

Document number	RR-SPE-0052
Revision number	00
Date	February 2023
Title	NEUTRON SAFETY CHANNEL GUARDED FISSION CHAMBER DETECTOR WITH MINERAL INSULATED CABLE SPECIFICATION

AUTHORISATION

	NAME	DESIGNATION	SIGNED	DATE
Prepared	DA TSELANE	SENIOR I&C ENGINEER		
Checked	FJ BOTHA	CHIEF TECHNICAL OFFICER: REACTOR ENGINEERING SUPPORT		
Checked	JEH BOTHA	FMO: SAFARI-1		
Checked	RMB MILES	MANAGER: MAINTENANCE		
Checked	DC LOURENS	MANAGER: QHSE AND SUPPORT SERVICES		
Checked	JF DU BRUYN	SENIOR MANAGER: NOAM		
Checked	SP TOLO	ACTING MANAGER: REACTOR ENGINEERING		
Approved	SM MALAKA	GENERAL MANAGER: REACTOR OPERATIONS		

DISTRIBUTION

	Electronic Copies:	11	FJ BOTHA
1	DA TSELANE	12	JEH BOTHA
2	FS WINDELL	13	DC LOURENS
3	DL MASHILE	14	RMB MILES
4	SP TOLO	15	KS CHOKOE
5	JWH VLOK	16	JC MOSTERT
6	SM MALAKA		
7	SN GAZO		Hard Copies:
8	GN DU PLESSIS	17	RR RECORDS
9	JF DU BRUYN		
10	TS MAAGE		

This document is the property of the South African Nuclear Energy Corporation and shall not be used, reproduced, transmitted or disclosed without prior written permission

 DOCUMENT:
 RR-SPE-0052
 REVISION 00
 PAGE 2 of 10

TITLE:

NEUTRON SAFETY CHANNEL GUARDED FISSION CHAMBER DETECTOR WITH MINERAL INSULATED CABLE

COI	NTENT	S	PAGE
ΑU	ΓHORI	ISATION	1
DIS	TRIBU	JTION	1
1	PURF	POSE	4
2	SCOF	PE	4
3	ABB	REVIATIONS	4
4	DEFI	NITIONS	4
5	REFE	RENCES	5
6	TECH	INICAL REQUIREMENTS	5
6.1	DETE	ECTOR SPECIFICATION	5
6.2	CABI	LE SPECIFICATION	7
7	ENVI	RONMENTAL REQUIREMENTS	8
8	ОТНЕ	ER REQUIREMENTS	8
8.1	TRAN	NSPORTABILITY	8
8.2	DOC	UMENTATION	9
	8.2.1 8.2.2	Equipment Manual or Data PackDrawings	
8.3	SUPF	PLIER QUALIFICATION REQUIREMENTS	10
8.4	PREF	PARATION FOR DELIVERY	10
	8.4.1	Marking and Labelling	

This document is the property of the South African Nuclear Energy Corporation and shall not be used, reproduced, transmitted or disclosed without prior written permission

 DOCUMENT:
 RR-SPE-0052
 REVISION 00
 PAGE 3 of 10

TITLE: NEUTRON SAFETY CHANNEL GUARDED FISSION CHAMBER DETECTOR WITH

MINERAL INSULATED CABLE

REVISIONS

This document has been revised in accordance with the following schedule:

Rev. No.	Date Approved	Nature of Revision	Prepared
00	See Title Page	First issue	DA Tselane

This document is the property of the South African Nuclear Energy Corporation and shall not be used, reproduced, transmitted or disclosed without prior written permission

DOCUMENT: RR-SPE-0052 **REVISION** 00 **PAGE** 4 of 10

TITLE: NEUTRON SAFETY CHANNEL GUARDED FISSION CHAMBER DETECTOR WITH

MINERAL INSULATED CABLE

1 PURPOSE

The purpose of this document is to provide the technical specifications for the replacement of the Neutron Safety (NS) Channel Guarded Fission Chamber Detector with Mineral Insulated (MI) Cable.

2 SCOPE

This document specifies the technical requirements that define the deliverable items for the replacement of the NS Channel Guarded Fission Chamber Detector with MI Cable.

3 ABBREVIATIONS

The following abbreviations are associated with this document:

ANSI	American National Standards Institute
CPS	Count per Seconds
FAT	Factory Acceptance Test
FMEA	Failure Mode Effects Analysis
NS	Neutron Safety Channel
NNR	National Nuclear Regulator
MI	Mineral Insulated Cable
HV	High Voltage
U ²³⁵	Uranium 235

4 **DEFINITIONS**

Burn-up life	The amount of time that the detector can continue to operate effectively before its performance begins to degrade.
Guarded Fission	A guarded fission chamber is a type of radiation measurement device used to detect and quantify the presence of nuclear radiation. It consists of three cylinders of which the two inner cylinders is coated with a layer of uranium and
Chamber	filled with Gas. Two cables are connected to the fission chamber, one is for HV, and the other carries the neutron pulses.
	This cable provides a high degree of protection against heat, fire, moisture, and
Mineral	other environmental hazards, making MI cable ideal for use in harsh and
Insulated	demanding environments. It consists of an inner conductor, solid copper
Cable	covered with plastic coating. This is then surrounded by magnesium oxide powder. The outer sheath consists of a copper inner tube and Stainless-steel outer tube. This cable impedance is $50\Omega \pm 2\Omega$

This document is the property of the South African Nuclear Energy Corporation and shall not be used, reproduced, transmitted or disclosed without prior written permission

DOCUMENT: RR-SPE-0052 **REVISION** 00 **PAGE** 5 of 10

TITLE: NEUTRON SAFETY CHANNEL GUARDED FISSION CHAMBER DETECTOR WITH MINERAL INSULATED CABLE

Sensitivity	The minimum level of radiation that the detector can detect accurately

5 REFERENCES

The following codes or standards are applicable:

ANSI 45.2-2 : Packaging, Shipping, Receiving, Storage, and Handling of Items for

Nuclear Power Plants

Control of Handling, Storage, Packaging, Preservation, and Delivery of SHEQ-INS-0244 :

Product

1 100000

SHEQ-INS-0238 : Control of Procurement

10CFR50 Quality Assurance Criteria for Nuclear Power Plants and Fuel

Appendix B Reprocessing Plants

RR-PRG-1000 : Procedure For the Release of Procured and Manufactured Products

(Items) Within SAFARI-1

RR-TSR-0001 : Safety Classification of Safari-1 Structures, Systems and Components

QMS requirements for the supply of quality class 1 products for nuclear

SHEQ-INS-0270 :

installations

6 TECHNICAL REQUIREMENTS

The component is classified as SC-1 as per RR-TSR-0001 and should therefore comply with the requirements SHEQ-INS-0270. The specifications for each component are defined in table 1 and 2 below.

6.1 DETECTOR SPECIFICATION

Table 1: Guarded Fission Chamber Detector specification

Item Description: Guarded Fission Chamber Detector specification		
Mechanical		
Diameter	80.02 mm (3.15 inches)	
Overall Length	331.7 mm (13.06 inches)	
Distance from nose to start of sensitive length	22mm (0.88 inches)	
Sensitive Length	9.25 inches	
Net weight	2.4Kg (5.29 pounds)	

This document is the property of the South African Nuclear Energy Corporation and shall not be used, reproduced, transmitted or disclosed without prior written permission

DOCUMENT: RR-SPE-0052 **REVISION** 00 **PAGE** 6 of 10

TITLE: NEUTRON SAFETY CHANNEL GUARDED FISSION CHAMBER DETECTOR WITH

: MINERAL INSULATED CABLE

Connectors		
Connector Type	No connector on chamber	
Insulator type	NA	
Material Re	equirements	
Detector Housing Material	Aluminium Grade 1000 series	
Electrodes	Aluminium Grade 1000 series	
Insulator type	Alumina Ceramic	
Neutron Sensitive Material	Content: ≥ 93% enriched U-235	
	Thickness: 0.6 to 2.0 mg/cm2	
	Total Quantity of Uranium: 0.72 to 1,3 grams	
	Specifically total mass and U 235 mass must be	
	provided per detector serial number	
Gas Filling	95%(min) of Argon with 5% Nitrogen(max)	
Gas Pressure	14.7 psi (1 bar)	
Impe	dance	
Resistance at 25 °C (Minimum)	> 10 ¹² Ohms	
Capacitance	Signal Electrode to Case: >135 pF	
	High Voltage Electrode to Case: >240 pF	
Maximum Ratings		
Voltage Between Electrodes	1000 Volts	
Temperature	300°C	
Thermal Neutron Flux(φ)	$1.5 < \phi < 2.0 \times 10^{10} \text{ nv}$	
Burn-up life 10% decrease in sensitivity	3.0 x 10 ²⁰ nvt	
Typical (Operation	
Operating Voltage	300 volts	
Operating Voltage Plateau	200 to 800 volts	
Thermal Neutron Flux Range	1.5 to 2.0 x 10 ¹⁰ nv	
Sensitivity	0.7 cps/nv	
Thermal Neutron Sensitivity	>1.2 x 10 ⁻¹³ Amps/nv(min)	
Gamma Sensitivity	<5 x 10 ⁻¹¹ Amps/R/hr(max)	

This document is the property of the South African Nuclear Energy Corporation and shall not be used, reproduced, transmitted or disclosed without prior written permission

DOCUMENT:	RR-SPE-0052	REVISION 00	PAGE 7 of 10
TITLE:	NEUTRON SAFETY CHANNEL G MINERAL INSULATED CABLE	BUARDED FISSION CHAMBER	DETECTOR WITH

Notes:

- 1. Supplier to provide Factory Acceptance Testing (FAT) Report or traceability of manufacturing. As part of the test data the following must be provided by supplier
 - a. Certificate of gas content and fill pressure
 - b. Certification of the amount of Uranium and the isotope analysis
 - i. Nominal Isotope Analysis

 U^{234} <1% U^{235} ≥ 93% U^{236} <0.8% U^{238} <6.5%

- Test data of alpha current, Insulation resistance, Inter-electrode capacitance and Neutron Sensitivity
- d. Integral Bias Curves of Noise, Noise plus Alpha, Noise plus Alpha plus Neutrons

6.2 CABLE SPECIFICATION

Table 2: Mineral Insulated (MI) Cable Specification

Item Description: Mineral Insulated (MI) Cable Specification		
Dimensions		
Outer Diameter	5.0 ±0.05 mm	
Inner Diameter	3.0 ±0.15 mm	
Wire Diameter	0.75 ±0.10 mm	
Cable Length	±21 m	
Connectors		
Connector at Amplifier box	N Type male	
Material		
Wire	Copper CuA1	
Insulator	SiO2 purity > 99.5%	
Sheath	Stainless Steel AISI 304L(external)-copper	
	inside (CuA1) (internal)	
Electrical Characteristics		
Line Resistance	approx. 0.035 Ohms/m ±0.1	
Insulation Resistance	≥10 ¹² Ohms.m at 20°C under 1000VDC	

This document is the property of the South African Nuclear Energy Corporation and shall not be used, reproduced, transmitted or disclosed without prior written permission

DOCUMENT:	RR-SPE-0052	REVISION 00	PAGE 8 of 10
TITLE:	NEUTRON SAFETY CHANNEL GUARDED FISSION CHAMBER DETECTOR WITH MINERAL INSULATED CABLE		

Dielectric test	≥1.10 ¹⁰ Ohms.m at 200°C under 1000VDC	
	≥1500 VDC/1min between wire and sheath	
Typical Impedance	50 Ohms ± 2Ohms	
Other Characteristics		
Minimum Bend Radius	250 mm	
Minimum Bend Radius (once-on installation)	50 mm	

Notes:

1. The mineral insulation cable connections/splicing at the Detector must be done by the supplier. Supplier to supply end connections for MI cable.

7 ENVIRONMENTAL REQUIREMENTS

The system shall be capable of achieving all functional and performance requirements as specified in this document, during and after exposure to environmental conditions as indicated below:

Table 3: Temperature & Humidity Conditions

	Location	Environmental limits				
Equipment		Temperature °C		Humidity % RH		
		Min.	Operating	Max.	Min.	Max.
Detector assembly	Detector Well	10	32	50	10	100
MI cables to Preamplifier Junction Box	Confinement	10	30	45	10	80

8 OTHER REQUIREMENTS

8.1 TRANSPORTABILITY

- a) The equipment and associated packaging shall allow the equipment to be transported by road, rail, sea, or commercial air transport without exceeding any environmental limitations of the equipment.
- b) Crate size shall be limited to the following dimensions: length <5 m, width <2 m, height <1.5 m, with a maximum mass of 200 kg.

This document is the property of the South African Nuclear Energy Corporation and shall not be used, reproduced, transmitted or disclosed without prior written permission

DOCUMENT:	RR-SPE-0052	REVISION 00	PAGE 9 of 10
TITLE:	NEUTRON SAFETY CHANNEL G MINERAL INSULATED CABLE	GUARDED FISSION CHAMBER	DETECTOR WITH

8.2 DOCUMENTATION

The following documentation should be supplied by the supplier for release and certification of conformance to requirements:

8.2.1 Equipment Manual or Data Pack

An equipment manual or data file describing the detector and cable shall be supplied. The data pack shall, as applicable, have the following:

- a. Installation procedures
 - Handling precautions and limits
 - · Detector handling instructions
 - Cable terminating procedures.
- b. Commissioning procedures and tests
 - Commissioning checklists
- c. Procedures and schedules for system maintenance procedures
 - Detector and Channel alignment procedures
 - · Schematic and wiring diagrams
- d. Parts list for reference and Certificate of Conformance for the assemblies
- e. Configuration list of sub-assemblies and modules for each assembly as agreed.
- f. Analysis of system reliability which includes Failure Mode Effects Analysis (FMEA)
- g. Life cycle management letter of the equipment with commitment period of support after procurement of goods.
- h. Recommended maintenance strategy with clear maintenance tasks and their frequency.
- i. Document providing: Specificly total mass and U 235 mass of each detector per serial number of detector

8.2.2 Drawings

A complete set of As-built drawing to enable maintenance and installation, as a minimum supplied drawings shall include:

- Outline drawings
- Assembly drawings
- Circuit diagrams (If available)

This document is the property of the South African Nuclear Energy Corporation and shall not be used, reproduced, transmitted or disclosed without prior written permission

DOCUMENT:	RR-SPE-0052	REVISION 00	PAGE 10 of 10
TITLE:	NEUTRON SAFETY CHANNEL O MINERAL INSULATED CABLE	GUARDED FISSION CHAMBER	DETECTOR WITH

8.3 SUPPLIER QUALIFICATION REQUIREMENTS

Since the component is classified as a Safety Class SC-1 it also categorised the quality requirements as Quality Class level as QL-1. Thus, Necsa have the prerequisite to perform a supplier qualification audit on the supplier as per the requirements of the SAFARI-1 and Nesca QMS requirements. The following documents needs to be provided in advance:

- Company profile
- Quality Manual
- Quality Management system and other certification

The supplier must ensure compliance with Quality Assurance (QA) Requirements as detailed in the following standards and procedures.

- SHEQ-INS-0238,
- RR-PRG-1000
- 10 CFR 50 Appendix B

8.4 PREPARATION FOR DELIVERY

All export and import permits shall be duly authorized prior to shipment. Shipping requirements must comply with ANSI 45.2-2 Level B and SHEQ-INS-0244

8.4.1 Marking and Labelling

All items supplied, down to the level of maintenance replaceable items, shall bear name plates indicating at least the following:

- Manufacturer name
- Part number
- Serial number

8.4.2 Shipping and Freightage

All export and import permits shall be duly authorized prior to shipment.

- i. The shipping route shall be selected to ensure that the equipment is handled with minimum transport and shipment activities between the country of origin/manufacture and South Africa.
- ii. Essential shipping permits shall be the responsibility of the supplier. The supplier is responsible for obtaining the required export permits.
- iii. NECSA SAFARI-1 shall be responsible for the supply of end-user certification.