetric Measurement	A.P.H.A. 2540-F
Nitrate	Colorimetric	EPA 352.1
Nitrate	Nitrate Electrode	Auto Analyser (A.P.H.A. 4500-NO ₃ D)
Nitrite	Colorimetric	A.P.H.A. 4500-NO ₂ B
Fluoride	Ion Selective Electrode	A.P.H.A. 4500-F C
Mercury	Cold Vapour Generation A.A.S.	A.P.H.A. 3112 B
Hexavalent Chromium	Colorimetric - Diphenyl Carbazide	A.P.H.A. 3500-Cr D
Total Cyanide	Titrimetric following distillation	A.P.H.A. 4500-CN CD
Phenolic Compounds as Phenol	Colorimetric following distillation	A.P.H.A. 5530 BC
Biochemical Oxygen Demand	Titrimetric	A.P.H.A. 5210 B
Chemical Oxygen Demand	Titrimetric	A.P.H.A. 5220 C
Total Suspended Solids	Gravimetric	A.P.H.A. 2540 D
Soap, Oil & Grease	Gravimetric	S.A.B.S. 1051
Sulfide Sulfur	Lead Acetate Method	S.A.B.S. 1056
Sulfide Sulfur	Titrimetric	A.P.H.A. 4500-S ² F
Free & Saline Ammonia	Titrimetric following distillation	A.P.H.A. 4500-NH ₃ BC
Kjeldahl Nitrogen	Titrimetric following distillation	A.P.H.A. 4500-Norg B
Acidity/ P Alkalinity	Titrimetric	Auto Analyser or A.P.H.A. 2310/2320 B
Dissolved Oxygen	Titrimetric	A.P.H.A. 4500-O C
Oxygen Absorbed (Permanganate Value)	Titrimetric	S.A.B.S. 220
Residual/Free Chlorine	Colorimetric	A.P.H.A. 4500-Cl G
Bromide	Ion Chromatograph	A.P.H.A. 4110 C
Calcium Carbonate Saturated pH	Potentiometric	
Free Carbon Dioxide	Nomographic	P.C.I. 9.28
Free Carbon Dioxide	Titrimetric	A.P.H.A. 4500-CO ₂ B
Arsenic, Selenium, Titanium, Aluminium,	Titrimetre	A.P.H.A. 4500-CO ₂ C
Nickel, Manganese, Iron, Vanadium, Zinc,		
Antimony, Lead, Cobalt, Copper, Total		
Chromium, Silicon, Tin, Zirconium, Bismuth,		
Thallium, Beryllium, Cadmium, Boron,	ICP Quantitative Scan	A D H A 2120 D
Phosphorus, Phosphorus as Phosphate,	Quantitative Scall	A.P.H.A. 3120 B
		1
Uranium, Molybdenum, Barium, Silver,		

Ref.No. : 08/12583L

Issued

: Johannesburg

at Date

: 2008.11.12

Page

: 13 of 13

M&L Laboratory Services is an SANAS accredited testing laboratory. The Laboratory Accreditation Number is T0040. The Laboratory complies with ISO/IEC 17025:2005.

The following test schedule outlines only the test methods and/or techniques accredited. Uncertainties of Measurement for these accredited test methods are available upon request:

Materials/Products Tested	Types of Tests/Properties Measured, Range of Measurement	Standard Specifications, Equipment/ Techniques Used
CHEMICAL:		
Water	Total dissolved solids	W044-03-W
	pH	W044-05-W
	Electrical conductivity	W044-04-O
	Calcium by AAS	W044-15-W
	Magnesium by AAS	W044-01-W
	Potassium by AAS	W044-02-W
Pharmaceutical and Veterinary Products	TECHNIQUE – HPLC Determination of Perindopril and degradation products.	PF.T.CTR.A02.R44.09490.01
	Determination of Abamectin, Amitraz and Cypermethrim in Veterinary products.	HP040-54-W and HP040-55-W
MICROBIOLOGY:	- 1-2 - 4E_X	
Water	Escherichia coli per 100 ml	SANS 5221:2006, Edition 4.2/ ISO 7218: 1996 (E)
	Faecal coliform bacteria per 100 ml	SANS 5221:2006, Edition 4.2/ ISO 7218: 1996 (E)
	Total coliform bacteria per 100 ml	SANS 5221:2006, Edition 4.2/ ISO 7218: 1996 (E)
	Standard (Heterotrophic) Plate Count cfu/ml	SANS 5221:2006, Edition 4.2/ ISO 7218: 1996 (E)
Pre-prepared foods	Escherichia coli per gram	SABS 758:1975
Pharmaceuticals	Total coliform bacteria per gram	SABS ISO 4832:1991 (E)
Soils	Standard (Heterotrophic) Plate Count cfu/gram	SABS ISO 4833:1991 (E)
ENVIRONMENTAL:		
Water	GC for BTEX	EPA 502.2
Solids	GC for BTEX	EPA 8015B
Water	GC for DRO	EPA 8015B
Solids	GC for DRO	EPA 8015B
Solids	GC for GRO	EPA 8015B
OCCUPATIONAL HYGIENE		Land the same of t
Water	GC/MS for VQC	EPA 8260B
Solids		EPA 8260B

Please also refer to web site www.sanas.co.za for the full Certificate and Schedule of Accreditation.

Table 2: Analytical results for the FGD Gypsum

***************************************		See text												All present as Cr(III)														Present as sulphate			As silicate			
	ANL, IIIg/I	Se	2	10	0.43	10	7.8	1.2		r	0.031		6.9	4.7 AI	0.02	0.1	-	6	0.022	43.5		0.3	3.7		1.12	10	0.10	- Pr	0.7	0.26	_	2.99	180	
Jn	511		3	3/4	2	Э	3	3	1	Ę	-	ĸ	2	3	1 1	2	3	3	1	4	臣	2	4	NT	3	4	2	Ħ	2	2	IN	3	NT	
D Gypsum xture	ARLP, mg/l		0.003	0.25	<0.02	0.35	0.30	<0.002	<0.005	517	0.002	2.0	0.18	0.05	<0.01	<0.002	2.1	89.0	<0.001	0.71	0.14	0.03	0.03	1.1	0.05	0.70	<0.01	1622	<0.01	<0.03	10.3	<0.02	1.7	<0.002
S3: Ash FGD Gypsum 6:1 Mixture	TCLP¹, mg/l	,	0.03	0.39	0.13	1.9	0.24	<0.002	<0.005	1010	<0.001	11.3	0.18	80.0	<0.01	90.0	9.0	<0.001	<0.001	1.6	62	0.57	0.05	<0.02	0.03	12.7	2.3	2038	<0.01	<0.03	55	<0.02	2.7	0.03
Ash	ARLP, mg/l	a	<0.004	0.28	<0.02	0.74	0.11	<0.002	<0.005	128	0.003	5.1	0.05	0.08	<0.01	<0.002	9.0	0.03	<0.001	1.5	61	0.01	0.02	2.5	0.02	0.92	80.0	41	<0.01	<0.03	12.7	<0.02	1.2	0.002
S2: Ash	TCLP ² , mg/l		<0.004	1.9	90.0	1.7	0.83	<0.002	<0.005	457	0.002	3.1	0.04	0.05	<0.01	0.02	0.8	0.05	<0.001	96.0	91	0.79	0.03	2.0	0.11	6.0	0.73	09	<0.01	0.12	78	<0.02	4.5	0.005
ı	ARLP, mg/l	1	<0.004	0.45	<0.02	0.11	80.0	<0.002	<0.005	631	<0.001	4.4	₹ 0.08	0.003	<0.01	<0.002	6.2	0.05	<0.001	0.20	1.6	0.009	0.004	0.77	<0.003	0.23	<0.01	1703	<0.01	90.0	0.32	<0.02	0.47	0.004
S1: FGD Gypsum	TCLP¹, mg/l		0.01	2.5	<0.02	60.0	0.07	<0.002	<0.005	928	<0.001	5.2	0.25	<0.003	<0.01	0.02	7.5	0.15	<0.001	0.61	33	0.04	0.007	6.5	0.007	1.1	<0.01	2387	<0.01	90.0	4.3	<0.02	0.47	0.01
SI	Total, mg/kg or %	16.6%	1.2	2544	2	na	17	36	9.2	25.93%3	<0.1	210	8.2	7.8	₽	2.8	355	963		668	2197	7.1	0.79	91	8.9	4276	93	65.5%	<1	22	0.47%	7	128	1.1
Spoolog	Species	Moisture	Ag	Al	As	В	Ba	Be	Bi	Ca	рЭ	CI	Co	Crrotal	Cr(VI)	Cu	<u>-</u>	Fe	Hg	K	Mg	Mn	Mo	Na	ïZ	P	Pb	Sulphate	Sb	Se	Si	Sn	Sr	Th

TCLP¹, mg/l ARLP, mg/l TCLP², mg/l ARLP, mg/l TCLP¹, mg/l ARLP, mg/l ARLP	Species	S	S1: FGD Gypsum	E	S2:	S2: Ash	S3: Ash FC 6:1 M	S3: Ash FGD Gypsum 6:1 Mixture	Ü	ADI me/l	
<0.9 <0.009 <0.009 <0.009 <0.009 <0.009 2 97 <0.001		y/kg	TCLP¹, mg/l	ARLP, mg/l	TCLP ² , mg/l	ARLP, mg/l	TCLP ¹ , mg/l	ARLP, mg/l	5	AKL, IIIg/I	Сощтепт
97 <0.001 <0.001 <0.001 <0.001 <0.001 2 <0.4		<0.9	600'0>	<0.009	<0.009	<0.009	<0.009	<0.009	2	0.1	
<0.4 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 2 5 0.002 0.003 0.08 0.13 0.50 0.06 3 <0.5		97	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	2	0.73	
S 0.002 0.003 0.08 0.13 0.50 0.06 3 3 3 3 3 3 3 3 3		<0.4	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	7	0.55	
<0.5 0.06 <0.005 <0.005 <0.005 <0.005 0.00 2 3.3 <0.001		5	0.002	0.003	0.08	0.13	0.50	90.0	6	1.3	
3.3 <0.001 0.001 0.001 0.001 0.002 0.001 3 1.0		<0.5	90'0	<0.005	<0.005	<0.005	0.10	<0.005	- 7	0.70	
5.1 7.2		3.3	<0.001	0.001	0.001	<0.001	0.002	0.001	E	2	
toxic; na = not analysed; ¹ TCLP solution nu			5.1	7.3	4.2	8.8	4.2	11.6			
		7.2	-		10.8		10.4				
	-toxi	ic; na = not analys	sed; ¹ TCLP soluti		f: 2TCLP solution	on Number 2 use	d: ³ Results obta	ined using XRF			

_

APPENDIX 6

KUSILE CLIMATIC WATER BALANCE ASSESSMENT

PANEL B CONSULTANTS JOINT VENTURE

Kusile Project Climatic Water Balance

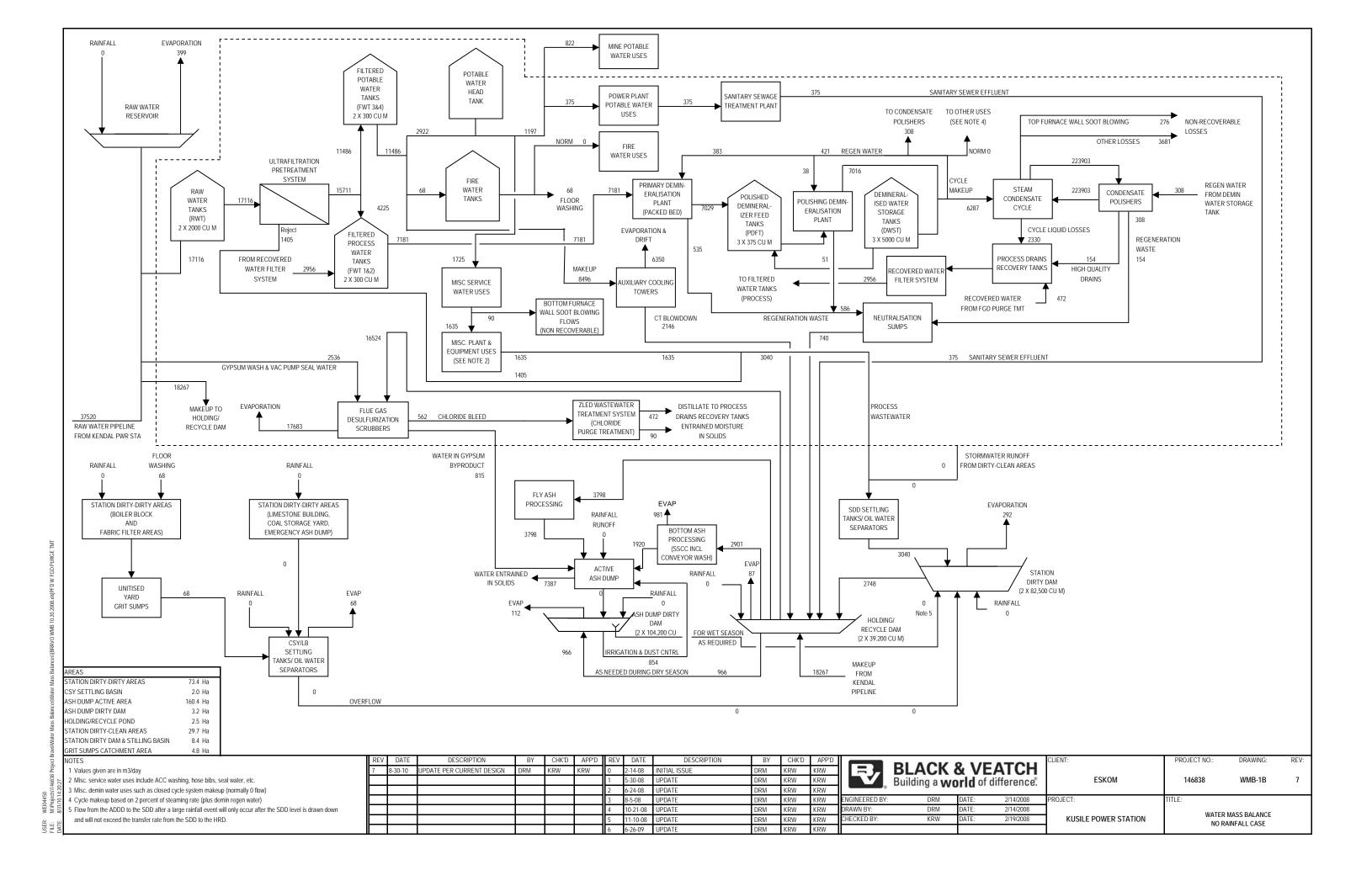
Annual precipitation data for the Kusile site is based on records from Station 0514618W on the Wilge River. This station has a long history of data and was decided to be the most representative of the site. The best available evaporation data is for evaporation station B2E001. Although monthly data could not be obtained, half of the mean annual evaporation was considered to be a conservative estimate of the wet season evaporation.

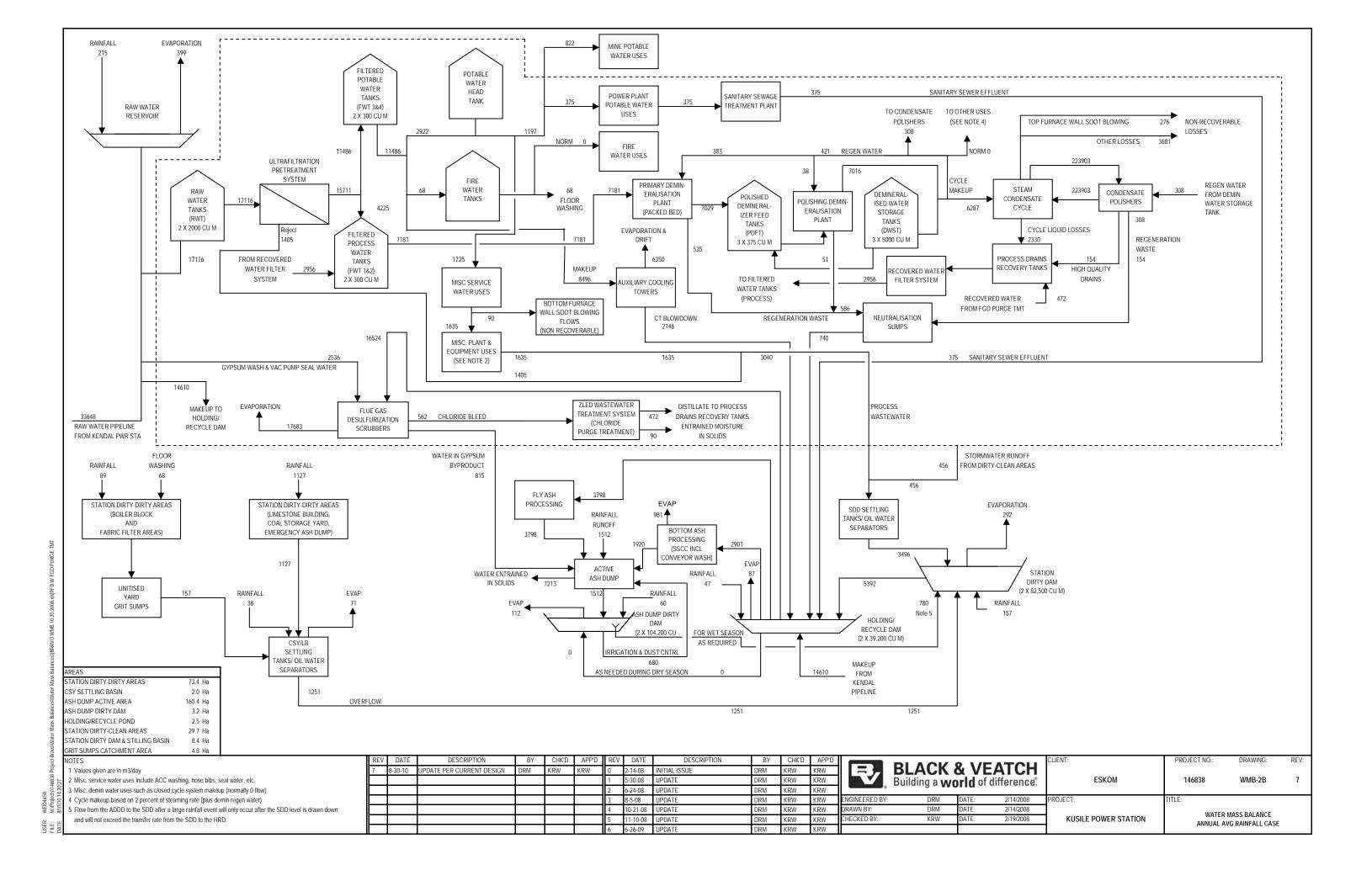
The climatic water balance is defined by:

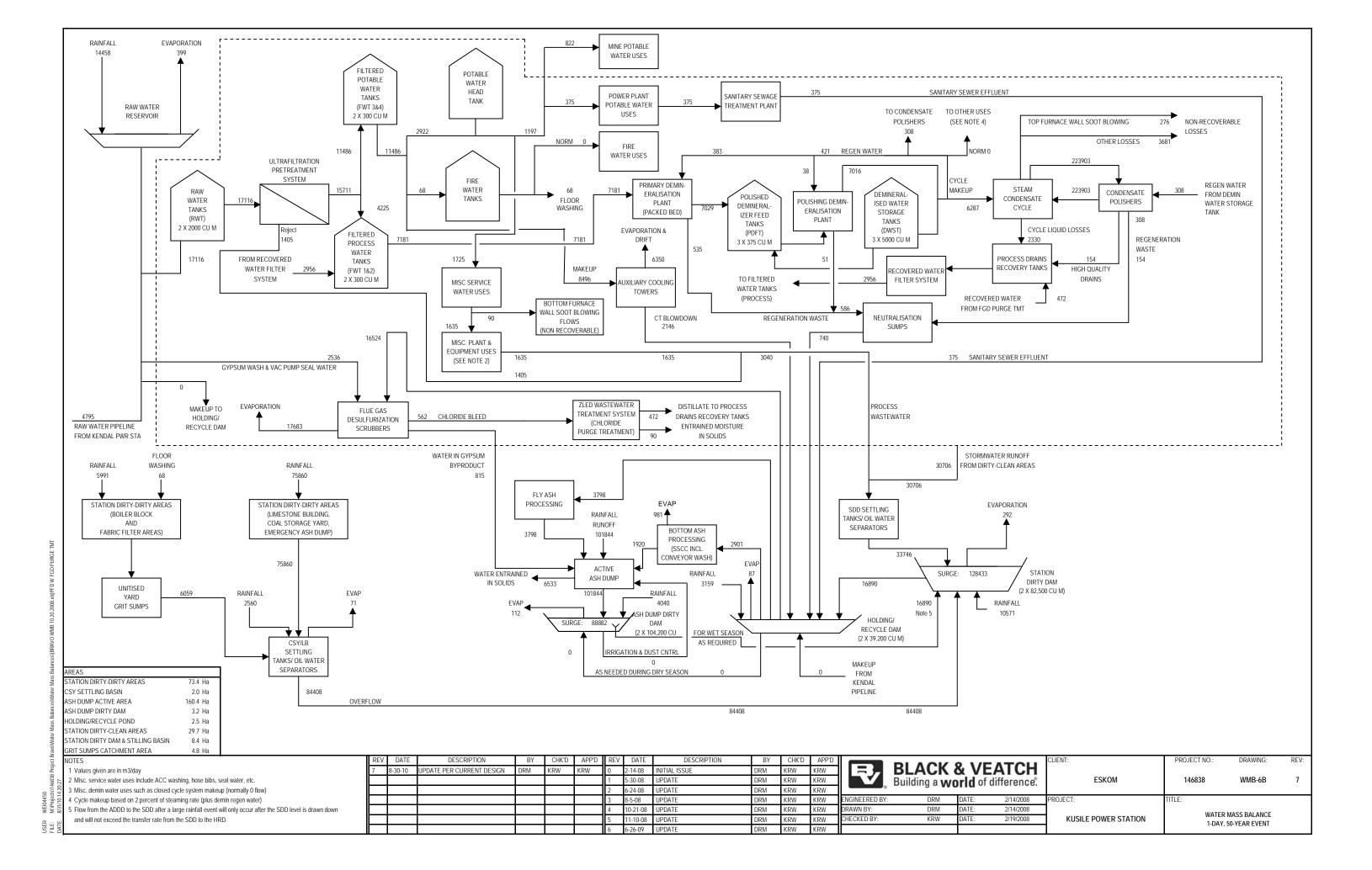
$$B = R - E$$
,

where B is the water balance (indicated by B+ when rainfall exceeds evaporation and B-alternatively), R is the precipitation (in mm) and E is the evaporation (in mm). The assessment of positive and negative water balance is based on the wet season of the five years on record with the highest rainfall. If four of the worst five years yield B+, a water surplus is indicated with certainty and leaching can be expected. If four of the worst five years yield B-, a water deficit can be expected and leaching will only occur under extreme circumstances.

The climatic water balance assessment for the Kusile site is presented in the table below:


YEAR	WET SEASO	ON TOTALS (NOVEMBE	R TO APRIL)
	PRECIPITATION (mm)	EVAPORATION (mm)	WATER BALANCE (mm)
1995	13787	875	+12912
1933	9972	875	+9097
1924	8452	875	+7577
1989	10184	875	+9309
1908	9728	875	+8853


The above results clearly indicate that a B+ water balance is the case for the Kusile site. Leaching can be expected and waste disposal facilities should be designed accordingly.


Year						Мо	nths							
	Oct	Nov	Dec	Jan		Mar	Apr	May	Jun	Jul	Aug	Sep	Total	Average
1905 1906	323 1089	850 701	1236 1728	1232 2080	862 1400	930 234	140 660	0		0	0	117 210		474.16 ⁻ 675.16 ⁻
1907	828	1746	1015	1408	236	520		0		·	175	91		523.83
1908 1909	901 276	697 1129	1247 2012	3237 1267	1609 608	2037 590	50 0	114 0		0		56 142		878.50 521.25
1910	1048	615	1158	1467	480	430	802	654		13	20	8		557.91
1911	591	863	600	968	1169	641	912	25		-		0		480.75
1912 1913	247 883	602 470	1255 543	1398 838	726 1039	791 1062	592 332	0 211	0	0	_	5 58		487.50 468.41
1915	614	1028	781	359	185	704	180	26	0	_		0		323.08
1916	354	638	1110	677	1590	373	356	373		8		183		534.33
1917 1918	575 482	2186 1024	1546 1287	1917 1088	1118 842	1758 986	0 143	0 18		74 30	920	51 51		845.41 495.91
1919	454	1558	1283	839	822	735	220	119	0		0	203	6304	525.33
1920 1921	1872 744	711 1500	1064 1089	1019 652	1587 1347	2445 1318	223	146 412		0		259 208		777.16 705.33
1921	675	1300	1442	2190	857	528	335	5		23	034	71		630.16
1923	320	1261	984	792	816	1131	273	386		0	_	209		516.25
1924 1925	714 318	1569 1209	1550 859	1029 619	1408 667	2222 574	674 221	909 472		3 257	10	808 96		924.91 443.33
1926	231	1416	604	1378	738	844	65	0			168	180		540.41
1927	1580	463	682	1422	765	384	154	10		0	320	97		489.75
1928 1929	423 2060	1686 1039	885 1763	869 1192	826 1492	1268 840		176 56		0 287	5 165	832 8		603.25 765.83
1930	161	328	597	858	507	714	538	0		717	0	0	4430	369.16
1931	463	988	739	2236	608	333	94	170		0		386		501.66
1932 1933	458 50	1340 2354	795 1653	803 2176	787 2331	569 757	701	5 279		0 379	0 156	198 813		437.50 976.08
1934	455	1366	1529	763	927	1179	82	31		0		31		534.66
1935	160	831	927	1405	1165	1478		1261	0	5	0	317		667.41
1936 1937	707 807	1919 270	905 1962	1803 1794	1700 575	260 295	245 1095	51 71		5 163	71	173 85		647.33 608.33
1938	676	804	1744	1187	2300	1087	186	577	0	605	50	196	9412	784.33
1939	677	2130	1712	904	687	680	309	313		0	11	758		739.16
1940 1941	295 561	1645 303	1359 952	1088 1470	883 625	1047 935	972 361	0 417		0	10 175	394 229		641.33 515.91
1942	1010	1364	1587	1013	811	600	1175	449	0	572	548	288	9417	784.75
1943 1944	815 933	1158 1428	1007 653	1539 1153	2421 889	805 632	58 658	64 132		0	0	363 0		729.50 539.83
1944	318	612	744	2201	889 2547	979	97	132	0	0	0	0	7635	636.25
1946	278	538	1351	790	848	1184	229	3		23	0	80		451.75
1947 1948	366 985	1482 1285	1700 501	1714 1815	188 51	891 165	249 447	180 195		0	0	203 183		581.08 471.41
1948	652	1503	1253	844	596	337	955	84		18	0	90		530.41
1950	200	703	1177	860	986	458	767	665	15	20	259	28		511.50
1951 1952	1093 235	66 1253	1494 859	615 780	1267 1065	290 1010		64 72		178 0		0 21		434.75 473.08
1952	259	1989	911	1217	1111	779		90		0		94		569.50
1954	302	1192	453	1844	1710	867	645	125		0	10	0	7283	606.91
1955 1956	672 1355	843 892	1921 1460	925 722	1473 1053	983 1141	3 330	1052 249		65 635	0 229	731 691		732.66 764.66
1957	679	440	243	1566	630	535	1126	115		033	0	685		501.58
1958	1076	1024	1510	1293	631	375	419	135		90	0	40		549.83
1959 1960	140 528	1588 1247	1344 1177	690 595	406 619	874 893	750 890	167 293		25 80	260 0	87 160		532.16 548.16
1961	642	710	465	600	1590	558	515	0		0		100		437.50
1962	541	1719	795	1372	153	445	797	158		177	0	0	7072	589.33
1963 1964	380 2145	950 260	840 1880	1875 904	365 290	332 36	360 368	110 240		50		80		450.25 515.25
1965	80	861	513	575	635	116		100		0		40		273.00
1966	950	1032	929	2167	1720	752	1947	195		5	265	12		831.16
1967 1968	868 450	1277 1069	1204 994	1051 813	579 1051	947 1743	634 421	279 650		100 7	97 25	3 117	7040 7340	586.66 611.66
1969	1381	1210	1738	400	912	523	350	112	10	10	160	98	6904	575.33
1970 1971	1400 386	1498 1490	1046 1421	1900 1737	331 526	498 1404	913 280	170 75		0	0 67	356 203		677.08 633.00
1971	583	1490 837	1421 854	1737	526 469	1404	280 640	75		0	31	203 460		518.08
1973	731	598	1845	1516	247	18	604	60	31	135	5	140	5930	494.16
1974 1975	155 346	820 2054	893 1162	3311 1467	1630 1253	411 1153	1022 365	140 280		1	0	5 78		706.93 679.83
1975	1095	970	895	1265	60	820		55		0		305		489.91
1977	481	620	732	3526	976	1103	333	18		4	152	217		680.16
1978 1979	676 1105	310 1483	371 543	660 1780	262 1987	380 781	387 113	67 20		107	143 0	78 430		286.75 686.83
1980	193	2053	738	1473	873	994	365	0		0	125	230		598.25
1981	475	672	642	1375	456 463	900		0	-	345	0	85		416.75
1982 1983	846 852	312 2046	972 1125	1037 665	462 585	691 910	182 68	170 6		115 150	380 90	80		452.25 557.83
1984	1073	722	693	886	1376	1038	5	168	0	5	150	353	6469	539.0
1985	805	286	1213	1068	581	644	275	0		0	15	5	5007	417.2
1986 1987	927 406	1049 1826	1602 1587	978 995	166 683	2500 914		0		0 34		997 401		712.43 605.75
1988	1082	403	1243	599	2002	582	546	15	808	0	119	20	7419	618.25
1989	495	2487	1944	760 1272	1776 1750	1529		109		55	20	90		912.75
1990 1991	511 688	728 473	1612 1710	1273 1232	1750 911	2346 172		90		0		73 0		718.92 467.42
1992	1257	1290	1618	759	1648	1261	330	66	0	0	31	601	8861	738.42
1993 1994	2222 710	1359 1508	1362 1335	1274 1045	1848	608 2113		0 194			_	243		750.58 695.2
1994	710 924	2038	1335 2573	1045 3150	148 4058	1017	955 951	194		_		245 0		1242.33
1996	1006	397	496	1005	73	2418	355	885	0	56	36	213	6940	578.33
1997 1998	727 586	1280 2200	547 1366	1099 472	442 270	640 553		0 318				374		426.00
1998	586 582	1017	1366 1365	472 1926	270 1815	1326		318 328		0 16	_	48 211		523.75 787.08
•	1219	648	1108	335	534	136	132	429	102	0	0	126	4769	397.41
2000			920	304	663	240	496	316	177	0	269	197	6524	543.66
2000 2001 2002	1311 918	1631 282	1530	1146	727	835		0		0		0		474.41

APPENDIX 7

WATER MASS BALANCE

