

SOW

Camden Power Station

Title: Removal and Application of Refractory for Camden Power

Station for 60 Months

Document Identifier: 229-T2698

Alternative Reference

PZ1226

Number:

Area of Applicability: **Boiler**

Functional Area: **Engineering, Outages and**

Maintenance

Revision: 1

Total Pages: 17

Next Review Date: (Once-off document)

Disclosure Classification: **Controlled Disclosure**

Compiled by

Supported by

Authorised

Accepted by

P Sejake

P Mthombeni

Line Manager

M Mathabatha

B Mbatsane

System Engineer

Engineering Manager

Maintenance Manager

Date: 26.08.2024

Date: 26/08/2024

Date: 29/08/2024

Date: 09/09/2024

CONTROLLED DISCLOSURE

When downloaded from the document management system, this document is uncontrolled and the responsibility rests with the user to ensure it is in line with the authorized version on the system.

Unique Identifier: 229-T2698

Revision: 1

Page: 2 of 17

Content

	Pa	age
1.	Introduction	4
	1.1 Purpose	4
	1.2 Applicability	4
2.	Definitions and Abbreviations	4
	2.1 Definitions	
	2.2 Abbreviations	4
	2.3 Normative/Informative References	5
	2.3.1 Normative	5
3.	Scope of Work Content	5
0.	3.1 Outage Goal	
	3.2 Outage Objectives	
	3.2.1 Technical Criteria	
	3.2.2 Scope Variations	
	3.2.3 Financial Performance	
	3.2.4 Time Management	
	3.3 Plant History	
	3.4 Operating Condition	
	3.5 Plant Specific Safety Requirements	
	3.6 Risk Report and Mitigating actions	
	3.7 Environmental Requirements	
	3.8 Engineering Drawings	7
	3.9 Plant Preservation Requirements	7
	3.10 Transportation and Storage Requirements	7
	3.11 Scope compilation references	8
	3.12 Subsystem	8
	3.13 Service report and PQP	8
	3.14 Quality	8
	3.15 Experience of Staff	9
	3.16 Work Preparation	9
	3.17 Insulation / Lagging/ Asbestos	.10
	3.18 Scaffolding Requirements	.10
	3.20 Detailed Scope of Work	
	3.20.1 Bill of Materials	. 11
	3.20.2 Areas per SOW	. 13
	3.22.1 Critical Component Testing of refractory blocks	
	3.23 Defects	
	3.24 Tools and Equipment requirements	
	3.25 Commissioning and Acceptance Testing Activities	16
4.	Summary of Revision Changes	16

CONTROLLED DISCLOSURE

When downloaded from the document management system, this document is uncontrolled and the responsibility rests with the user to ensure it is in line with the authorized version on the system.

Unique Identifier: 229-T2698

Revision: 1

Page: 3 of 17

_		
5.	Acceptance	16
6.	Template Revisions	17

CONTROLLED DISCLOSURE

When downloaded from the document management system, this document is uncontrolled and the responsibility rests with the user to ensure it is in line with the authorized version on the system.

Unique Identifier: 229-T2698

Revision: 1

Page: 4 of 17

1. Introduction

The document serves as a scope of work for the removal and application of refractory inside the boiler furnace. The scope was compiled taking into consideration previous application and poor workmanship experienced.

1.1 Purpose

The purpose of the scope of work is to give detailed clarification of the work to be done on the boiler walls, tubes, bifurcations, and tubing.

1.2 Applicability

This document applies to Eskom Camden Power Station. It is applicable to Boiler Engineering, Maintenance, Outage department, and Projects department, including any contractor that will be involved in execution of the scope of work.

2. Definitions and Abbreviations

2.1 Definitions

- **H** Customer to inspect the plant / equipment or advice before commencing with work activities.
- **W** Customer to inspect the plant/ equipment during work activities.
- A Copy of inspection report to be issued to customer.
- **R** Customer to review reports or checks sheets prior to re-assembly.

2.2 Abbreviations

DMS - Documentation Management System

NDE – Non-Destructive Examination

NDT – Non-Destructive Testing

PQP – Process Quality Plan

ITP - Inspection and Test Plan

QCP – Quality Control Plan

MT – Magnetic Testing (Magnetic Particle Inspection)

UT - Ultrasonic Testing

DIM – Dimension Testing (Profile gauging)

HD - Hardness Testing

RP - Replication

CONTROLLED DISCLOSURE

When downloaded from the document management system, this document is uncontrolled and the responsibility rests with the user to ensure it is in line with the authorized version on the system.

Unique Identifier: 229-T2698

1

Revision:

Page: **5 of 17**

2.3 Normative/Informative References

Parties using this document shall apply the most recent edition of the documents listed in the following paragraphs.

2.3.1 Normative

- [1] ISO 9001 Quality Management Systems.
- [2] OHS Act Occupational Health and Safety Act and Regulations (Act No.85 of 1993)
- [3] 240-56246601 Personnel and Entities Performing Welding Related Special Processes on Eskom Plant
- [4] 240-56247004 Thermal Insulation Standard
- [5] 240–56239129 High pressure piping standard

3. Scope of Work Content

Department	Boiler	System	Various areas

3.1 Outage Goal

After successful execution and completion of the scope of work the following outcomes are expected:

- Precise application of correctly specified refractory in applied areas
- Application of refractory to last inside high temperature operation as per outage philosophy.

3.2 Outage Objectives

The following improvements are required after analysis of the outage effectiveness indicator:

3.2.1 Technical Criteria

- All work is to be executed according to code, and Eskom procedures.
- The work executed is to be of high quality and ITPs with MSD should be adhered to at all times.
- Method statements are required up front before the outage commences approved by engineering.

CONTROLLED DISCLOSURE

When downloaded from the document management system, this document is uncontrolled and the responsibility rests with the user to ensure it is in line with the authorized version on the system.

Unique Identifier: 229-T2698

Revision: 1

Page: 6 of 17

3.2.2 Scope Variations

Any scope variation to be submitted to Boiler Engineering for approval.

3.2.3 Financial Performance

• Execute within approved budget.

3.2.4 Time Management

- Availability of spares outage to order/purchase 9 months before the outage start date such that the material/components are on site before the outage starts.
- Scaffolding erection scaffolding to be erected before unit comes down where possible.

3.3 Plant History

Table 1: Summary of the number of areas in the outage SOW

1	Burner mouth A-E
2	Evaporator bottom deadspace front
3	Evaporator bottom deadspace rear
4	Evaporator Top Nose deadspace Roof
5	Evaporator Top Nose deadspace Rear wall
6	Evaporator Top Nose skincasing access
7	Evaporator front wall at 18m Burner row C
8	Evaporator front wall at 18m Burner row D
9	Evaporator LHS wall sample tubes at 29m level
10	Evaporator RHS wall sample tubes at 29m level
11	Evaporator Front wall CF sample tubes 29m level
12	Evaporator LHS wall at 32m Level
13	Evaporator RHS wall at 32m Level
14	Evaporator Front wall at 28m Level
15	Evaporator Front wall at 21m Level Burner Row D
16	Evaporator Front wall at 21m Level Burner Row E
17	Evaporator Front wall at 12m Level Burner Row A
18	Evaporator Front wall at 12m Level
19	Evaporator LHS wall at 12m Level
20	Evaporator RHS wall at 12m Level
21	Evaporator LHS wall at 14m Level
22	Evaporator RHS wall at 14m Level
23	Evaporator Rear wall at 12m Level
24	Evaporator Rear wall at 14m Level
25	Evaporator Rear wall sample tubes at 18m level
26	Evaporator Rear wall sample tubes at 21m level

CONTROLLED DISCLOSURE

When downloaded from the document management system, this document is uncontrolled and the responsibility rests with the user to ensure it is in line with the authorized version on the system.

Unique Identifier: 229-T2698

Revision: 1

Page: 7 of 17

۱ ۵٦					
27	Saturated steam tubes rear wall at 31m Level				
28	Saturated steam tubes rear wall at 32m Level				
29	29 Saturated steam tubes rear wall at 33m Level				
30	Saturated steam tubes rear wall at 34m Level				
31	Saturated steam tubes rear wall at 36m Level				
32	Economiser side wall erosion at rear screen tubes				
33	Economiser side wall LHS wall				
34	Economiser side wall RHS wall				
35	Economiser LHS wall Around soorblowers and manholes				
36	Economiser side wall erosion above economiser top bank at wall plates				
37	Evaporator Top Nose Deadspace floor				

3.4 Operating Condition

The unit operates as per design and under design from time to time.

3.5 Plant Specific Safety Requirements

Already addressed on the Power Station's SHE specification.

3.6 Risk Report and Mitigating actions

As per R/A supported by contractor executing work.

3.7 Environmental Requirements

All waste/scrap is to be disposed of in the appropriate scrap/waste bins.

3.8 Engineering Drawings

Updated approved drawings can be submitted by Boiler Eng. as and when required.

3.9 Plant Preservation Requirements

N/A

3.10 Transportation and Storage Requirements

All spares are to be stored as per MSD from supplier.

CONTROLLED DISCLOSURE

When downloaded from the document management system, this document is uncontrolled and the responsibility rests with the user to ensure it is in line with the authorized version on the system.

Unique Identifier: 229-T2698

Revision: 1

Page: **8 of 17**

3.11 Scope compilation references

Source	Source reference №
Previous outage service reports	N/A
Return to service data packages	QCP/MSD
SAP PM defects (attach list as appendix)	N/A
GHRMS (STEP) reports	N/A
Pre outage performance test results	N/A
Post outage performance test results	N/A
GPSS data on UCLF incurred	N/A
OMS / IIRMS recommendations	N/A
Risk controls (CURA system)	N/A
Previous audits and reviews	N/A
Engineering Change Requests	N/A

3.12 Subsystem

As per detailed SOW

3.13 Service report and PQP

- A full-service report will be compiled and provided to Camden Power Station in duplicate.
 The report will contain a high-level description of the work done during the refurbishment. It
 will contain the approved PQP of work on site and all related check sheets and test reports.
 All technical notifications will be shown as well. It will contain a section on spares used
 report.
- PQP to be compiled and presented to Engineering for approval before start of outage.
 Duplicate service report provided to Camden Power Station within 14 days of the completion of the work. Report to be accepted by Engineering.

3.14 Quality

Inspections to be carried out in accordance with check sheets as attached in master quality
plan which should be compiled from this document and approved by Engineering. This
document will contain all the PQP's of work that will be done on site and off site.
Dismantling and assembly values to be recorded for all check sheets. Repair or replace all

CONTROLLED DISCLOSURE

When downloaded from the document management system, this document is uncontrolled and the responsibility rests with the user to ensure it is in line with the authorized version on the system.

Unique Identifier: 229-T2698

Revision: 1

Page: 9 of 17

damaged/worn components out of specification or obtain a concession from engineering staff. All abnormalities to be recorded and reported with technical notifications.

- All work carried out will be in line with the applicable ESKOM standards. Where nothing
 exists, good engineering practise will be followed. This includes but is not limited to the
 covering of all openings and the use of approved chemicals.
- Where digital photos are required, it will be of a resolution of at least 2228x1712.
- Supplier Contract Quality Requirement Specification (QM 58) shall be the governing document.

3.15 Experience of Staff

- All staff shall be adequately qualified and competent of performing all work within safe and correct technical specifications.
- Short CV's of all supervisors, quality technicians, artisan, stating qualifications and relevant experience will be provided at least two weeks before commencement of outage.
- The importance of correct equipment spares and procedures should be included in structured toolbox talk sessions with all contractors.
- All personnel shall have a medical certificate of fitness as per the Stations SHE specification.

3.16 Work Preparation

No.	Scope of Work	Responsible work centre	Procedure or Specificati on	Hold or Witness Points	Check sheet
Prepa	aration				
1.	Install scaffolding and restraints as far as possible before unit comes off for GO.	TMS	N/A	N/A	N/A
2.	Prepare all MSD		N/A	Engineering Approval	N/A
3.	All material from the bill of material to be ordered and components verified before outage starts.	Outage	Keep engineering informed	N/A	N/A

CONTROLLED DISCLOSURE

When downloaded from the document management system, this document is uncontrolled and the responsibility rests with the user to ensure it is in line with the authorized version on the system.

Unique Identifier: 229-T2698

Revision: 1

Page: **10 of 17**

4.	Review list of boiler defects A list of all the latest defects shall be obtained from SAP and repaired.	Maintenance	N/A	N/A	Normal defects process to be followed.
5.					

3.17 Insulation / Lagging/ Asbestos

• Any areas with known asbestos to be removed as per HSE standards.

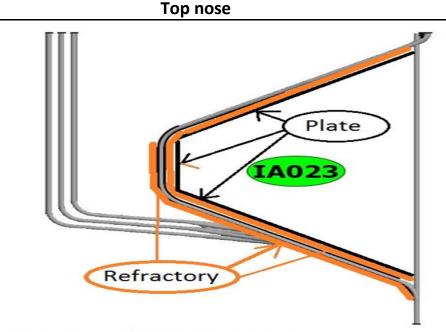
3.18 Scaffolding Requirements

No	Task	Responsi ble work centre	Procedure or Specification	Hold or Witnes s Points	Check sheet
1.	Build scaffolding on all areas as per SOW	Outage		Hold Point	
2.	Build scaffolding for inspections of refractory.	Outage			
3.					

CONTROLLED DISCLOSURE

Unique Revision: 229-T0000

Page:

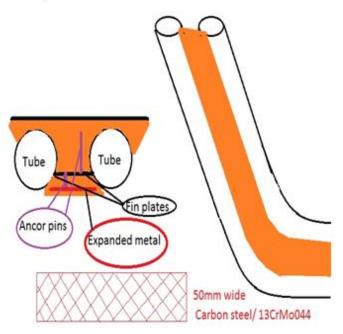

11 of 17

3.20 Detailed Scope of Work

3.20.1 Bill of Materials

The material needed for the planned replacements during the GO are specified in the bill of materials in the tables below.

	Refractory specification		
Operating Temperature	Minimum 1450`C		
Application	Top Nose		
Thermal conductive	Yes		
Thermal conductivity	Minimum 4 (W/m.K)		
Abrasive area	Yes		
Brick / cast able/ throw able	Throw able/ plaster		
Maximum water mixture	4.5%-6%		
Cold crush strength 110°C	Minimum 110 MPa		
Minimum SiC %	55%		
Alumina min Al2O3 %	12%		
Iron oxide Fe2O3 % Min	1.3%		
Optimised fibre mix %	2% of mixture		


Comments

Please take the following in consideration

We will need expanded metal or anchor points for top nose to ensure application will stay on

We need small percentage optimized fiber separately to add with mixture to ensure long operating capability

Top nose bottom section

CONTROLLED DISCLOSURE

When downloaded from the document management system, this document is uncontrolled and the responsibility rests with the user to ensure it is in line with the authorized version on the system.

Unique 229-Revision: 1

Page: **12 of 17**

Operating Temperature	Minimum 1450`C
Application	Manhole furnace
Thermal conductive	Yes
Thermal conductivity	Minimum 4 (W/m.K)
Abrasive area	Yes
Brick / cast able/ throw able	Throw able
Maximum water mixture	4.5%-6%
	11: 110115
Cold crush strength 110°C	Minimum 110 MPa 55%
Minimum SiC % Alumina min Al2O3 %	12%
Iron oxide Fe2O3 % Min	1.3%
Optimised fibre mix %	2% of mixture
	Please take the following in
Comments	consideration
	We will need Anchor points
	to ensure application will
	stay on
	We need small percentage
	optimized fiber separately to add with mixture to
	ensure long operating
	capability

			Pyrometers			
Operating Temperature	Minimum 1450`C		-			
Application	Pyrometer openings					
Thermal conductive	Yes					
Thermal conductivity	Minimum 4 (W/m.K)	23	77			110
Abrasive area	Yes	23	//			110
Brick / cast able/ throw able	Throw able	24	78			119
Maximum water mixture	4.5%-6%	25	79			120
Cold crush strength 110°C	Minimum 110 MPa					
Minimum SiC %	55%					
Alumina min Al2O3 %	12%					
Iron oxide Fe2O3 % Min	1.3%					
Optimised fibre mix %	2% of mixture			7 -	7	
Comments	Please take the following in consideration			Refract	ory	
	We will need Anchor points to ensure application will stay on		- 111			Ш
	We need small percentage optimized fiber separately to add with mixture to ensure long operating capability	Ш	Ш			Ш

CONTROLLED DISCLOSURE

When downloaded from the document management system, this document is uncontrolled and the responsibility rests with the user to ensure it is in line with the authorized version on the system.

Unique 229-Revision: 1

Page: **13 of 17**

Operating Temperature Minimum 1450°C Application Evaporator SB Opening Thermal conductive Yes Minimum 4 (W/m.K) Abrasive area Yes Brick / cast able/ throw able Maximum water mixture 4.5%-6% Cold crush strength 110°C Minimum 110 MPa Minimum SiC % 55% Alumina min Al2O3 % 12% Iron oxide Fe2O3 % Min 1.3% Optimised fibre mix % 2% of mixture We will need Anchor points			Other Bifucations
Thermal conductive Yes Minimum 4 (W/m.K) Abrasive area Yes Brick / cast able/ throw able Maximum water mixture 4.5%-6% Cold crush strength 110°C Minimum 110 MPa Minimum SiC % 55% Alumina min Al2O3 % 12% Iron oxide Fe2O3 % Min 1.3% Optimised fibre mix % 2% of mixture	perating Temperature	Minimum 1450`C	
Minimum 4 (W/m.K) Abrasive area Pres Brick / cast able/ throw able Maximum water mixture 4.5%-6% Cold crush strength 110°C Minimum 110 MPa Minimum SiC % Alumina min Al203 % Iron oxide Fe203 % Min Optimised fibre mix % Minimum 4 (W/m.K) Yes Throw able A.5%-6% Minimum 110 MPa Minimum 110 MPa Izw Iron oxide Fe203 % Min 1.3% Optimised fibre mix %	plication	Evaporator SB Opening	
Abrasive area Yes Brick / cast able/ throw able Maximum water mixture 4.5%-6% Cold crush strength 110°C Minimum 110 MPa Minimum SiC % 55% Alumina min Al203 % Iron oxide Fe203 % Min Optimised fibre mix % 2% of mixture	ermal conductive	Yes	
Brick / cast able/ throw able Maximum water mixture 4.5%-6% Cold crush strength 110°C Minimum 110 MPa Minimum SiC % 55% Alumina min Al203 % Iron oxide Fe203 % Min Optimised fibre mix % 2% of mixture		Minimum 4 (W/m.K)	
Maximum water mixture 4.5%-6% Cold crush strength 110°C Minimum 110 MPa Minimum SiC % 55% Alumina min Al2O3 % Iron oxide Fe2O3 % Min 1.3% Optimised fibre mix % 2% of mixture	rasive area	Yes	
Cold crush strength 110°C Minimum 110 MPa Minimum SiC % 55% Alumina min Al2O3 % 12% Iron oxide Fe2O3 % Min 1.3% Optimised fibre mix % 2% of mixture	ick / cast able/ throw able	Throw able	
Minimum SiC % 55% Alumina min Al203 % 12% Iron oxide Fe2O3 % Min 1.3% Optimised fibre mix % 2% of mixture	aximum water mixture	4.5%-6%	
Minimum Si C % 55% Alumina min Al 203 % 12% Iron oxide Fe 203 % Min 1.3% Optimised fibre mix % 2% of mixture			
Alumina min Al203 % 12% Iron oxide Fe2O3 % Min 1.3% Optimised fibre mix % 2% of mixture	old crush strength 110°C	Minimum 110 MPa	
Iron oxide Fe2O3 % Min 1.3% Optimised fibre mix % 2% of mixture	inimum SiC %	55%	
Optimised fibre mix % 2% of mixture	umina min Al2O3 %	12%	
	on oxide Fe2O3 % Min	1.3%	
We will need Anchor points	otimised fibre mix %	2% of mixture	
We will need Anchor points			
		We will need Anchor points	
to ensure application will			
stay on Refractory		stay on	(Refractory)
We need small percentage			
optimized fiber separately to add with mixture to			F
ensure long operating EVAPORATOR SOOTDIOWER OPENING		ensure long operating	Evaporator Sootblower Opening
capability		oonohilitu.	

3.20.2 Areas per SOW

Ite				Gross	
m	Bill Description	Unit	QTY	rate	Amount
	As and when required				
	Hack up/off and removing average of 25mm thick refractory plaster from the araeas below to prepare for new refractory				
1	Burner mouth A-E	M ²	300		
2	Evaporator bottom deadspace front	M ²	124		
3	Evaporator bottom deadspace rear	M ²	133		
4	Evaporator Top Nose deadspace Roof	M ²	52		
5	Evaporator Top Nose deadspace Rear wall	M ²	60		
6	Evaporator Top Nose skincasing access	M ²	7		
7	Evaporator front wall at 18m Burner row C	M ²	3.4		
8	Evaporator front wall at 18m Burner row D	M ²	3.4		
9	Evaporator LHS wall sample tubes at 29m level	M ²	8.21		
10	Evaporator RHS wall sample tubes at 29m level	M ²	8.21		
11	Evaporator Front wall CF sample tubes 29m level	M ²	37		
12	Evaporator LHS wall at 32m Level	M ²	8.21		
13	Evaporator RHS wall at 32m Level	M ²	8.21		
14	Evaporator Front wall at 28m Level	M ²	37		
15	Evaporator Front wall at 21m Level Burner Row D	M ²	3.4		
16	Evaporator Front wall at 21m Level Burner Row E	M ²	3.4		
17	Evaporator Front wall at 12m Level Burner Row A	M ²	16.2		
18	Evaporator Front wall at 12m Level	M ²	16.2		

CONTROLLED DISCLOSURE

When downloaded from the document management system, this document is uncontrolled and the responsibility rests with the user to ensure it is in line with the authorized version on the system.

Unique 229-Revision: 1

Page:

REVISION. I

14 of 17

19	Evaporator LHS wall at 12m Level	M^2	20	
20	Evaporator RHS wall at 12m Level	M^2	20	
21	Evaporator LHS wall at 14m Level	M ²	25	
22	Evaporator RHS wall at 14m Level	M ²	25	
23	Evaporator Rear wall at 12m Level	M^2	16.2	
24	Evaporator Rear wall at 14m Level	M^2	35	
25	Evaporator Rear wall sample tubes at 18m level	M ²	35	
26	Evaporator Rear wall sample tubes at 21m level	M ²	35	
27	Saturated steam tubes rear wall at 31m Level	M^2	21	
28	Saturated steam tubes rear wall at 32m Level	M^2	21	
29	Saturated steam tubes rear wall at 33m Level	M^2	21	
30	Saturated steam tubes rear wall at 34m Level	M^2	32	
31	Saturated steam tubes rear wall at 36m Level	M^2	32	
32	Economiser side wall erosion at rear screen tubes	M^2	69	
33	Economiser side wall LHS wall	M^2	10.5	
34	Economiser side wall RHS wall	M^2	10.5	
35	Economiser LHS wall Around soorblowers and manholes	M²	105.6	
36	Economiser side wall erosion above economiser top bank at wall plates	M ²	15	
	Hack up/off and removing average of 200mm thick refractory plaster from the araeas below to prepare for new refractory			
37	Evaporator Top Nose Deadspace floor	M ²	44.5	

M ² 1422.14

3.20.3 Material specification refractory blocks Unit 6 and Unit 7

Operating Temperature Minimum: 1450`C

Application: Economiser side wall deflection blocks

Thermal conductive: Yes

Thermal conductivity Minimum: 4 (W/m.K)

Abrasive area: Yes

Brick / cast able: Yes

Maximum water mixture: 4.5%-6%

Cold crush strength 110 C Minimum: 110 MPa
Minimum SiC % 55%
Alumina min Al2O3 % 12%
Iron oxide Fe2O3 Min % 1.3%

Optimised fibre mix %: 2% of mixture

CONTROLLED DISCLOSURE

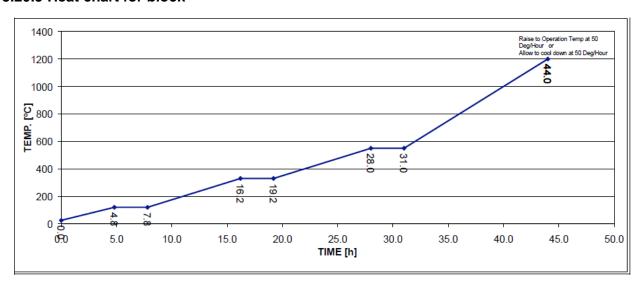
When downloaded from the document management system, this document is uncontrolled and the responsibility rests with the user to ensure it is in line with the authorized version on the system.

Unique

229-

Revision:

1


Page:

15 of 17

3.20.4 Dimensions of refractory blocks

475mmX400mmX75mm.

3.20.5 Heat chart for block

3.21 Deliverables for refractory blocks

- •The contractor is expected to manufacture refractory blocks as per specification
- Delivery to site
- Material and tests reports

3.22 Ad Hoc Services for refractory blocks

 Cold Strength testing as per required specification on 2% of manufactured blocks with report.

3.22.1 Critical Component Testing of refractory blocks

• Cold Strength testing as per required specification on 2% of manufactured blocks with report.

3.23 Defects

As per SAP

CONTROLLED DISCLOSURE

When downloaded from the document management system, this document is uncontrolled and the responsibility rests with the user to ensure it is in line with the authorized version on the system.

Unique

229-

Revision:

Page:

16 of 17

3.24 Tools and Equipment requirements

NO.	COMPONENT DESCRIPTION	QUANTITIES
1.	As per Contractors procedures	

3.25 Commissioning and Acceptance Testing Activities

NO.	TASK	RESPONSIBLE WORK CENTRE	PROCEDURE / SPECIFICATION
1.	Lagging and cladding	Outages and TMS	Eskom Thermal insulation standard
2.			

4. Summary of Revision Changes

Date	Rev.	Remarks/ Changes	Reasons	

5. Acceptance

This document has been seen and accepted by:

Name	Designation	Signatures
Sydney Tshalane	Outage Co-ordinator	
Sipho Ndhlovu	Senior Boiler inspector	
Mlungisi Makhaya	Senior Boiler inspector	
Michelle Nchabeleng	System Engineer	

CONTROLLED DISCLOSURE

When downloaded from the document management system, this document is uncontrolled and the responsibility rests with the user to ensure it is in line with the authorized version on the system.

Unique

229-

Revision: Page:

1

17 of 17

6. Template Revisions

Date	Rev.	Compiler	Remarks
21/08/2024	1	PA Sejake	Original document

CONTROLLED DISCLOSURE

When downloaded from the document management system, this document is uncontrolled and the responsibility rests with the user to ensure it is in line with the authorized version on the system.